'''This module is supposed to contain all the combinatorics related stuff which can be performed by VisualMath (VisMa) Note: Please try to maintain proper documentation ''' from visma.io.tokenize import tokenizer from visma.simplify.simplify import simplify from visma.io.parser import tokensToString from visma.functions.constant import Constant def factorial(tokens): '''Used to get factorial of tokens provided Argument: tokens {list} -- list of tokens Returns: result {list} -- list of result tokens {empty list} token_string {string} -- final result stored in a string animation {list} -- list of equation solving process comments {list} -- list of comments in equation solving process ''' tokens, _, _, _, _ = simplify(tokens) animation = [] comments = [] if (isinstance(tokens[0], Constant) & len(tokens) == 1): value = int(tokens[0].calculate()) if value == 0: result = [Constant(1)] comments += [['Factorial of ZERO is defined to be 1']] animation += [tokenizer('f = ' + str(1))] else: resultString = '' for i in range(1, value + 1): resultString += (str(i) + '*') resultString = resultString[:-1] resultTokens = tokenizer(resultString) comments += [['Expanding the factorial as']] animation += [resultTokens] result, _, _, _, _ = simplify(resultTokens) token_string = tokensToString(result) comments += [['Hence result: ']] animation += [tokenizer('f = ' + token_string)] return result, [], token_string, animation, comments def permutation(nTokens, rTokens): '''Used to get Permutation (nPr) Argument: nTokens {list} -- list of tokens of "n" in nPr rTokens {list} -- list of tokens of "r" in nPr Returns: result {list} -- list of result tokens {empty list} token_string {string} -- final result stored in a string animation {list} -- list of equation solving process comments {list} -- list of comments in equation solving process ''' nTokens, _, _, _, _ = simplify(nTokens) rTokens, _, _, _, _ = simplify(rTokens) animation = [] comments = [] if (isinstance(nTokens[0], Constant) & len(nTokens) == 1) & (isinstance(rTokens[0], Constant) & len(rTokens) == 1): comments += [['nCr is defined as (n!)/(r!)*(n-r)!']] animation += [[]] comments += [['Solving for n!']] animation += [[]] numerator, _, _, animNew1, commentNew1 = factorial(nTokens) commentNew1[1] = ['(n)! is thus solved as: '] animation.extend(animNew1) comments.extend(commentNew1) denominator = nTokens[0] - rTokens[0] comments += [['Solving for (n - r)!']] animation += [[]] denominator, _, _, animNew2, commentNew2 = factorial([denominator]) commentNew2[1] = ['(n - r)! is thus solved as: '] comments.extend(commentNew2) animation.extend(animNew2) result = [numerator[0] / denominator[0]] comments += [['On placing values in (n!)/(n-r)!']] animation += [tokenizer('r = ' + tokensToString(result))] token_string = tokensToString(result) return result, [], token_string, animation, comments def combination(nTokens, rTokens): '''Used to get Combination (nCr) Argument: nTokens {list} -- list of tokens of "n" in nCr rTokens {list} -- list of tokens of "r" in nCr Returns: result {list} -- list of result tokens {empty list} token_string {string} -- final result stored in a string animation {list} -- list of equation solving process comments {list} -- list of comments in equation solving process ''' nTokens, _, _, _, _ = simplify(nTokens) rTokens, _, _, _, _ = simplify(rTokens) animation = [] comments = [] if (isinstance(nTokens[0], Constant) & len(nTokens) == 1) & (isinstance(rTokens[0], Constant) & len(rTokens) == 1): comments += [['nCr is defined as (n!)/(r!)*(n-r)!']] animation += [[]] comments += [['Solving for n!']] animation += [[]] numerator, _, _, animNew1, commentNew1 = factorial(nTokens) commentNew1[1] = ['(n)! is thus solved as: '] animation.extend(animNew1) comments.extend(commentNew1) denominator1 = nTokens[0] - rTokens[0] comments += [['Solving for (n - r)!']] animation += [[]] denominator1, _, _, animNew2, commentNew2 = factorial([denominator1]) commentNew2[1] = ['(n - r)! is thus solved as: '] comments.extend(commentNew2) animation.extend(animNew2) comments += [['Solving for r!']] animation += [[]] denominator2, _, _, animNew3, commentNew3 = factorial([rTokens[0]]) commentNew3[1] = ['r! is thus solved as: '] comments.extend(commentNew3) animation.extend(animNew3) denominator = denominator1[0] * denominator2[0] result = [numerator[0] / denominator] comments += [['On placing values in (n!)/(r!)*(n-r)!']] animation += [tokenizer('r = ' + tokensToString(result))] token_string = tokensToString(result) return result, [], token_string, animation, comments