from visma.io.parser import tokensToString from visma.functions.structure import Expression from visma.functions.constant import Constant from visma.functions.variable import Variable from visma.functions.operator import Plus, Minus, Multiply from visma.simplify.simplify import simplify from visma.utils.integers import gcd, factors from visma.utils.polynomials import syntheticDivision def factorize(tokens): tokens, availableOperations, token_string, animation, comments = simplify(tokens) tokens, animNew, commentsNew = (factorizeTokens(tokens)) animation.extend(animNew) comments.append(commentsNew) token_string = tokensToString(tokens) return tokens, availableOperations, token_string, animation, comments def factorizeTokens(tokens): coeffs, var = getPolyCoeffs(tokens) gcf, roots, polynomial = factor(coeffs) if roots != []: tokens = [] comment = "The real roots of the above polynomial are " for root in roots: comment += r"$" + str(root) + r"\ ,\ " + r"$" if gcf != 1: tokens.append(Constant(float(gcf))) tokens.append(Multiply()) for root in roots: expression = Expression() expression.tokens.append(Variable(1, var, 1)) if root > 0: expression.tokens.append(Minus()) expression.tokens.append(Constant(float(root))) elif root < 0: expression.tokens.append(Plus()) expression.tokens.append(Constant(float(-root))) tokens.append(expression) tokens.append(Multiply()) if polynomial != [1]: expression = Expression() degree = len(polynomial) - 1 for i, coeff in enumerate(polynomial): if i == degree: if coeff > 0: expression.tokens.append(Plus()) expression.tokens.append(Constant(float(coeff))) elif coeff < 0: expression.tokens.append(Minus()) expression.tokens.append(Constant(float(-coeff))) elif coeff > 0: expression.tokens.append(Plus()) expression.tokens.append(Variable(coeff, var, degree - i)) elif coeff < 0: expression.tokens.append(Minus()) expression.tokens.append(Variable(-coeff, var, degree - i)) if isinstance(expression.tokens[0], Plus): expression.tokens.pop(0) tokens.append(expression) else: tokens.pop() else: comment = None animation = [tokens] comments = [comment] return tokens, animation, comments def getPolyCoeffs(tokens): degree = 0 for token in tokens: if isinstance(token, Variable) and token.power[0] > degree: degree = token.power[0] var = token.value[0] coeffs = [0]*int(degree + 1) for i, token in enumerate(tokens): if isinstance(token, Variable): coeffs[int(degree - token.power[0])] = int(token.coefficient) if tokens[i-1].value == '-': coeffs[int(degree - token.power[0])] *= -1 elif isinstance(token, Constant): coeffs[int(degree)] = int(token.value) if tokens[i-1].value == '-': coeffs[int(degree)] *= -1 return coeffs, var def factor(coefficients): gcf = gcd(coefficients) coefficients = [coefficient / gcf for coefficient in coefficients] polynomial = coefficients roots = [] while extractRoots(polynomial) is not False: root, quotient = extractRoots(polynomial) roots.append(root) polynomial = quotient polynomial = [int(term) for term in polynomial] roots.sort() return gcf, roots, polynomial def extractRoots(coefficients): factorsLeading = factors(coefficients[0]) factorsConstant = factors(coefficients[-1]) roots = possibleRoots(factorsConstant, factorsLeading) for root in roots: quotient, remainder = syntheticDivision(coefficients, root) if remainder == 0: return root, quotient return False def possibleRoots(listA, listB): roots = [] listA = [float(i) for i in listA] listB = [float(i) for i in listB] for i in listA: for j in listB: roots.extend([i / j, -i / j]) roots = removeDuplicates(roots) return roots def removeDuplicates(extraRoots): roots = [] for x in extraRoots: if x not in roots: roots.append(x) return roots