File size: 19,193 Bytes
1c4becd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
from librosa.util import pad_center, tiny
from scipy.signal import get_window
from torch import Tensor
from torch.autograd import Variable
from typing import Optional, Tuple
import librosa
import librosa.util as librosa_util
import math
import numpy as np
import scipy
import torch
import torch.nn.functional as F
import warnings
def create_fb_matrix(
n_freqs: int,
f_min: float,
f_max: float,
n_mels: int,
sample_rate: int,
norm: Optional[str] = None
) -> Tensor:
r"""Create a frequency bin conversion matrix.
Args:
n_freqs (int): Number of frequencies to highlight/apply
f_min (float): Minimum frequency (Hz)
f_max (float): Maximum frequency (Hz)
n_mels (int): Number of mel filterbanks
sample_rate (int): Sample rate of the audio waveform
norm (Optional[str]): If 'slaney', divide the triangular mel weights by the width of the mel band
(area normalization). (Default: ``None``)
Returns:
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
meaning number of frequencies to highlight/apply to x the number of filterbanks.
Each column is a filterbank so that assuming there is a matrix A of
size (..., ``n_freqs``), the applied result would be
``A * create_fb_matrix(A.size(-1), ...)``.
"""
if norm is not None and norm != "slaney":
raise ValueError("norm must be one of None or 'slaney'")
# freq bins
# Equivalent filterbank construction by Librosa
all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
# calculate mel freq bins
# hertz to mel(f) is 2595. * math.log10(1. + (f / 700.))
m_min = 2595.0 * math.log10(1.0 + (f_min / 700.0))
m_max = 2595.0 * math.log10(1.0 + (f_max / 700.0))
m_pts = torch.linspace(m_min, m_max, n_mels + 2)
# mel to hertz(mel) is 700. * (10**(mel / 2595.) - 1.)
f_pts = 700.0 * (10 ** (m_pts / 2595.0) - 1.0)
# calculate the difference between each mel point and each stft freq point in hertz
f_diff = f_pts[1:] - f_pts[:-1] # (n_mels + 1)
slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_mels + 2)
# create overlapping triangles
down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_mels)
up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_mels)
fb = torch.min(down_slopes, up_slopes)
fb = torch.clamp(fb, 1e-6, 1)
if norm is not None and norm == "slaney":
# Slaney-style mel is scaled to be approx constant energy per channel
enorm = 2.0 / (f_pts[2:n_mels + 2] - f_pts[:n_mels])
fb *= enorm.unsqueeze(0)
return fb
def lfilter(
waveform: Tensor,
a_coeffs: Tensor,
b_coeffs: Tensor,
clamp: bool = True,
) -> Tensor:
r"""Perform an IIR filter by evaluating difference equation.
Args:
waveform (Tensor): audio waveform of dimension of ``(..., time)``. Must be normalized to -1 to 1.
a_coeffs (Tensor): denominator coefficients of difference equation of dimension of ``(n_order + 1)``.
Lower delays coefficients are first, e.g. ``[a0, a1, a2, ...]``.
Must be same size as b_coeffs (pad with 0's as necessary).
b_coeffs (Tensor): numerator coefficients of difference equation of dimension of ``(n_order + 1)``.
Lower delays coefficients are first, e.g. ``[b0, b1, b2, ...]``.
Must be same size as a_coeffs (pad with 0's as necessary).
clamp (bool, optional): If ``True``, clamp the output signal to be in the range [-1, 1] (Default: ``True``)
Returns:
Tensor: Waveform with dimension of ``(..., time)``.
"""
# pack batch
shape = waveform.size()
waveform = waveform.reshape(-1, shape[-1])
assert (a_coeffs.size(0) == b_coeffs.size(0))
assert (len(waveform.size()) == 2)
assert (waveform.device == a_coeffs.device)
assert (b_coeffs.device == a_coeffs.device)
device = waveform.device
dtype = waveform.dtype
n_channel, n_sample = waveform.size()
n_order = a_coeffs.size(0)
n_sample_padded = n_sample + n_order - 1
assert (n_order > 0)
# Pad the input and create output
padded_waveform = torch.zeros(n_channel, n_sample_padded, dtype=dtype, device=device)
padded_waveform[:, (n_order - 1):] = waveform
padded_output_waveform = torch.zeros(n_channel, n_sample_padded, dtype=dtype, device=device)
# Set up the coefficients matrix
# Flip coefficients' order
a_coeffs_flipped = a_coeffs.flip(0)
b_coeffs_flipped = b_coeffs.flip(0)
# calculate windowed_input_signal in parallel
# create indices of original with shape (n_channel, n_order, n_sample)
window_idxs = torch.arange(n_sample, device=device).unsqueeze(0) + torch.arange(n_order, device=device).unsqueeze(1)
window_idxs = window_idxs.repeat(n_channel, 1, 1)
window_idxs += (torch.arange(n_channel, device=device).unsqueeze(-1).unsqueeze(-1) * n_sample_padded)
window_idxs = window_idxs.long()
# (n_order, ) matmul (n_channel, n_order, n_sample) -> (n_channel, n_sample)
input_signal_windows = torch.matmul(b_coeffs_flipped, torch.take(padded_waveform, window_idxs))
input_signal_windows.div_(a_coeffs[0])
a_coeffs_flipped.div_(a_coeffs[0])
for i_sample, o0 in enumerate(input_signal_windows.t()):
windowed_output_signal = padded_output_waveform[:, i_sample:(i_sample + n_order)]
o0.addmv_(windowed_output_signal, a_coeffs_flipped, alpha=-1)
padded_output_waveform[:, i_sample + n_order - 1] = o0
output = padded_output_waveform[:, (n_order - 1):]
if clamp:
output = torch.clamp(output, min=-1., max=1.)
# unpack batch
output = output.reshape(shape[:-1] + output.shape[-1:])
return output
def biquad(
waveform: Tensor,
b0: float,
b1: float,
b2: float,
a0: float,
a1: float,
a2: float
) -> Tensor:
r"""Perform a biquad filter of input tensor. Initial conditions set to 0.
https://en.wikipedia.org/wiki/Digital_biquad_filter
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
b0 (float): numerator coefficient of current input, x[n]
b1 (float): numerator coefficient of input one time step ago x[n-1]
b2 (float): numerator coefficient of input two time steps ago x[n-2]
a0 (float): denominator coefficient of current output y[n], typically 1
a1 (float): denominator coefficient of current output y[n-1]
a2 (float): denominator coefficient of current output y[n-2]
Returns:
Tensor: Waveform with dimension of `(..., time)`
"""
device = waveform.device
dtype = waveform.dtype
output_waveform = lfilter(
waveform,
torch.tensor([a0, a1, a2], dtype=dtype, device=device),
torch.tensor([b0, b1, b2], dtype=dtype, device=device)
)
return output_waveform
def _dB2Linear(x: float) -> float:
return math.exp(x * math.log(10) / 20.0)
def highpass_biquad(
waveform: Tensor,
sample_rate: int,
cutoff_freq: float,
Q: float = 0.707
) -> Tensor:
r"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform dimension of `(..., time)`
"""
w0 = 2 * math.pi * cutoff_freq / sample_rate
alpha = math.sin(w0) / 2. / Q
b0 = (1 + math.cos(w0)) / 2
b1 = -1 - math.cos(w0)
b2 = b0
a0 = 1 + alpha
a1 = -2 * math.cos(w0)
a2 = 1 - alpha
return biquad(waveform, b0, b1, b2, a0, a1, a2)
def lowpass_biquad(
waveform: Tensor,
sample_rate: int,
cutoff_freq: float,
Q: float = 0.707
) -> Tensor:
r"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
"""
w0 = 2 * math.pi * cutoff_freq / sample_rate
alpha = math.sin(w0) / 2 / Q
b0 = (1 - math.cos(w0)) / 2
b1 = 1 - math.cos(w0)
b2 = b0
a0 = 1 + alpha
a1 = -2 * math.cos(w0)
a2 = 1 - alpha
return biquad(waveform, b0, b1, b2, a0, a1, a2)
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
n_fft=800, dtype=np.float32, norm=None):
"""
# from librosa 0.6
Compute the sum-square envelope of a window function at a given hop length.
This is used to estimate modulation effects induced by windowing
observations in short-time fourier transforms.
Parameters
----------
window : string, tuple, number, callable, or list-like
Window specification, as in `get_window`
n_frames : int > 0
The number of analysis frames
hop_length : int > 0
The number of samples to advance between frames
win_length : [optional]
The length of the window function. By default, this matches `n_fft`.
n_fft : int > 0
The length of each analysis frame.
dtype : np.dtype
The data type of the output
Returns
-------
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
The sum-squared envelope of the window function
"""
if win_length is None:
win_length = n_fft
n = n_fft + hop_length * (n_frames - 1)
x = np.zeros(n, dtype=dtype)
# Compute the squared window at the desired length
win_sq = get_window(window, win_length, fftbins=True)
win_sq = librosa_util.normalize(win_sq, norm=norm)**2
win_sq = librosa_util.pad_center(win_sq, n_fft)
# Fill the envelope
for i in range(n_frames):
sample = i * hop_length
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
return x
class MelScale(torch.nn.Module):
r"""Turn a normal STFT into a mel frequency STFT, using a conversion
matrix. This uses triangular filter banks.
User can control which device the filter bank (`fb`) is (e.g. fb.to(spec_f.device)).
Args:
n_mels (int, optional): Number of mel filterbanks. (Default: ``128``)
sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``)
f_min (float, optional): Minimum frequency. (Default: ``0.``)
f_max (float or None, optional): Maximum frequency. (Default: ``sample_rate // 2``)
n_stft (int, optional): Number of bins in STFT. Calculated from first input
if None is given. See ``n_fft`` in :class:`Spectrogram`. (Default: ``None``)
"""
__constants__ = ['n_mels', 'sample_rate', 'f_min', 'f_max']
def __init__(self,
n_mels: int = 128,
sample_rate: int = 24000,
f_min: float = 0.,
f_max: Optional[float] = None,
n_stft: Optional[int] = None) -> None:
super(MelScale, self).__init__()
self.n_mels = n_mels
self.sample_rate = sample_rate
self.f_max = f_max if f_max is not None else float(sample_rate // 2)
self.f_min = f_min
assert f_min <= self.f_max, 'Require f_min: %f < f_max: %f' % (f_min, self.f_max)
fb = torch.empty(0) if n_stft is None else create_fb_matrix(
n_stft, self.f_min, self.f_max, self.n_mels, self.sample_rate)
self.register_buffer('fb', fb)
def forward(self, specgram: Tensor) -> Tensor:
r"""
Args:
specgram (Tensor): A spectrogram STFT of dimension (..., freq, time).
Returns:
Tensor: Mel frequency spectrogram of size (..., ``n_mels``, time).
"""
# pack batch
shape = specgram.size()
specgram = specgram.reshape(-1, shape[-2], shape[-1])
if self.fb.numel() == 0:
tmp_fb = create_fb_matrix(specgram.size(1), self.f_min, self.f_max, self.n_mels, self.sample_rate)
# Attributes cannot be reassigned outside __init__ so workaround
self.fb.resize_(tmp_fb.size())
self.fb.copy_(tmp_fb)
# (channel, frequency, time).transpose(...) dot (frequency, n_mels)
# -> (channel, time, n_mels).transpose(...)
mel_specgram = torch.matmul(specgram.transpose(1, 2), self.fb).transpose(1, 2)
# unpack batch
mel_specgram = mel_specgram.reshape(shape[:-2] + mel_specgram.shape[-2:])
return mel_specgram
class TorchSTFT(torch.nn.Module):
def __init__(self, fft_size, hop_size, win_size,
normalized=False, domain='linear',
mel_scale=False, ref_level_db=20, min_level_db=-100):
super().__init__()
self.fft_size = fft_size
self.hop_size = hop_size
self.win_size = win_size
self.ref_level_db = ref_level_db
self.min_level_db = min_level_db
self.window = torch.hann_window(win_size)
self.normalized = normalized
self.domain = domain
self.mel_scale = MelScale(n_mels=(fft_size // 2 + 1),
n_stft=(fft_size // 2 + 1)) if mel_scale else None
def transform(self, x):
x_stft = torch.stft(x.to(torch.float32), self.fft_size, self.hop_size, self.win_size,
self.window.type_as(x), normalized=self.normalized)
real = x_stft[..., 0]
imag = x_stft[..., 1]
mag = torch.clamp(real ** 2 + imag ** 2, min=1e-7)
mag = torch.sqrt(mag)
phase = torch.atan2(imag, real)
if self.mel_scale is not None:
mag = self.mel_scale(mag)
if self.domain == 'log':
mag = 20 * torch.log10(mag) - self.ref_level_db
mag = torch.clamp((mag - self.min_level_db) / -self.min_level_db, 0, 1)
return mag, phase
elif self.domain == 'linear':
return mag, phase
elif self.domain == 'double':
log_mag = 20 * torch.log10(mag) - self.ref_level_db
log_mag = torch.clamp((log_mag - self.min_level_db) / -self.min_level_db, 0, 1)
return torch.cat((mag, log_mag), dim=1), phase
def complex(self, x):
x_stft = torch.stft(x, self.fft_size, self.hop_size, self.win_size,
self.window.type_as(x), normalized=self.normalized)
real = x_stft[..., 0]
imag = x_stft[..., 1]
return real, imag
class STFT(torch.nn.Module):
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
def __init__(self, filter_length=800, hop_length=200, win_length=800,
window='hann'):
super(STFT, self).__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = window
self.forward_transform = None
scale = self.filter_length / self.hop_length
fourier_basis = np.fft.fft(np.eye(self.filter_length))
cutoff = int((self.filter_length / 2 + 1))
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
np.imag(fourier_basis[:cutoff, :])])
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
inverse_basis = torch.FloatTensor(
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
if window is not None:
assert(filter_length >= win_length)
# get window and zero center pad it to filter_length
fft_window = get_window(window, win_length, fftbins=True)
fft_window = pad_center(fft_window, filter_length)
fft_window = torch.from_numpy(fft_window).float()
# window the bases
forward_basis *= fft_window
inverse_basis *= fft_window
self.register_buffer('forward_basis', forward_basis.float())
self.register_buffer('inverse_basis', inverse_basis.float())
def transform(self, input_data):
num_batches = input_data.size(0)
num_samples = input_data.size(1)
self.num_samples = num_samples
# similar to librosa, reflect-pad the input
input_data = input_data.view(num_batches, 1, num_samples)
input_data = F.pad(
input_data.unsqueeze(1),
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
mode='reflect')
input_data = input_data.squeeze(1)
forward_transform = F.conv1d(
input_data,
Variable(self.forward_basis, requires_grad=False),
stride=self.hop_length,
padding=0)
cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = torch.sqrt(real_part**2 + imag_part**2)
phase = torch.autograd.Variable(
torch.atan2(imag_part.data, real_part.data))
return magnitude, phase
def inverse(self, magnitude, phase):
recombine_magnitude_phase = torch.cat(
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
inverse_transform = F.conv_transpose1d(
recombine_magnitude_phase,
Variable(self.inverse_basis, requires_grad=False),
stride=self.hop_length,
padding=0)
if self.window is not None:
window_sum = window_sumsquare(
self.window, magnitude.size(-1), hop_length=self.hop_length,
win_length=self.win_length, n_fft=self.filter_length,
dtype=np.float32)
# remove modulation effects
approx_nonzero_indices = torch.from_numpy(
np.where(window_sum > tiny(window_sum))[0])
window_sum = torch.autograd.Variable(
torch.from_numpy(window_sum), requires_grad=False)
window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
# scale by hop ratio
inverse_transform *= float(self.filter_length) / self.hop_length
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
return inverse_transform
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
|