File size: 3,294 Bytes
34d2a85
 
 
 
 
 
 
 
 
 
 
 
 
 
8b3c974
34d2a85
 
 
 
 
fdb1489
34d2a85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdb1489
 
 
 
 
 
 
34d2a85
 
31c1214
34d2a85
 
bda3c82
 
34d2a85
 
 
 
 
197dc46
34d2a85
197dc46
 
34d2a85
 
197dc46
34d2a85
197dc46
34d2a85
 
 
0d654ec
34d2a85
0d654ec
 
34d2a85
0d654ec
 
197dc46
0d654ec
 
 
 
 
 
34d2a85
0d654ec
 
1ab03d5
197dc46
49715f1
34d2a85
 
d3d3873
34d2a85
d3d3873
34d2a85
 
 
94f63a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
size_categories:
- 1K<N<10K
source_datasets:
- original
task_categories:
- image-segmentation
task_ids:
- instance-segmentation
pretty_name: XAMI-dataset
tags:
- COCO format
- Astronomy
- XMM-Newton
- CC BY-NC 3.0 IGO
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: valid
    path: data/valid-*
dataset_info:
  features:
  - name: observation id
    dtype: string
  - name: segmentation
    dtype: image
  - name: bbox
    dtype: image
  - name: label
    dtype: string
  - name: area
    dtype: string
  - name: image shape
    dtype: string
  splits:
  - name: train
    num_bytes: 154137131.0
    num_examples: 272
  - name: valid
    num_bytes: 210925170.0
    num_examples: 360
  download_size: 365017887
  dataset_size: 365062301.0
---

# XAMI (**X**MM-Newton Optical **A**rtefact **M**apping for Astronomical **I**nstance Segmentation)


The **Git** repository for this dataset can be found **[here](https://github.com/ESA-Datalabs/XAMI-dataset)**. 


The XAMI dataset contains 1000 annotated images of observations from diverse sky regions of the XMM-Newton Optical Monitor (XMM-OM) image catalog. An additional 50 images with no annotations are included to help decrease the amount of False Positives or Negatives that may be caused by complex objects (e.g., large galaxies, clusters, nebulae).

# Annotation platforms

The images have been annotated using the following platform:

- [Zooniverse](https://www.zooniverse.org/projects/ori-j/ai-for-artefacts-in-sky-images), where the resulted annotations are not externally visible. 
- [Roboflow](https://universe.roboflow.com/iuliaelisa/xmm_om_artefacts_512/), which allows for more interactive and visual annotation tools. 

# The dataset format
The dataset is splited into train and validation categories and contains annotated artefacts in COCO format for Instance Segmentation. We use multilabel Stratified K-fold (**k=4**) to balance class distributions across splits. We choose to work with a single dataset splits version (out of 4) but also provide means to work with all 4 versions. 

Please check [Dataset Structure](Datasets-Structure.md) for a more detailed structure of our dataset in COCO-IS and YOLOv8-Seg format.

# Downloading the dataset

Please check [load_and_visualise_dataset.pynb](https://github.com/ESA-Datalabs/XAMI-dataset/blob/main/load_and_visualise_dataset.ipynb)) formore visualization tools.

```python
from huggingface_hub import hf_hub_download

dataset_name = 'xami_dataset' # the dataset name of Huggingface
images_dir = '.' # the output directory of the dataset images

hf_hub_download(
    repo_id="iulia-elisa/XAMI-dataset", # the Huggingface repo ID
    repo_type='dataset', 
    filename=dataset_name+'.zip', 
    local_dir=images_dir
);

# Unzip file
!unzip -q "xami_dataset.zip" -d 'path/to/dest'
```

Or you can simply download only the dataset zip file from HuggingFace using a CLI command:

```bash
DEST_DIR='/path/to/local/dataset/dir'

huggingface-cli download iulia-elisa/XAMI-dataset xami_dataset.zip --repo-type dataset --local-dir "$DEST_DIR" && unzip "$DEST_DIR/xami_dataset.zip" -d "$DEST_DIR" && rm "$DEST_DIR/xami_dataset.zip"
```

## Licence 
**[CC BY-NC 3.0 IGO](https://creativecommons.org/licenses/by-nc/3.0/igo/deed.en).**