Datasets:
iulia-elisa
commited on
Commit
•
33871a9
1
Parent(s):
998792a
Upload 8 files
Browse files- Datasets-Structure.md +67 -0
- coco_format_to_parquet.ipynb +988 -0
- dataset_archive.zip +3 -0
- id2label.json +1 -0
- load_and_visualise_dataset.ipynb +3 -0
- obs_info_1024_all.json +0 -0
- stratified_kfold.ipynb +0 -0
- utils.py +322 -0
Datasets-Structure.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Datasets-Structure
|
2 |
+
|
3 |
+
**(YOLOv8 format)**
|
4 |
+
|
5 |
+
The Yolov8 dataset for segmentation is usually structured as follows:
|
6 |
+
```
|
7 |
+
yolo_dataset/
|
8 |
+
│
|
9 |
+
├── train/
|
10 |
+
│ ├── images/
|
11 |
+
│ │ └── 🖼️ img_n # Example image
|
12 |
+
│ │
|
13 |
+
│ └── labels/
|
14 |
+
│ └── 📄 img_n_labels.txt # Example labels file
|
15 |
+
│
|
16 |
+
├── valid/
|
17 |
+
│ │ ... (similar)
|
18 |
+
│
|
19 |
+
└── 📄 data.yaml
|
20 |
+
```
|
21 |
+
|
22 |
+
Each ```img_x_labels.txt``` file contains multiple annotations (one per line) with corresponding class ID and segmentation coordinates:
|
23 |
+
|
24 |
+
`<class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>`
|
25 |
+
|
26 |
+
The file `data.yaml` contains keys such as:
|
27 |
+
- names (the class names)
|
28 |
+
- nc (number or classes)
|
29 |
+
- train (path/to/train/images/)
|
30 |
+
- val (path/to/val/images/)
|
31 |
+
|
32 |
+
|
33 |
+
**(COCO Instance Segmentation format)**
|
34 |
+
```
|
35 |
+
coco_dataset/
|
36 |
+
│
|
37 |
+
├── train/
|
38 |
+
│ ├── 🖼️ img_n # Example image
|
39 |
+
│ └── 📄 annotations.json # The annotations json file
|
40 |
+
│
|
41 |
+
└── valid/
|
42 |
+
└── ... (similar)
|
43 |
+
|
44 |
+
```
|
45 |
+
|
46 |
+
The annotations json file contains a dictionary of lists:
|
47 |
+
|
48 |
+
- images (a list of dictionaries)
|
49 |
+
- id - image ID
|
50 |
+
- file_name
|
51 |
+
- height
|
52 |
+
- width
|
53 |
+
|
54 |
+
|
55 |
+
- annotations (a list of dictionaries)
|
56 |
+
- id
|
57 |
+
- image_id
|
58 |
+
- category_id
|
59 |
+
- bbox
|
60 |
+
- area
|
61 |
+
- segmentation (a segmentation polygon)
|
62 |
+
- iscrowd
|
63 |
+
|
64 |
+
|
65 |
+
- categories (a list of dictionaries)
|
66 |
+
- id
|
67 |
+
- name
|
coco_format_to_parquet.ipynb
ADDED
@@ -0,0 +1,988 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "a333665e-77ee-43af-b539-8b2bc87c008c",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import json\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"from pathlib import Path\n",
|
13 |
+
"from PIL import Image, ImageDraw, ImageFile\n",
|
14 |
+
"import cv2\n",
|
15 |
+
"import io \n",
|
16 |
+
"import base64\n",
|
17 |
+
"import numpy as np\n",
|
18 |
+
"from pycocotools.coco import COCO\n",
|
19 |
+
"import os\n",
|
20 |
+
"import matplotlib.pyplot as plt\n",
|
21 |
+
"import matplotlib.patches as patches\n",
|
22 |
+
"from PIL import Image\n",
|
23 |
+
"ImageFile.LOAD_TRUNCATED_IMAGES = True\n",
|
24 |
+
"\n",
|
25 |
+
"import utils\n",
|
26 |
+
"\n",
|
27 |
+
"dataset_dir = './mskf_0/'\n",
|
28 |
+
"train_df, train_coco_data = utils.split_to_df(dataset_dir, 'train/')\n",
|
29 |
+
"valid_df, valid_coco_data = utils.split_to_df(dataset_dir, 'valid')"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 2,
|
35 |
+
"id": "0e0d5a99-4eba-49d4-931b-0128691631b1",
|
36 |
+
"metadata": {
|
37 |
+
"scrolled": true
|
38 |
+
},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"data": {
|
42 |
+
"text/plain": [
|
43 |
+
"{'id': 1,\n",
|
44 |
+
" 'license': 1,\n",
|
45 |
+
" 'file_name': 'S0505210301_M_png.rf.e47187e88c167fad1db290b0214e2175.jpg',\n",
|
46 |
+
" 'height': 512,\n",
|
47 |
+
" 'width': 512,\n",
|
48 |
+
" 'date_captured': '2024-05-08T06:13:06+00:00'}"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"execution_count": 2,
|
52 |
+
"metadata": {},
|
53 |
+
"output_type": "execute_result"
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"source": [
|
57 |
+
"train_coco_data['images'][0]"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": 3,
|
63 |
+
"id": "df660d83-5afb-4b7c-83e4-f1f9d68577cd",
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [
|
66 |
+
{
|
67 |
+
"data": {
|
68 |
+
"text/plain": [
|
69 |
+
"array([1, 2, 3, 4, 5])"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
"execution_count": 3,
|
73 |
+
"metadata": {},
|
74 |
+
"output_type": "execute_result"
|
75 |
+
}
|
76 |
+
],
|
77 |
+
"source": [
|
78 |
+
"np.unique(train_df['category_id'])"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 4,
|
84 |
+
"id": "51f26d8d-0116-48fe-8cea-d070350df333",
|
85 |
+
"metadata": {
|
86 |
+
"scrolled": true
|
87 |
+
},
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"data": {
|
91 |
+
"text/plain": [
|
92 |
+
"{'image_id': array([<class 'int'>], dtype=object),\n",
|
93 |
+
" 'category_id': array([<class 'int'>], dtype=object),\n",
|
94 |
+
" 'bbox': array([<class 'list'>], dtype=object),\n",
|
95 |
+
" 'area': array([<class 'float'>], dtype=object),\n",
|
96 |
+
" 'segmentation': array([<class 'numpy.ndarray'>], dtype=object),\n",
|
97 |
+
" 'iscrowd': array([<class 'int'>], dtype=object),\n",
|
98 |
+
" 'width': array([<class 'int'>], dtype=object),\n",
|
99 |
+
" 'height': array([<class 'int'>], dtype=object),\n",
|
100 |
+
" 'observation': array([<class 'str'>], dtype=object),\n",
|
101 |
+
" 'image': array([<class 'numpy.ndarray'>], dtype=object),\n",
|
102 |
+
" 'annot_id': array([<class 'int'>], dtype=object)}"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
"execution_count": 4,
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "execute_result"
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"source": [
|
111 |
+
"unique_types = {col: train_df[col].apply(type).unique() for col in train_df.columns}\n",
|
112 |
+
"unique_types"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 5,
|
118 |
+
"id": "6f464df1-9e86-47ed-a8c6-d5116a71085e",
|
119 |
+
"metadata": {
|
120 |
+
"scrolled": true
|
121 |
+
},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"# train_df.head(20)"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 6,
|
130 |
+
"id": "3f4afc2a-2ee4-458d-95c0-19e8497653da",
|
131 |
+
"metadata": {
|
132 |
+
"scrolled": true
|
133 |
+
},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"from collections import defaultdict\n",
|
137 |
+
"from datasets import Dataset, Features, Sequence\n",
|
138 |
+
"import datasets\n",
|
139 |
+
"from io import BytesIO\n",
|
140 |
+
"\n",
|
141 |
+
"cats_to_colours = { 1:('central-ring', (1,252,214)), \n",
|
142 |
+
" 2:('other', (255,128,1)),\n",
|
143 |
+
" 3:('read-out-streak', (20, 77, 158)), \n",
|
144 |
+
" 4:('smoke-ring', (159,21,100)),\n",
|
145 |
+
" 5:('star-loop', (255, 188, 248))}\n",
|
146 |
+
"\n",
|
147 |
+
"train_dataset=utils.df_to_dataset_dict(train_df, train_coco_data, cats_to_colours)\n",
|
148 |
+
"valid_dataset=utils.df_to_dataset_dict(valid_df, valid_coco_data, cats_to_colours)"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 7,
|
154 |
+
"id": "e3ed2ab1-8632-4e49-a661-c306554bd010",
|
155 |
+
"metadata": {
|
156 |
+
"scrolled": true
|
157 |
+
},
|
158 |
+
"outputs": [
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"application/vnd.jupyter.widget-view+json": {
|
162 |
+
"model_id": "6ebf9675899e4ffcbcb3ebebbe7d6147",
|
163 |
+
"version_major": 2,
|
164 |
+
"version_minor": 0
|
165 |
+
},
|
166 |
+
"text/plain": [
|
167 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"metadata": {},
|
171 |
+
"output_type": "display_data"
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"data": {
|
175 |
+
"application/vnd.jupyter.widget-view+json": {
|
176 |
+
"model_id": "2bf3a5fcfc914785b99bc6e6892531be",
|
177 |
+
"version_major": 2,
|
178 |
+
"version_minor": 0
|
179 |
+
},
|
180 |
+
"text/plain": [
|
181 |
+
"Map: 0%| | 0/87 [00:00<?, ? examples/s]"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"metadata": {},
|
185 |
+
"output_type": "display_data"
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"data": {
|
189 |
+
"application/vnd.jupyter.widget-view+json": {
|
190 |
+
"model_id": "871d1f3b21d242cf86e1d1f20295fa7d",
|
191 |
+
"version_major": 2,
|
192 |
+
"version_minor": 0
|
193 |
+
},
|
194 |
+
"text/plain": [
|
195 |
+
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
"metadata": {},
|
199 |
+
"output_type": "display_data"
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"data": {
|
203 |
+
"application/vnd.jupyter.widget-view+json": {
|
204 |
+
"model_id": "9376ea5e4c174f31827a0dd50a0af9b2",
|
205 |
+
"version_major": 2,
|
206 |
+
"version_minor": 0
|
207 |
+
},
|
208 |
+
"text/plain": [
|
209 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
"metadata": {},
|
213 |
+
"output_type": "display_data"
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"data": {
|
217 |
+
"application/vnd.jupyter.widget-view+json": {
|
218 |
+
"model_id": "f5a6d9c4be554f4f937b1afd82f934b9",
|
219 |
+
"version_major": 2,
|
220 |
+
"version_minor": 0
|
221 |
+
},
|
222 |
+
"text/plain": [
|
223 |
+
"Map: 0%| | 0/88 [00:00<?, ? examples/s]"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
"metadata": {},
|
227 |
+
"output_type": "display_data"
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"data": {
|
231 |
+
"application/vnd.jupyter.widget-view+json": {
|
232 |
+
"model_id": "c2a692042a7748f9adea02a38012bb4c",
|
233 |
+
"version_major": 2,
|
234 |
+
"version_minor": 0
|
235 |
+
},
|
236 |
+
"text/plain": [
|
237 |
+
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
"metadata": {},
|
241 |
+
"output_type": "display_data"
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"data": {
|
245 |
+
"application/vnd.jupyter.widget-view+json": {
|
246 |
+
"model_id": "e2d0aec5b6f14da889ebb4876d6a6cc3",
|
247 |
+
"version_major": 2,
|
248 |
+
"version_minor": 0
|
249 |
+
},
|
250 |
+
"text/plain": [
|
251 |
+
"README.md: 0%| | 0.00/5.71k [00:00<?, ?B/s]"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
"metadata": {},
|
255 |
+
"output_type": "display_data"
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"data": {
|
259 |
+
"text/plain": [
|
260 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/iulia-elisa/XMM_OM_AI_dataset/commit/e4f969ebf7e6b84ece6a91380cbe2dd2fc669261', commit_message='Upload dataset', commit_description='', oid='e4f969ebf7e6b84ece6a91380cbe2dd2fc669261', pr_url=None, pr_revision=None, pr_num=None)"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
"execution_count": 7,
|
264 |
+
"metadata": {},
|
265 |
+
"output_type": "execute_result"
|
266 |
+
}
|
267 |
+
],
|
268 |
+
"source": [
|
269 |
+
"from datasets import DatasetDict\n",
|
270 |
+
"\n",
|
271 |
+
"dataset_dict = DatasetDict({\n",
|
272 |
+
" 'train': train_dataset,\n",
|
273 |
+
" 'valid': valid_dataset\n",
|
274 |
+
"})\n",
|
275 |
+
"\n",
|
276 |
+
"dataset_dict.push_to_hub('iulia-elisa/XMM_OM_AI_dataset', private=False)"
|
277 |
+
]
|
278 |
+
}
|
279 |
+
],
|
280 |
+
"metadata": {
|
281 |
+
"kernelspec": {
|
282 |
+
"display_name": "env_py311",
|
283 |
+
"language": "python",
|
284 |
+
"name": "python3"
|
285 |
+
},
|
286 |
+
"language_info": {
|
287 |
+
"codemirror_mode": {
|
288 |
+
"name": "ipython",
|
289 |
+
"version": 3
|
290 |
+
},
|
291 |
+
"file_extension": ".py",
|
292 |
+
"mimetype": "text/x-python",
|
293 |
+
"name": "python",
|
294 |
+
"nbconvert_exporter": "python",
|
295 |
+
"pygments_lexer": "ipython3",
|
296 |
+
"version": "3.11.7"
|
297 |
+
},
|
298 |
+
"widgets": {
|
299 |
+
"application/vnd.jupyter.widget-state+json": {
|
300 |
+
"state": {
|
301 |
+
"048f277744ff4c8f9fe447563d554654": {
|
302 |
+
"model_module": "@jupyter-widgets/base",
|
303 |
+
"model_module_version": "2.0.0",
|
304 |
+
"model_name": "LayoutModel",
|
305 |
+
"state": {}
|
306 |
+
},
|
307 |
+
"08cf7cea944a4322ae9b6ef361862bb4": {
|
308 |
+
"model_module": "@jupyter-widgets/controls",
|
309 |
+
"model_module_version": "2.0.0",
|
310 |
+
"model_name": "HTMLModel",
|
311 |
+
"state": {
|
312 |
+
"layout": "IPY_MODEL_99548805c93d4e2bbccaf691aba88980",
|
313 |
+
"style": "IPY_MODEL_23e0985cd92e4db1a9006cab93b41a35",
|
314 |
+
"value": "Creating parquet from Arrow format: 100%"
|
315 |
+
}
|
316 |
+
},
|
317 |
+
"0e36fda6f39745ef85e3846289e165eb": {
|
318 |
+
"model_module": "@jupyter-widgets/base",
|
319 |
+
"model_module_version": "2.0.0",
|
320 |
+
"model_name": "LayoutModel",
|
321 |
+
"state": {}
|
322 |
+
},
|
323 |
+
"0f6e7836683d40efa731e77aa6746fa5": {
|
324 |
+
"model_module": "@jupyter-widgets/base",
|
325 |
+
"model_module_version": "2.0.0",
|
326 |
+
"model_name": "LayoutModel",
|
327 |
+
"state": {}
|
328 |
+
},
|
329 |
+
"11970b4573344669adcfd5d9df924aea": {
|
330 |
+
"model_module": "@jupyter-widgets/controls",
|
331 |
+
"model_module_version": "2.0.0",
|
332 |
+
"model_name": "FloatProgressModel",
|
333 |
+
"state": {
|
334 |
+
"bar_style": "success",
|
335 |
+
"layout": "IPY_MODEL_e6ec6e37a6304a2590e81ec2b4a01e15",
|
336 |
+
"max": 1,
|
337 |
+
"style": "IPY_MODEL_a2c1ef897ce849d9a1f773724f617d40",
|
338 |
+
"value": 1
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"1c7cfbd83be64f8eafa6d8ad98b08bc8": {
|
342 |
+
"model_module": "@jupyter-widgets/controls",
|
343 |
+
"model_module_version": "2.0.0",
|
344 |
+
"model_name": "HTMLStyleModel",
|
345 |
+
"state": {
|
346 |
+
"description_width": "",
|
347 |
+
"font_size": null,
|
348 |
+
"text_color": null
|
349 |
+
}
|
350 |
+
},
|
351 |
+
"1fa82ba064f548319607a027721117d8": {
|
352 |
+
"model_module": "@jupyter-widgets/controls",
|
353 |
+
"model_module_version": "2.0.0",
|
354 |
+
"model_name": "HTMLModel",
|
355 |
+
"state": {
|
356 |
+
"layout": "IPY_MODEL_048f277744ff4c8f9fe447563d554654",
|
357 |
+
"style": "IPY_MODEL_5874491ff76a470e9db86621e2e5d1a7",
|
358 |
+
"value": " 1/1 [00:00<00:00, 9.50ba/s]"
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"23640986547d47b3900f002fe5522f39": {
|
362 |
+
"model_module": "@jupyter-widgets/base",
|
363 |
+
"model_module_version": "2.0.0",
|
364 |
+
"model_name": "LayoutModel",
|
365 |
+
"state": {}
|
366 |
+
},
|
367 |
+
"23e0985cd92e4db1a9006cab93b41a35": {
|
368 |
+
"model_module": "@jupyter-widgets/controls",
|
369 |
+
"model_module_version": "2.0.0",
|
370 |
+
"model_name": "HTMLStyleModel",
|
371 |
+
"state": {
|
372 |
+
"description_width": "",
|
373 |
+
"font_size": null,
|
374 |
+
"text_color": null
|
375 |
+
}
|
376 |
+
},
|
377 |
+
"2bf3a5fcfc914785b99bc6e6892531be": {
|
378 |
+
"model_module": "@jupyter-widgets/controls",
|
379 |
+
"model_module_version": "2.0.0",
|
380 |
+
"model_name": "HBoxModel",
|
381 |
+
"state": {
|
382 |
+
"children": [
|
383 |
+
"IPY_MODEL_47be27d426034da9a97c49bae4626ddc",
|
384 |
+
"IPY_MODEL_71f517a070b643b3a5b6ad86c3710f95",
|
385 |
+
"IPY_MODEL_fb1c614683cf4531b6ac405a9373d74d"
|
386 |
+
],
|
387 |
+
"layout": "IPY_MODEL_db5e0e8d61d742ef823112ebe06cd33b"
|
388 |
+
}
|
389 |
+
},
|
390 |
+
"2d56d23ee7804546ab50c8ceaddd2d05": {
|
391 |
+
"model_module": "@jupyter-widgets/controls",
|
392 |
+
"model_module_version": "2.0.0",
|
393 |
+
"model_name": "HTMLModel",
|
394 |
+
"state": {
|
395 |
+
"layout": "IPY_MODEL_0e36fda6f39745ef85e3846289e165eb",
|
396 |
+
"style": "IPY_MODEL_a591c55a93f84703b8070bcf65e957e6",
|
397 |
+
"value": "Map: 100%"
|
398 |
+
}
|
399 |
+
},
|
400 |
+
"2f221cdc0bb44e23ab02f00a658801bf": {
|
401 |
+
"model_module": "@jupyter-widgets/controls",
|
402 |
+
"model_module_version": "2.0.0",
|
403 |
+
"model_name": "FloatProgressModel",
|
404 |
+
"state": {
|
405 |
+
"bar_style": "success",
|
406 |
+
"layout": "IPY_MODEL_e5f9516196b0461daf95817bb9408d7b",
|
407 |
+
"max": 5714,
|
408 |
+
"style": "IPY_MODEL_c38b2aa4bbd04b248b23de98a3fb3f04",
|
409 |
+
"value": 5714
|
410 |
+
}
|
411 |
+
},
|
412 |
+
"2f4e9a17492b430eb38dbf580a8f6112": {
|
413 |
+
"model_module": "@jupyter-widgets/controls",
|
414 |
+
"model_module_version": "2.0.0",
|
415 |
+
"model_name": "HTMLModel",
|
416 |
+
"state": {
|
417 |
+
"layout": "IPY_MODEL_692de2a4a32e4c009f021c3c604ee245",
|
418 |
+
"style": "IPY_MODEL_1c7cfbd83be64f8eafa6d8ad98b08bc8",
|
419 |
+
"value": " 1/1 [00:02<00:00, 2.68s/it]"
|
420 |
+
}
|
421 |
+
},
|
422 |
+
"326fe11988d74d66b99b448cf2001714": {
|
423 |
+
"model_module": "@jupyter-widgets/base",
|
424 |
+
"model_module_version": "2.0.0",
|
425 |
+
"model_name": "LayoutModel",
|
426 |
+
"state": {}
|
427 |
+
},
|
428 |
+
"3723e0afbc944b679032254d2b9d543c": {
|
429 |
+
"model_module": "@jupyter-widgets/base",
|
430 |
+
"model_module_version": "2.0.0",
|
431 |
+
"model_name": "LayoutModel",
|
432 |
+
"state": {}
|
433 |
+
},
|
434 |
+
"38f0c8d251154e15ba2a621db92bbf89": {
|
435 |
+
"model_module": "@jupyter-widgets/controls",
|
436 |
+
"model_module_version": "2.0.0",
|
437 |
+
"model_name": "HTMLStyleModel",
|
438 |
+
"state": {
|
439 |
+
"description_width": "",
|
440 |
+
"font_size": null,
|
441 |
+
"text_color": null
|
442 |
+
}
|
443 |
+
},
|
444 |
+
"391d57117eb649beae65ed7a6a79a18b": {
|
445 |
+
"model_module": "@jupyter-widgets/base",
|
446 |
+
"model_module_version": "2.0.0",
|
447 |
+
"model_name": "LayoutModel",
|
448 |
+
"state": {}
|
449 |
+
},
|
450 |
+
"401d5cb498aa42ccbf4e7bc4aafacb11": {
|
451 |
+
"model_module": "@jupyter-widgets/base",
|
452 |
+
"model_module_version": "2.0.0",
|
453 |
+
"model_name": "LayoutModel",
|
454 |
+
"state": {}
|
455 |
+
},
|
456 |
+
"46cba72f63ef469b82a4b1a96fb796ee": {
|
457 |
+
"model_module": "@jupyter-widgets/controls",
|
458 |
+
"model_module_version": "2.0.0",
|
459 |
+
"model_name": "HTMLStyleModel",
|
460 |
+
"state": {
|
461 |
+
"description_width": "",
|
462 |
+
"font_size": null,
|
463 |
+
"text_color": null
|
464 |
+
}
|
465 |
+
},
|
466 |
+
"47be27d426034da9a97c49bae4626ddc": {
|
467 |
+
"model_module": "@jupyter-widgets/controls",
|
468 |
+
"model_module_version": "2.0.0",
|
469 |
+
"model_name": "HTMLModel",
|
470 |
+
"state": {
|
471 |
+
"layout": "IPY_MODEL_911d271807e8414da96305fdd80796a7",
|
472 |
+
"style": "IPY_MODEL_73726b2d576c4644acaf676b9b9ec34f",
|
473 |
+
"value": "Map: 100%"
|
474 |
+
}
|
475 |
+
},
|
476 |
+
"488243dfb6574985bcbf7e790134e744": {
|
477 |
+
"model_module": "@jupyter-widgets/controls",
|
478 |
+
"model_module_version": "2.0.0",
|
479 |
+
"model_name": "ProgressStyleModel",
|
480 |
+
"state": {
|
481 |
+
"description_width": ""
|
482 |
+
}
|
483 |
+
},
|
484 |
+
"4b35ce2957784c83a9444926b0a7e976": {
|
485 |
+
"model_module": "@jupyter-widgets/controls",
|
486 |
+
"model_module_version": "2.0.0",
|
487 |
+
"model_name": "HTMLModel",
|
488 |
+
"state": {
|
489 |
+
"layout": "IPY_MODEL_b90c8d0425ac4bcca937ea6b545e48cd",
|
490 |
+
"style": "IPY_MODEL_46cba72f63ef469b82a4b1a96fb796ee",
|
491 |
+
"value": " 88/88 [00:00<00:00, 819.47 examples/s]"
|
492 |
+
}
|
493 |
+
},
|
494 |
+
"4f42920d671545ed8e0e7c5ceaedf8ed": {
|
495 |
+
"model_module": "@jupyter-widgets/controls",
|
496 |
+
"model_module_version": "2.0.0",
|
497 |
+
"model_name": "HTMLStyleModel",
|
498 |
+
"state": {
|
499 |
+
"description_width": "",
|
500 |
+
"font_size": null,
|
501 |
+
"text_color": null
|
502 |
+
}
|
503 |
+
},
|
504 |
+
"52dfe57cd5b44d62889af8a4df9467e1": {
|
505 |
+
"model_module": "@jupyter-widgets/controls",
|
506 |
+
"model_module_version": "2.0.0",
|
507 |
+
"model_name": "ProgressStyleModel",
|
508 |
+
"state": {
|
509 |
+
"description_width": ""
|
510 |
+
}
|
511 |
+
},
|
512 |
+
"5874491ff76a470e9db86621e2e5d1a7": {
|
513 |
+
"model_module": "@jupyter-widgets/controls",
|
514 |
+
"model_module_version": "2.0.0",
|
515 |
+
"model_name": "HTMLStyleModel",
|
516 |
+
"state": {
|
517 |
+
"description_width": "",
|
518 |
+
"font_size": null,
|
519 |
+
"text_color": null
|
520 |
+
}
|
521 |
+
},
|
522 |
+
"59ca0f5d7fff4b52a7051b923253c66f": {
|
523 |
+
"model_module": "@jupyter-widgets/base",
|
524 |
+
"model_module_version": "2.0.0",
|
525 |
+
"model_name": "LayoutModel",
|
526 |
+
"state": {}
|
527 |
+
},
|
528 |
+
"5d9126ed84e347379beddb410cda4381": {
|
529 |
+
"model_module": "@jupyter-widgets/base",
|
530 |
+
"model_module_version": "2.0.0",
|
531 |
+
"model_name": "LayoutModel",
|
532 |
+
"state": {}
|
533 |
+
},
|
534 |
+
"657e2016f007499cafa8ea389a461201": {
|
535 |
+
"model_module": "@jupyter-widgets/controls",
|
536 |
+
"model_module_version": "2.0.0",
|
537 |
+
"model_name": "HTMLStyleModel",
|
538 |
+
"state": {
|
539 |
+
"description_width": "",
|
540 |
+
"font_size": null,
|
541 |
+
"text_color": null
|
542 |
+
}
|
543 |
+
},
|
544 |
+
"68409dd4c6a042899d8f32b8d426bd6c": {
|
545 |
+
"model_module": "@jupyter-widgets/controls",
|
546 |
+
"model_module_version": "2.0.0",
|
547 |
+
"model_name": "FloatProgressModel",
|
548 |
+
"state": {
|
549 |
+
"bar_style": "success",
|
550 |
+
"layout": "IPY_MODEL_5d9126ed84e347379beddb410cda4381",
|
551 |
+
"max": 1,
|
552 |
+
"style": "IPY_MODEL_e7c643f02df04f39a6232d4ef37dbe53",
|
553 |
+
"value": 1
|
554 |
+
}
|
555 |
+
},
|
556 |
+
"692de2a4a32e4c009f021c3c604ee245": {
|
557 |
+
"model_module": "@jupyter-widgets/base",
|
558 |
+
"model_module_version": "2.0.0",
|
559 |
+
"model_name": "LayoutModel",
|
560 |
+
"state": {}
|
561 |
+
},
|
562 |
+
"6ebf9675899e4ffcbcb3ebebbe7d6147": {
|
563 |
+
"model_module": "@jupyter-widgets/controls",
|
564 |
+
"model_module_version": "2.0.0",
|
565 |
+
"model_name": "HBoxModel",
|
566 |
+
"state": {
|
567 |
+
"children": [
|
568 |
+
"IPY_MODEL_d753a4db07294b83a86784bfc211dcaf",
|
569 |
+
"IPY_MODEL_68409dd4c6a042899d8f32b8d426bd6c",
|
570 |
+
"IPY_MODEL_a056610c2b23491aba3f37c38f0ad8c5"
|
571 |
+
],
|
572 |
+
"layout": "IPY_MODEL_920bced53c3d42099f1a87eed19ce05e"
|
573 |
+
}
|
574 |
+
},
|
575 |
+
"71f517a070b643b3a5b6ad86c3710f95": {
|
576 |
+
"model_module": "@jupyter-widgets/controls",
|
577 |
+
"model_module_version": "2.0.0",
|
578 |
+
"model_name": "FloatProgressModel",
|
579 |
+
"state": {
|
580 |
+
"bar_style": "success",
|
581 |
+
"layout": "IPY_MODEL_dc80b5c47d4c4f9faab022f05b691228",
|
582 |
+
"max": 87,
|
583 |
+
"style": "IPY_MODEL_b9fb72eff10047289a9597d08009af95",
|
584 |
+
"value": 87
|
585 |
+
}
|
586 |
+
},
|
587 |
+
"73391c6e41d4483e93582af7934d1e54": {
|
588 |
+
"model_module": "@jupyter-widgets/controls",
|
589 |
+
"model_module_version": "2.0.0",
|
590 |
+
"model_name": "HTMLModel",
|
591 |
+
"state": {
|
592 |
+
"layout": "IPY_MODEL_e813397704674d81b3fe6dd3ce444e95",
|
593 |
+
"style": "IPY_MODEL_eaf483365e224158aad8fd8f604ac64b",
|
594 |
+
"value": "Uploading the dataset shards: 100%"
|
595 |
+
}
|
596 |
+
},
|
597 |
+
"73726b2d576c4644acaf676b9b9ec34f": {
|
598 |
+
"model_module": "@jupyter-widgets/controls",
|
599 |
+
"model_module_version": "2.0.0",
|
600 |
+
"model_name": "HTMLStyleModel",
|
601 |
+
"state": {
|
602 |
+
"description_width": "",
|
603 |
+
"font_size": null,
|
604 |
+
"text_color": null
|
605 |
+
}
|
606 |
+
},
|
607 |
+
"76f47b25344e4f1db6549e268af826ba": {
|
608 |
+
"model_module": "@jupyter-widgets/controls",
|
609 |
+
"model_module_version": "2.0.0",
|
610 |
+
"model_name": "HTMLModel",
|
611 |
+
"state": {
|
612 |
+
"layout": "IPY_MODEL_d45797a1fbc54c7cb7b5a863972fb4b1",
|
613 |
+
"style": "IPY_MODEL_cbad9576bda8439d8fa5ae8391b31ff9",
|
614 |
+
"value": " 5.71k/5.71k [00:00<00:00, 1.12MB/s]"
|
615 |
+
}
|
616 |
+
},
|
617 |
+
"7d6080218e2a4888bdfd0c184b7c5ffc": {
|
618 |
+
"model_module": "@jupyter-widgets/base",
|
619 |
+
"model_module_version": "2.0.0",
|
620 |
+
"model_name": "LayoutModel",
|
621 |
+
"state": {}
|
622 |
+
},
|
623 |
+
"842b6cc23bcc485ba3d034f5f955f314": {
|
624 |
+
"model_module": "@jupyter-widgets/base",
|
625 |
+
"model_module_version": "2.0.0",
|
626 |
+
"model_name": "LayoutModel",
|
627 |
+
"state": {}
|
628 |
+
},
|
629 |
+
"871d1f3b21d242cf86e1d1f20295fa7d": {
|
630 |
+
"model_module": "@jupyter-widgets/controls",
|
631 |
+
"model_module_version": "2.0.0",
|
632 |
+
"model_name": "HBoxModel",
|
633 |
+
"state": {
|
634 |
+
"children": [
|
635 |
+
"IPY_MODEL_afbc23b673314807bd81dcc9bcf3e3df",
|
636 |
+
"IPY_MODEL_e5d66c90b5a842de84296f97abbdaae9",
|
637 |
+
"IPY_MODEL_1fa82ba064f548319607a027721117d8"
|
638 |
+
],
|
639 |
+
"layout": "IPY_MODEL_0f6e7836683d40efa731e77aa6746fa5"
|
640 |
+
}
|
641 |
+
},
|
642 |
+
"911d271807e8414da96305fdd80796a7": {
|
643 |
+
"model_module": "@jupyter-widgets/base",
|
644 |
+
"model_module_version": "2.0.0",
|
645 |
+
"model_name": "LayoutModel",
|
646 |
+
"state": {}
|
647 |
+
},
|
648 |
+
"920bced53c3d42099f1a87eed19ce05e": {
|
649 |
+
"model_module": "@jupyter-widgets/base",
|
650 |
+
"model_module_version": "2.0.0",
|
651 |
+
"model_name": "LayoutModel",
|
652 |
+
"state": {}
|
653 |
+
},
|
654 |
+
"9376ea5e4c174f31827a0dd50a0af9b2": {
|
655 |
+
"model_module": "@jupyter-widgets/controls",
|
656 |
+
"model_module_version": "2.0.0",
|
657 |
+
"model_name": "HBoxModel",
|
658 |
+
"state": {
|
659 |
+
"children": [
|
660 |
+
"IPY_MODEL_73391c6e41d4483e93582af7934d1e54",
|
661 |
+
"IPY_MODEL_acf8c82fec8f4360877e2f1ad3d41e74",
|
662 |
+
"IPY_MODEL_2f4e9a17492b430eb38dbf580a8f6112"
|
663 |
+
],
|
664 |
+
"layout": "IPY_MODEL_ca406b13430643bdab8a048bdf35dd75"
|
665 |
+
}
|
666 |
+
},
|
667 |
+
"93b9ea63c9ee44cbbe4a266b83a86083": {
|
668 |
+
"model_module": "@jupyter-widgets/controls",
|
669 |
+
"model_module_version": "2.0.0",
|
670 |
+
"model_name": "HTMLModel",
|
671 |
+
"state": {
|
672 |
+
"layout": "IPY_MODEL_391d57117eb649beae65ed7a6a79a18b",
|
673 |
+
"style": "IPY_MODEL_657e2016f007499cafa8ea389a461201",
|
674 |
+
"value": "README.md: 100%"
|
675 |
+
}
|
676 |
+
},
|
677 |
+
"99133f4e57fe4309b610cdb4ce2a90bd": {
|
678 |
+
"model_module": "@jupyter-widgets/base",
|
679 |
+
"model_module_version": "2.0.0",
|
680 |
+
"model_name": "LayoutModel",
|
681 |
+
"state": {}
|
682 |
+
},
|
683 |
+
"99548805c93d4e2bbccaf691aba88980": {
|
684 |
+
"model_module": "@jupyter-widgets/base",
|
685 |
+
"model_module_version": "2.0.0",
|
686 |
+
"model_name": "LayoutModel",
|
687 |
+
"state": {}
|
688 |
+
},
|
689 |
+
"9b8ccb3e67354701a09c2a18ace98ad6": {
|
690 |
+
"model_module": "@jupyter-widgets/controls",
|
691 |
+
"model_module_version": "2.0.0",
|
692 |
+
"model_name": "HTMLStyleModel",
|
693 |
+
"state": {
|
694 |
+
"description_width": "",
|
695 |
+
"font_size": null,
|
696 |
+
"text_color": null
|
697 |
+
}
|
698 |
+
},
|
699 |
+
"a056610c2b23491aba3f37c38f0ad8c5": {
|
700 |
+
"model_module": "@jupyter-widgets/controls",
|
701 |
+
"model_module_version": "2.0.0",
|
702 |
+
"model_name": "HTMLModel",
|
703 |
+
"state": {
|
704 |
+
"layout": "IPY_MODEL_3723e0afbc944b679032254d2b9d543c",
|
705 |
+
"style": "IPY_MODEL_9b8ccb3e67354701a09c2a18ace98ad6",
|
706 |
+
"value": " 1/1 [00:04<00:00, 4.22s/it]"
|
707 |
+
}
|
708 |
+
},
|
709 |
+
"a2c1ef897ce849d9a1f773724f617d40": {
|
710 |
+
"model_module": "@jupyter-widgets/controls",
|
711 |
+
"model_module_version": "2.0.0",
|
712 |
+
"model_name": "ProgressStyleModel",
|
713 |
+
"state": {
|
714 |
+
"description_width": ""
|
715 |
+
}
|
716 |
+
},
|
717 |
+
"a33667021736405b82666b555a5493a8": {
|
718 |
+
"model_module": "@jupyter-widgets/controls",
|
719 |
+
"model_module_version": "2.0.0",
|
720 |
+
"model_name": "HTMLStyleModel",
|
721 |
+
"state": {
|
722 |
+
"description_width": "",
|
723 |
+
"font_size": null,
|
724 |
+
"text_color": null
|
725 |
+
}
|
726 |
+
},
|
727 |
+
"a39e3942259747fd9c7759cbbba73d3d": {
|
728 |
+
"model_module": "@jupyter-widgets/controls",
|
729 |
+
"model_module_version": "2.0.0",
|
730 |
+
"model_name": "FloatProgressModel",
|
731 |
+
"state": {
|
732 |
+
"bar_style": "success",
|
733 |
+
"layout": "IPY_MODEL_401d5cb498aa42ccbf4e7bc4aafacb11",
|
734 |
+
"max": 88,
|
735 |
+
"style": "IPY_MODEL_488243dfb6574985bcbf7e790134e744",
|
736 |
+
"value": 88
|
737 |
+
}
|
738 |
+
},
|
739 |
+
"a591c55a93f84703b8070bcf65e957e6": {
|
740 |
+
"model_module": "@jupyter-widgets/controls",
|
741 |
+
"model_module_version": "2.0.0",
|
742 |
+
"model_name": "HTMLStyleModel",
|
743 |
+
"state": {
|
744 |
+
"description_width": "",
|
745 |
+
"font_size": null,
|
746 |
+
"text_color": null
|
747 |
+
}
|
748 |
+
},
|
749 |
+
"abc65776f8504948b9e91ea432ebe8ef": {
|
750 |
+
"model_module": "@jupyter-widgets/base",
|
751 |
+
"model_module_version": "2.0.0",
|
752 |
+
"model_name": "LayoutModel",
|
753 |
+
"state": {}
|
754 |
+
},
|
755 |
+
"acf8c82fec8f4360877e2f1ad3d41e74": {
|
756 |
+
"model_module": "@jupyter-widgets/controls",
|
757 |
+
"model_module_version": "2.0.0",
|
758 |
+
"model_name": "FloatProgressModel",
|
759 |
+
"state": {
|
760 |
+
"bar_style": "success",
|
761 |
+
"layout": "IPY_MODEL_59ca0f5d7fff4b52a7051b923253c66f",
|
762 |
+
"max": 1,
|
763 |
+
"style": "IPY_MODEL_52dfe57cd5b44d62889af8a4df9467e1",
|
764 |
+
"value": 1
|
765 |
+
}
|
766 |
+
},
|
767 |
+
"afbc23b673314807bd81dcc9bcf3e3df": {
|
768 |
+
"model_module": "@jupyter-widgets/controls",
|
769 |
+
"model_module_version": "2.0.0",
|
770 |
+
"model_name": "HTMLModel",
|
771 |
+
"state": {
|
772 |
+
"layout": "IPY_MODEL_f8cd90e4cb13496780c19d3a482fb43f",
|
773 |
+
"style": "IPY_MODEL_4f42920d671545ed8e0e7c5ceaedf8ed",
|
774 |
+
"value": "Creating parquet from Arrow format: 100%"
|
775 |
+
}
|
776 |
+
},
|
777 |
+
"b90c8d0425ac4bcca937ea6b545e48cd": {
|
778 |
+
"model_module": "@jupyter-widgets/base",
|
779 |
+
"model_module_version": "2.0.0",
|
780 |
+
"model_name": "LayoutModel",
|
781 |
+
"state": {}
|
782 |
+
},
|
783 |
+
"b9fb72eff10047289a9597d08009af95": {
|
784 |
+
"model_module": "@jupyter-widgets/controls",
|
785 |
+
"model_module_version": "2.0.0",
|
786 |
+
"model_name": "ProgressStyleModel",
|
787 |
+
"state": {
|
788 |
+
"description_width": ""
|
789 |
+
}
|
790 |
+
},
|
791 |
+
"c2a692042a7748f9adea02a38012bb4c": {
|
792 |
+
"model_module": "@jupyter-widgets/controls",
|
793 |
+
"model_module_version": "2.0.0",
|
794 |
+
"model_name": "HBoxModel",
|
795 |
+
"state": {
|
796 |
+
"children": [
|
797 |
+
"IPY_MODEL_08cf7cea944a4322ae9b6ef361862bb4",
|
798 |
+
"IPY_MODEL_11970b4573344669adcfd5d9df924aea",
|
799 |
+
"IPY_MODEL_fe70cc023aa049e0ba921c8eb1c65646"
|
800 |
+
],
|
801 |
+
"layout": "IPY_MODEL_23640986547d47b3900f002fe5522f39"
|
802 |
+
}
|
803 |
+
},
|
804 |
+
"c38b2aa4bbd04b248b23de98a3fb3f04": {
|
805 |
+
"model_module": "@jupyter-widgets/controls",
|
806 |
+
"model_module_version": "2.0.0",
|
807 |
+
"model_name": "ProgressStyleModel",
|
808 |
+
"state": {
|
809 |
+
"description_width": ""
|
810 |
+
}
|
811 |
+
},
|
812 |
+
"c827c4d520c342a1bcb54966869a6edc": {
|
813 |
+
"model_module": "@jupyter-widgets/controls",
|
814 |
+
"model_module_version": "2.0.0",
|
815 |
+
"model_name": "HTMLStyleModel",
|
816 |
+
"state": {
|
817 |
+
"description_width": "",
|
818 |
+
"font_size": null,
|
819 |
+
"text_color": null
|
820 |
+
}
|
821 |
+
},
|
822 |
+
"ca406b13430643bdab8a048bdf35dd75": {
|
823 |
+
"model_module": "@jupyter-widgets/base",
|
824 |
+
"model_module_version": "2.0.0",
|
825 |
+
"model_name": "LayoutModel",
|
826 |
+
"state": {}
|
827 |
+
},
|
828 |
+
"cbad9576bda8439d8fa5ae8391b31ff9": {
|
829 |
+
"model_module": "@jupyter-widgets/controls",
|
830 |
+
"model_module_version": "2.0.0",
|
831 |
+
"model_name": "HTMLStyleModel",
|
832 |
+
"state": {
|
833 |
+
"description_width": "",
|
834 |
+
"font_size": null,
|
835 |
+
"text_color": null
|
836 |
+
}
|
837 |
+
},
|
838 |
+
"d45797a1fbc54c7cb7b5a863972fb4b1": {
|
839 |
+
"model_module": "@jupyter-widgets/base",
|
840 |
+
"model_module_version": "2.0.0",
|
841 |
+
"model_name": "LayoutModel",
|
842 |
+
"state": {}
|
843 |
+
},
|
844 |
+
"d753a4db07294b83a86784bfc211dcaf": {
|
845 |
+
"model_module": "@jupyter-widgets/controls",
|
846 |
+
"model_module_version": "2.0.0",
|
847 |
+
"model_name": "HTMLModel",
|
848 |
+
"state": {
|
849 |
+
"layout": "IPY_MODEL_326fe11988d74d66b99b448cf2001714",
|
850 |
+
"style": "IPY_MODEL_a33667021736405b82666b555a5493a8",
|
851 |
+
"value": "Uploading the dataset shards: 100%"
|
852 |
+
}
|
853 |
+
},
|
854 |
+
"db5e0e8d61d742ef823112ebe06cd33b": {
|
855 |
+
"model_module": "@jupyter-widgets/base",
|
856 |
+
"model_module_version": "2.0.0",
|
857 |
+
"model_name": "LayoutModel",
|
858 |
+
"state": {}
|
859 |
+
},
|
860 |
+
"dc80b5c47d4c4f9faab022f05b691228": {
|
861 |
+
"model_module": "@jupyter-widgets/base",
|
862 |
+
"model_module_version": "2.0.0",
|
863 |
+
"model_name": "LayoutModel",
|
864 |
+
"state": {}
|
865 |
+
},
|
866 |
+
"e2d0aec5b6f14da889ebb4876d6a6cc3": {
|
867 |
+
"model_module": "@jupyter-widgets/controls",
|
868 |
+
"model_module_version": "2.0.0",
|
869 |
+
"model_name": "HBoxModel",
|
870 |
+
"state": {
|
871 |
+
"children": [
|
872 |
+
"IPY_MODEL_93b9ea63c9ee44cbbe4a266b83a86083",
|
873 |
+
"IPY_MODEL_2f221cdc0bb44e23ab02f00a658801bf",
|
874 |
+
"IPY_MODEL_76f47b25344e4f1db6549e268af826ba"
|
875 |
+
],
|
876 |
+
"layout": "IPY_MODEL_f91d0f2d7018430fb1f6f9fef6d4bcb8"
|
877 |
+
}
|
878 |
+
},
|
879 |
+
"e5d66c90b5a842de84296f97abbdaae9": {
|
880 |
+
"model_module": "@jupyter-widgets/controls",
|
881 |
+
"model_module_version": "2.0.0",
|
882 |
+
"model_name": "FloatProgressModel",
|
883 |
+
"state": {
|
884 |
+
"bar_style": "success",
|
885 |
+
"layout": "IPY_MODEL_7d6080218e2a4888bdfd0c184b7c5ffc",
|
886 |
+
"max": 1,
|
887 |
+
"style": "IPY_MODEL_ea8839476ee147bcbdbd484c04e1e829",
|
888 |
+
"value": 1
|
889 |
+
}
|
890 |
+
},
|
891 |
+
"e5f9516196b0461daf95817bb9408d7b": {
|
892 |
+
"model_module": "@jupyter-widgets/base",
|
893 |
+
"model_module_version": "2.0.0",
|
894 |
+
"model_name": "LayoutModel",
|
895 |
+
"state": {}
|
896 |
+
},
|
897 |
+
"e6ec6e37a6304a2590e81ec2b4a01e15": {
|
898 |
+
"model_module": "@jupyter-widgets/base",
|
899 |
+
"model_module_version": "2.0.0",
|
900 |
+
"model_name": "LayoutModel",
|
901 |
+
"state": {}
|
902 |
+
},
|
903 |
+
"e7c643f02df04f39a6232d4ef37dbe53": {
|
904 |
+
"model_module": "@jupyter-widgets/controls",
|
905 |
+
"model_module_version": "2.0.0",
|
906 |
+
"model_name": "ProgressStyleModel",
|
907 |
+
"state": {
|
908 |
+
"description_width": ""
|
909 |
+
}
|
910 |
+
},
|
911 |
+
"e813397704674d81b3fe6dd3ce444e95": {
|
912 |
+
"model_module": "@jupyter-widgets/base",
|
913 |
+
"model_module_version": "2.0.0",
|
914 |
+
"model_name": "LayoutModel",
|
915 |
+
"state": {}
|
916 |
+
},
|
917 |
+
"ea8839476ee147bcbdbd484c04e1e829": {
|
918 |
+
"model_module": "@jupyter-widgets/controls",
|
919 |
+
"model_module_version": "2.0.0",
|
920 |
+
"model_name": "ProgressStyleModel",
|
921 |
+
"state": {
|
922 |
+
"description_width": ""
|
923 |
+
}
|
924 |
+
},
|
925 |
+
"eaf483365e224158aad8fd8f604ac64b": {
|
926 |
+
"model_module": "@jupyter-widgets/controls",
|
927 |
+
"model_module_version": "2.0.0",
|
928 |
+
"model_name": "HTMLStyleModel",
|
929 |
+
"state": {
|
930 |
+
"description_width": "",
|
931 |
+
"font_size": null,
|
932 |
+
"text_color": null
|
933 |
+
}
|
934 |
+
},
|
935 |
+
"f5a6d9c4be554f4f937b1afd82f934b9": {
|
936 |
+
"model_module": "@jupyter-widgets/controls",
|
937 |
+
"model_module_version": "2.0.0",
|
938 |
+
"model_name": "HBoxModel",
|
939 |
+
"state": {
|
940 |
+
"children": [
|
941 |
+
"IPY_MODEL_2d56d23ee7804546ab50c8ceaddd2d05",
|
942 |
+
"IPY_MODEL_a39e3942259747fd9c7759cbbba73d3d",
|
943 |
+
"IPY_MODEL_4b35ce2957784c83a9444926b0a7e976"
|
944 |
+
],
|
945 |
+
"layout": "IPY_MODEL_abc65776f8504948b9e91ea432ebe8ef"
|
946 |
+
}
|
947 |
+
},
|
948 |
+
"f8cd90e4cb13496780c19d3a482fb43f": {
|
949 |
+
"model_module": "@jupyter-widgets/base",
|
950 |
+
"model_module_version": "2.0.0",
|
951 |
+
"model_name": "LayoutModel",
|
952 |
+
"state": {}
|
953 |
+
},
|
954 |
+
"f91d0f2d7018430fb1f6f9fef6d4bcb8": {
|
955 |
+
"model_module": "@jupyter-widgets/base",
|
956 |
+
"model_module_version": "2.0.0",
|
957 |
+
"model_name": "LayoutModel",
|
958 |
+
"state": {}
|
959 |
+
},
|
960 |
+
"fb1c614683cf4531b6ac405a9373d74d": {
|
961 |
+
"model_module": "@jupyter-widgets/controls",
|
962 |
+
"model_module_version": "2.0.0",
|
963 |
+
"model_name": "HTMLModel",
|
964 |
+
"state": {
|
965 |
+
"layout": "IPY_MODEL_842b6cc23bcc485ba3d034f5f955f314",
|
966 |
+
"style": "IPY_MODEL_c827c4d520c342a1bcb54966869a6edc",
|
967 |
+
"value": " 87/87 [00:00<00:00, 1110.37 examples/s]"
|
968 |
+
}
|
969 |
+
},
|
970 |
+
"fe70cc023aa049e0ba921c8eb1c65646": {
|
971 |
+
"model_module": "@jupyter-widgets/controls",
|
972 |
+
"model_module_version": "2.0.0",
|
973 |
+
"model_name": "HTMLModel",
|
974 |
+
"state": {
|
975 |
+
"layout": "IPY_MODEL_99133f4e57fe4309b610cdb4ce2a90bd",
|
976 |
+
"style": "IPY_MODEL_38f0c8d251154e15ba2a621db92bbf89",
|
977 |
+
"value": " 1/1 [00:00<00:00, 6.98ba/s]"
|
978 |
+
}
|
979 |
+
}
|
980 |
+
},
|
981 |
+
"version_major": 2,
|
982 |
+
"version_minor": 0
|
983 |
+
}
|
984 |
+
}
|
985 |
+
},
|
986 |
+
"nbformat": 4,
|
987 |
+
"nbformat_minor": 5
|
988 |
+
}
|
dataset_archive.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64f01c9672784cc26cc266287f3276757727bf4ad618b6b207fc05b3b90d3136
|
3 |
+
size 133
|
id2label.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"1": "central-ring", "2": "other", "3": "read-out-streak", "4": "smoke-ring", "5":"star-loop"}
|
load_and_visualise_dataset.ipynb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfd90e91aa9df0f7e65a33b6ec24b5c3ca30a7fca2f62dbe4ca958a80efb5d91
|
3 |
+
size 15765
|
obs_info_1024_all.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
stratified_kfold.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
utils.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from shutil import copy
|
4 |
+
import pandas as pd
|
5 |
+
from pathlib import Path
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import re
|
10 |
+
import datasets
|
11 |
+
from datasets import Value
|
12 |
+
from io import BytesIO
|
13 |
+
from PIL import Image, ImageDraw, ImageFont
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import matplotlib.patches as patches
|
16 |
+
|
17 |
+
def create_directories_and_copy_files(images_dir, coco_data, image_data, k):
|
18 |
+
base_dir = os.path.join(images_dir, f'mskf_{k}')
|
19 |
+
os.makedirs(base_dir, exist_ok=True)
|
20 |
+
|
21 |
+
for split in np.unique(image_data['SPLIT']):
|
22 |
+
split_dir = os.path.join(base_dir, split)
|
23 |
+
os.makedirs(split_dir, exist_ok=True)
|
24 |
+
|
25 |
+
# Filter the annotations
|
26 |
+
split_ids = image_data[image_data['SPLIT'] == split]['IMADE_ID'].tolist()
|
27 |
+
annotations = {
|
28 |
+
'images': [img for img in coco_data['images'] if img['id'] in split_ids],
|
29 |
+
'annotations': [ann for ann in coco_data['annotations'] if ann['image_id'] in split_ids],
|
30 |
+
'categories': coco_data['categories']
|
31 |
+
}
|
32 |
+
|
33 |
+
# Write the filtered annotations to a file
|
34 |
+
with open(os.path.join(split_dir, '_annotations.coco.json'), 'w') as f:
|
35 |
+
json.dump(annotations, f, indent=4)
|
36 |
+
|
37 |
+
# Copy the images
|
38 |
+
split_data = image_data[image_data['SPLIT'] == split]
|
39 |
+
for _, row in split_data.iterrows():
|
40 |
+
source = row['IMAGE_PATH']
|
41 |
+
destination = os.path.join(split_dir, os.path.basename(source))
|
42 |
+
copy(source, destination)
|
43 |
+
|
44 |
+
print(f'Dataset split for mskf_{k} was successful.')
|
45 |
+
|
46 |
+
def split_to_df(dataset_dir, split):
|
47 |
+
annotations_path = Path(dataset_dir+split+'/_annotations.coco.json')
|
48 |
+
|
49 |
+
with annotations_path.open('r') as f:
|
50 |
+
coco_data = json.load(f)
|
51 |
+
|
52 |
+
def image_from_path(file_path):
|
53 |
+
image = cv2.imread(file_path)
|
54 |
+
return image
|
55 |
+
|
56 |
+
def gen_segmentation(segmentation, width, height):
|
57 |
+
mask_img = np.zeros((height, width, 3), dtype=np.uint8)
|
58 |
+
for segment in segmentation:
|
59 |
+
pts = np.array(segment, np.int32).reshape((-1, 1, 2))
|
60 |
+
cv2.fillPoly(mask_img, [pts], (255, 255, 255)) # Fill color in BGR
|
61 |
+
|
62 |
+
return mask_img
|
63 |
+
|
64 |
+
images_df = pd.DataFrame(coco_data['images'][5:25], columns=['id', 'file_name', 'width', 'height'])
|
65 |
+
annotations_df = pd.DataFrame(coco_data['annotations'])
|
66 |
+
df = pd.merge(annotations_df, images_df, left_on='image_id', right_on='id')
|
67 |
+
image_folder = annotations_path.parent
|
68 |
+
df['file_path'] = df['file_name'].apply(lambda x: str(image_folder / x))
|
69 |
+
df['observation'] = df['file_name'].apply(lambda x: x.split('.')[0].replace('_png', ''))
|
70 |
+
df['image'] = df['file_path'].apply(image_from_path)
|
71 |
+
df['segmentation'] = df.apply(lambda row: gen_segmentation(row['segmentation'], row['width'], row['height']), axis=1)
|
72 |
+
df = df.drop('file_path', axis=1)
|
73 |
+
df = df.drop('file_name', axis=1)
|
74 |
+
df['annot_id'] = df['id_x']
|
75 |
+
df = df.drop('id_x', axis=1)
|
76 |
+
df = df.drop('id_y', axis=1)
|
77 |
+
|
78 |
+
# take image fro df, and the corresponging annotations and plot them on image
|
79 |
+
# for i in range(5):
|
80 |
+
# img = df['image'][i]
|
81 |
+
# annot_id = df['annot_id'][i]
|
82 |
+
# # plot the image with the annotation using plt
|
83 |
+
# if img.dtype != np.uint8:
|
84 |
+
# img = img.astype(np.uint8)
|
85 |
+
# # plot
|
86 |
+
# segm_polygon = df['segmentation'][i]
|
87 |
+
# plt.imshow(segm_polygon)
|
88 |
+
# plt.axis('off')
|
89 |
+
# plt.show()
|
90 |
+
# plt.close()
|
91 |
+
|
92 |
+
return df, coco_data
|
93 |
+
|
94 |
+
def df_to_dataset_dict(df, coco_data, cats_to_colours):
|
95 |
+
|
96 |
+
def annot_on_image(annot_id, img_array, cat_id, annot_type='segm'):
|
97 |
+
if img_array.dtype != np.uint8:
|
98 |
+
img_array = img_array.astype(np.uint8)
|
99 |
+
|
100 |
+
pil_image = Image.fromarray(img_array)
|
101 |
+
draw = ImageDraw.Draw(pil_image)
|
102 |
+
if annot_type=='bbox':
|
103 |
+
bbox = [annot for annot in coco_data['annotations'] if annot['id'] == annot_id][0]['bbox']
|
104 |
+
x_min, y_min, width, height = bbox
|
105 |
+
top_left = (x_min, y_min)
|
106 |
+
bottom_right = (x_min + width, y_min + height)
|
107 |
+
|
108 |
+
draw.rectangle([top_left, bottom_right], outline=cats_to_colours[cat_id][1], width=2)
|
109 |
+
else:
|
110 |
+
# look for the annotation in coco_data that corresponds to the annot_id
|
111 |
+
segm_polygon = [annot for annot in coco_data['annotations'] if annot['id'] == annot_id][0]['segmentation'][0]
|
112 |
+
polygon = [(segm_polygon[i], segm_polygon[i+1]) for i in range(0, len(segm_polygon), 2)]
|
113 |
+
draw.polygon(polygon, outline=cats_to_colours[cat_id][1], width=2)
|
114 |
+
|
115 |
+
# plt.imshow(pil_image)
|
116 |
+
# plt.axis('off')
|
117 |
+
# plt.show()
|
118 |
+
# plt.close()
|
119 |
+
|
120 |
+
byte_io = BytesIO()
|
121 |
+
pil_image.save(byte_io, 'PNG')
|
122 |
+
byte_io.seek(0)
|
123 |
+
png_image = Image.open(byte_io)
|
124 |
+
|
125 |
+
return png_image
|
126 |
+
|
127 |
+
dictionary = df.to_dict(orient='list')
|
128 |
+
feats=datasets.Features({"observation id":Value(dtype='string'), \
|
129 |
+
'segmentation': datasets.Image(), \
|
130 |
+
'bbox':datasets.Image() , \
|
131 |
+
'label': Value(dtype='string'),\
|
132 |
+
'area':Value(dtype='string'),
|
133 |
+
'image shape':Value(dtype='string')})
|
134 |
+
|
135 |
+
dataset_data = {"observation id":dictionary['observation'], \
|
136 |
+
'segmentation': [annot_on_image(dictionary['annot_id'][i], dictionary['image'][i], dictionary['category_id'][i]) \
|
137 |
+
for i in range(len(dictionary['segmentation']))], \
|
138 |
+
'bbox': [annot_on_image(dictionary['annot_id'][i], dictionary['image'][i], dictionary['category_id'][i], annot_type='bbox') \
|
139 |
+
for i in range(len(dictionary['bbox']))], \
|
140 |
+
'label': [cats_to_colours[cat][0] for cat in dictionary['category_id']],\
|
141 |
+
'area':['%.3f'%(value) for value in dictionary['area']], \
|
142 |
+
'image shape':[f"({dictionary['width'][i]}, {dictionary['height'][i]})" for i in range(len(dictionary['width']))]}
|
143 |
+
the_dataset=datasets.Dataset.from_dict(dataset_data,features=feats)
|
144 |
+
|
145 |
+
return the_dataset
|
146 |
+
|
147 |
+
def merge_coco_jsons(first_json, second_json, output_path):
|
148 |
+
|
149 |
+
# Load the first JSON file
|
150 |
+
with open(first_json) as f:
|
151 |
+
coco1 = json.load(f)
|
152 |
+
|
153 |
+
# Load the second JSON file
|
154 |
+
with open(second_json) as f:
|
155 |
+
coco2 = json.load(f)
|
156 |
+
|
157 |
+
# Update IDs in coco2 to ensure they are unique and do not overlap with coco1
|
158 |
+
max_image_id = max(image['id'] for image in coco1['images'])
|
159 |
+
max_annotation_id = max(annotation['id'] for annotation in coco1['annotations'])
|
160 |
+
max_category_id = max(category['id'] for category in coco1['categories'])
|
161 |
+
|
162 |
+
# Add an offset to the second coco IDs
|
163 |
+
image_id_offset = max_image_id + 1
|
164 |
+
annotation_id_offset = max_annotation_id + 1
|
165 |
+
# category_id_offset = max_category_id + 1
|
166 |
+
|
167 |
+
# Apply offset to images, annotations, and categories in the second JSON
|
168 |
+
for image in coco2['images']:
|
169 |
+
image['id'] += image_id_offset
|
170 |
+
|
171 |
+
for annotation in coco2['annotations']:
|
172 |
+
annotation['id'] += annotation_id_offset
|
173 |
+
annotation['image_id'] += image_id_offset # Update the image_id reference
|
174 |
+
|
175 |
+
# Merge the two datasets
|
176 |
+
merged_coco = {
|
177 |
+
'images': coco1['images'] + coco2['images'],
|
178 |
+
'annotations': coco1['annotations'] + coco2['annotations'],
|
179 |
+
'categories': coco1['categories'] # If categories are the same; otherwise, merge as needed
|
180 |
+
}
|
181 |
+
|
182 |
+
# Save the merged annotations to a new JSON file
|
183 |
+
with open(output_path, 'w') as f:
|
184 |
+
json.dump(merged_coco, f)
|
185 |
+
|
186 |
+
def percentages(n_splits, image_ids, labels):
|
187 |
+
labels_percentages = {}
|
188 |
+
for i in range(n_splits):
|
189 |
+
train_k, valid_k = 0, 0
|
190 |
+
train_labels_counts = {'0':0, '1':0, '2':0, '3':0, '4':0, '5':0}
|
191 |
+
valid_labels_counts = {'0':0, '1':0, '2':0, '3':0, '4':0, '5':0}
|
192 |
+
for j in range(len(image_ids[i]['train'])):
|
193 |
+
for cat in list(labels[i]['train'][j]):
|
194 |
+
train_labels_counts[cat] += 1
|
195 |
+
train_k+=1
|
196 |
+
|
197 |
+
for j in range(len(image_ids[i]['valid'])):
|
198 |
+
for cat in list(labels[i]['valid'][j]):
|
199 |
+
valid_labels_counts[cat] += 1
|
200 |
+
valid_k+=1
|
201 |
+
|
202 |
+
train_labels_counts = {cat:counts * 1.0/train_k for cat, counts in train_labels_counts.items()}
|
203 |
+
valid_labels_counts = {cat:counts * 1.0/valid_k for cat, counts in valid_labels_counts.items()}
|
204 |
+
|
205 |
+
labels_percentages[i] = {'train':train_labels_counts, 'valid': valid_labels_counts}
|
206 |
+
|
207 |
+
return labels_percentages
|
208 |
+
|
209 |
+
def make_split(data_in, train_index, valid_index):
|
210 |
+
|
211 |
+
data_in_train = data_in.copy()
|
212 |
+
data_in_valid = data_in.copy()
|
213 |
+
|
214 |
+
data_in_train['images'] = [data_in['images'][train_index[i][0]] for i in range(len(train_index))]
|
215 |
+
data_in_valid['images'] = [data_in['images'][valid_index[i][0]] for i in range(len(valid_index))]
|
216 |
+
train_annot_ids, valid_annot_ids = [], []
|
217 |
+
|
218 |
+
for img_i in data_in_train['images']:
|
219 |
+
annotation_ids = [annot['id'] for annot in data_in_train['annotations'] if annot['image_id'] == img_i['id']]
|
220 |
+
train_annot_ids +=annotation_ids
|
221 |
+
|
222 |
+
for img_i in data_in_valid['images']:
|
223 |
+
annotation_ids = [annot['id'] for annot in data_in_valid['annotations'] if annot['image_id'] == img_i['id']]
|
224 |
+
valid_annot_ids +=annotation_ids
|
225 |
+
|
226 |
+
data_in_train['annotations'] = [data_in_train['annotations'][id] for id in train_annot_ids]
|
227 |
+
data_in_valid['annotations'] = [data_in_valid['annotations'][id] for id in valid_annot_ids]
|
228 |
+
|
229 |
+
print(len(data_in_train['images']), len(data_in_valid['images']))
|
230 |
+
return data_in_train, data_in_valid
|
231 |
+
|
232 |
+
def correct_bboxes(annotations):
|
233 |
+
for ann in annotations:
|
234 |
+
# If the segmentation is in polygon format (COCO polygon)
|
235 |
+
if isinstance(ann['segmentation'], list):
|
236 |
+
|
237 |
+
points = np.array(ann['segmentation']).reshape(-1, 2)
|
238 |
+
x_min, y_min = np.inf, np.inf
|
239 |
+
x_max, y_max = -np.inf, -np.inf
|
240 |
+
x_min = min(x_min, points[:, 0].min())
|
241 |
+
y_min = min(y_min, points[:, 1].min())
|
242 |
+
x_max = max(x_max, points[:, 0].max())
|
243 |
+
y_max = max(y_max, points[:, 1].max())
|
244 |
+
|
245 |
+
width = x_max - x_min
|
246 |
+
height = y_max - y_min
|
247 |
+
|
248 |
+
# The bbox in COCO format [x_min, y_min, width, height]
|
249 |
+
bbox = [x_min, y_min, width, height]
|
250 |
+
x, y, w, h = map(int, bbox)
|
251 |
+
ann['bbox'] = [x, y, w, h]
|
252 |
+
|
253 |
+
return annotations
|
254 |
+
|
255 |
+
def highlight_max(s):
|
256 |
+
is_max = s == s.max()
|
257 |
+
return ['background-color: yellow' if v else '' for v in is_max]
|
258 |
+
|
259 |
+
def highlight_max_str(s):
|
260 |
+
|
261 |
+
cats = []
|
262 |
+
for cat in s:
|
263 |
+
cats.append([float(match) for match in re.findall(r"[-+]?[0-9]*\.?[0-9]+", cat)][0])
|
264 |
+
|
265 |
+
is_max = cats == np.max(cats)
|
266 |
+
return ['background-color: yellow' if v else '' for v in is_max]
|
267 |
+
|
268 |
+
def read_yolo_annotations(annotation_file):
|
269 |
+
with open(annotation_file, 'r') as file:
|
270 |
+
lines = file.readlines()
|
271 |
+
|
272 |
+
annotations = []
|
273 |
+
for line in lines:
|
274 |
+
parts = line.strip().split()
|
275 |
+
class_id = int(parts[0])
|
276 |
+
points = list(map(float, parts[1:]))
|
277 |
+
annotations.append((class_id, points))
|
278 |
+
|
279 |
+
return annotations
|
280 |
+
|
281 |
+
def display_image_with_annotations(coco, cat_names, image_id):
|
282 |
+
img = coco.loadImgs(image_id)[0]
|
283 |
+
image_path = os.path.join('./mskf_0/train/', img['file_name'])
|
284 |
+
I = Image.open(image_path)
|
285 |
+
plt.imshow(I); plt.axis('off')
|
286 |
+
ann_ids = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
|
287 |
+
anns = coco.loadAnns(ann_ids)
|
288 |
+
ax = plt.gca()
|
289 |
+
|
290 |
+
for ann in anns:
|
291 |
+
bbox = ann['bbox']
|
292 |
+
rect = patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3],
|
293 |
+
linewidth=2, edgecolor='b', facecolor='none')
|
294 |
+
ax.add_patch(rect)
|
295 |
+
ax.text(bbox[0], bbox[1] - 5, cat_names[ann['category_id']],
|
296 |
+
color='blue', fontsize=12, bbox=dict(facecolor='white', alpha=0.5))
|
297 |
+
|
298 |
+
plt.show()
|
299 |
+
|
300 |
+
def plot_segmentations(image_path, annotations, category_mapping):
|
301 |
+
image = Image.open(image_path)
|
302 |
+
width, height = image.size
|
303 |
+
draw = ImageDraw.Draw(image)
|
304 |
+
|
305 |
+
try:
|
306 |
+
font = ImageFont.truetype("DejaVuSans.ttf", 16) # Load a font
|
307 |
+
except IOError:
|
308 |
+
font = ImageFont.load_default()
|
309 |
+
|
310 |
+
for class_id, points in annotations:
|
311 |
+
# Scale points from normalized coordinates to image dimensions
|
312 |
+
scaled_points = [(p[0] * width, p[1] * height) for p in zip(points[0::2], points[1::2])]
|
313 |
+
draw.polygon(scaled_points, outline='green', fill=None)
|
314 |
+
|
315 |
+
category_name = category_mapping[class_id][0]
|
316 |
+
centroid_x = sum([p[0] for p in scaled_points]) / len(scaled_points)
|
317 |
+
centroid_y = sum([p[1] for p in scaled_points]) / len(scaled_points)
|
318 |
+
draw.text((centroid_x, centroid_y), category_name, fill='red', font=font, anchor='ms')
|
319 |
+
|
320 |
+
plt.imshow(image)
|
321 |
+
plt.axis('off')
|
322 |
+
plt.show()
|