Datasets:
iulia-elisa
commited on
Commit
•
7c72e57
1
Parent(s):
197dc46
Delete coco_format_to_parquet.ipynb
Browse files- coco_format_to_parquet.ipynb +0 -988
coco_format_to_parquet.ipynb
DELETED
@@ -1,988 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "a333665e-77ee-43af-b539-8b2bc87c008c",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import json\n",
|
11 |
-
"import pandas as pd\n",
|
12 |
-
"from pathlib import Path\n",
|
13 |
-
"from PIL import Image, ImageDraw, ImageFile\n",
|
14 |
-
"import cv2\n",
|
15 |
-
"import io \n",
|
16 |
-
"import base64\n",
|
17 |
-
"import numpy as np\n",
|
18 |
-
"from pycocotools.coco import COCO\n",
|
19 |
-
"import os\n",
|
20 |
-
"import matplotlib.pyplot as plt\n",
|
21 |
-
"import matplotlib.patches as patches\n",
|
22 |
-
"from PIL import Image\n",
|
23 |
-
"ImageFile.LOAD_TRUNCATED_IMAGES = True\n",
|
24 |
-
"\n",
|
25 |
-
"import utils\n",
|
26 |
-
"\n",
|
27 |
-
"dataset_dir = './mskf_0/'\n",
|
28 |
-
"train_df, train_coco_data = utils.split_to_df(dataset_dir, 'train/')\n",
|
29 |
-
"valid_df, valid_coco_data = utils.split_to_df(dataset_dir, 'valid')"
|
30 |
-
]
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"cell_type": "code",
|
34 |
-
"execution_count": 2,
|
35 |
-
"id": "0e0d5a99-4eba-49d4-931b-0128691631b1",
|
36 |
-
"metadata": {
|
37 |
-
"scrolled": true
|
38 |
-
},
|
39 |
-
"outputs": [
|
40 |
-
{
|
41 |
-
"data": {
|
42 |
-
"text/plain": [
|
43 |
-
"{'id': 1,\n",
|
44 |
-
" 'license': 1,\n",
|
45 |
-
" 'file_name': 'S0505210301_M_png.rf.e47187e88c167fad1db290b0214e2175.jpg',\n",
|
46 |
-
" 'height': 512,\n",
|
47 |
-
" 'width': 512,\n",
|
48 |
-
" 'date_captured': '2024-05-08T06:13:06+00:00'}"
|
49 |
-
]
|
50 |
-
},
|
51 |
-
"execution_count": 2,
|
52 |
-
"metadata": {},
|
53 |
-
"output_type": "execute_result"
|
54 |
-
}
|
55 |
-
],
|
56 |
-
"source": [
|
57 |
-
"train_coco_data['images'][0]"
|
58 |
-
]
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"cell_type": "code",
|
62 |
-
"execution_count": 3,
|
63 |
-
"id": "df660d83-5afb-4b7c-83e4-f1f9d68577cd",
|
64 |
-
"metadata": {},
|
65 |
-
"outputs": [
|
66 |
-
{
|
67 |
-
"data": {
|
68 |
-
"text/plain": [
|
69 |
-
"array([1, 2, 3, 4, 5])"
|
70 |
-
]
|
71 |
-
},
|
72 |
-
"execution_count": 3,
|
73 |
-
"metadata": {},
|
74 |
-
"output_type": "execute_result"
|
75 |
-
}
|
76 |
-
],
|
77 |
-
"source": [
|
78 |
-
"np.unique(train_df['category_id'])"
|
79 |
-
]
|
80 |
-
},
|
81 |
-
{
|
82 |
-
"cell_type": "code",
|
83 |
-
"execution_count": 4,
|
84 |
-
"id": "51f26d8d-0116-48fe-8cea-d070350df333",
|
85 |
-
"metadata": {
|
86 |
-
"scrolled": true
|
87 |
-
},
|
88 |
-
"outputs": [
|
89 |
-
{
|
90 |
-
"data": {
|
91 |
-
"text/plain": [
|
92 |
-
"{'image_id': array([<class 'int'>], dtype=object),\n",
|
93 |
-
" 'category_id': array([<class 'int'>], dtype=object),\n",
|
94 |
-
" 'bbox': array([<class 'list'>], dtype=object),\n",
|
95 |
-
" 'area': array([<class 'float'>], dtype=object),\n",
|
96 |
-
" 'segmentation': array([<class 'numpy.ndarray'>], dtype=object),\n",
|
97 |
-
" 'iscrowd': array([<class 'int'>], dtype=object),\n",
|
98 |
-
" 'width': array([<class 'int'>], dtype=object),\n",
|
99 |
-
" 'height': array([<class 'int'>], dtype=object),\n",
|
100 |
-
" 'observation': array([<class 'str'>], dtype=object),\n",
|
101 |
-
" 'image': array([<class 'numpy.ndarray'>], dtype=object),\n",
|
102 |
-
" 'annot_id': array([<class 'int'>], dtype=object)}"
|
103 |
-
]
|
104 |
-
},
|
105 |
-
"execution_count": 4,
|
106 |
-
"metadata": {},
|
107 |
-
"output_type": "execute_result"
|
108 |
-
}
|
109 |
-
],
|
110 |
-
"source": [
|
111 |
-
"unique_types = {col: train_df[col].apply(type).unique() for col in train_df.columns}\n",
|
112 |
-
"unique_types"
|
113 |
-
]
|
114 |
-
},
|
115 |
-
{
|
116 |
-
"cell_type": "code",
|
117 |
-
"execution_count": 5,
|
118 |
-
"id": "6f464df1-9e86-47ed-a8c6-d5116a71085e",
|
119 |
-
"metadata": {
|
120 |
-
"scrolled": true
|
121 |
-
},
|
122 |
-
"outputs": [],
|
123 |
-
"source": [
|
124 |
-
"# train_df.head(20)"
|
125 |
-
]
|
126 |
-
},
|
127 |
-
{
|
128 |
-
"cell_type": "code",
|
129 |
-
"execution_count": 6,
|
130 |
-
"id": "3f4afc2a-2ee4-458d-95c0-19e8497653da",
|
131 |
-
"metadata": {
|
132 |
-
"scrolled": true
|
133 |
-
},
|
134 |
-
"outputs": [],
|
135 |
-
"source": [
|
136 |
-
"from collections import defaultdict\n",
|
137 |
-
"from datasets import Dataset, Features, Sequence\n",
|
138 |
-
"import datasets\n",
|
139 |
-
"from io import BytesIO\n",
|
140 |
-
"\n",
|
141 |
-
"cats_to_colours = { 1:('central-ring', (1,252,214)), \n",
|
142 |
-
" 2:('other', (255,128,1)),\n",
|
143 |
-
" 3:('read-out-streak', (20, 77, 158)), \n",
|
144 |
-
" 4:('smoke-ring', (159,21,100)),\n",
|
145 |
-
" 5:('star-loop', (255, 188, 248))}\n",
|
146 |
-
"\n",
|
147 |
-
"train_dataset=utils.df_to_dataset_dict(train_df, train_coco_data, cats_to_colours)\n",
|
148 |
-
"valid_dataset=utils.df_to_dataset_dict(valid_df, valid_coco_data, cats_to_colours)"
|
149 |
-
]
|
150 |
-
},
|
151 |
-
{
|
152 |
-
"cell_type": "code",
|
153 |
-
"execution_count": 7,
|
154 |
-
"id": "e3ed2ab1-8632-4e49-a661-c306554bd010",
|
155 |
-
"metadata": {
|
156 |
-
"scrolled": true
|
157 |
-
},
|
158 |
-
"outputs": [
|
159 |
-
{
|
160 |
-
"data": {
|
161 |
-
"application/vnd.jupyter.widget-view+json": {
|
162 |
-
"model_id": "6ebf9675899e4ffcbcb3ebebbe7d6147",
|
163 |
-
"version_major": 2,
|
164 |
-
"version_minor": 0
|
165 |
-
},
|
166 |
-
"text/plain": [
|
167 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
168 |
-
]
|
169 |
-
},
|
170 |
-
"metadata": {},
|
171 |
-
"output_type": "display_data"
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"data": {
|
175 |
-
"application/vnd.jupyter.widget-view+json": {
|
176 |
-
"model_id": "2bf3a5fcfc914785b99bc6e6892531be",
|
177 |
-
"version_major": 2,
|
178 |
-
"version_minor": 0
|
179 |
-
},
|
180 |
-
"text/plain": [
|
181 |
-
"Map: 0%| | 0/87 [00:00<?, ? examples/s]"
|
182 |
-
]
|
183 |
-
},
|
184 |
-
"metadata": {},
|
185 |
-
"output_type": "display_data"
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"data": {
|
189 |
-
"application/vnd.jupyter.widget-view+json": {
|
190 |
-
"model_id": "871d1f3b21d242cf86e1d1f20295fa7d",
|
191 |
-
"version_major": 2,
|
192 |
-
"version_minor": 0
|
193 |
-
},
|
194 |
-
"text/plain": [
|
195 |
-
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
196 |
-
]
|
197 |
-
},
|
198 |
-
"metadata": {},
|
199 |
-
"output_type": "display_data"
|
200 |
-
},
|
201 |
-
{
|
202 |
-
"data": {
|
203 |
-
"application/vnd.jupyter.widget-view+json": {
|
204 |
-
"model_id": "9376ea5e4c174f31827a0dd50a0af9b2",
|
205 |
-
"version_major": 2,
|
206 |
-
"version_minor": 0
|
207 |
-
},
|
208 |
-
"text/plain": [
|
209 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
210 |
-
]
|
211 |
-
},
|
212 |
-
"metadata": {},
|
213 |
-
"output_type": "display_data"
|
214 |
-
},
|
215 |
-
{
|
216 |
-
"data": {
|
217 |
-
"application/vnd.jupyter.widget-view+json": {
|
218 |
-
"model_id": "f5a6d9c4be554f4f937b1afd82f934b9",
|
219 |
-
"version_major": 2,
|
220 |
-
"version_minor": 0
|
221 |
-
},
|
222 |
-
"text/plain": [
|
223 |
-
"Map: 0%| | 0/88 [00:00<?, ? examples/s]"
|
224 |
-
]
|
225 |
-
},
|
226 |
-
"metadata": {},
|
227 |
-
"output_type": "display_data"
|
228 |
-
},
|
229 |
-
{
|
230 |
-
"data": {
|
231 |
-
"application/vnd.jupyter.widget-view+json": {
|
232 |
-
"model_id": "c2a692042a7748f9adea02a38012bb4c",
|
233 |
-
"version_major": 2,
|
234 |
-
"version_minor": 0
|
235 |
-
},
|
236 |
-
"text/plain": [
|
237 |
-
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
238 |
-
]
|
239 |
-
},
|
240 |
-
"metadata": {},
|
241 |
-
"output_type": "display_data"
|
242 |
-
},
|
243 |
-
{
|
244 |
-
"data": {
|
245 |
-
"application/vnd.jupyter.widget-view+json": {
|
246 |
-
"model_id": "e2d0aec5b6f14da889ebb4876d6a6cc3",
|
247 |
-
"version_major": 2,
|
248 |
-
"version_minor": 0
|
249 |
-
},
|
250 |
-
"text/plain": [
|
251 |
-
"README.md: 0%| | 0.00/5.71k [00:00<?, ?B/s]"
|
252 |
-
]
|
253 |
-
},
|
254 |
-
"metadata": {},
|
255 |
-
"output_type": "display_data"
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"data": {
|
259 |
-
"text/plain": [
|
260 |
-
"CommitInfo(commit_url='https://huggingface.co/datasets/iulia-elisa/XMM_OM_AI_dataset/commit/e4f969ebf7e6b84ece6a91380cbe2dd2fc669261', commit_message='Upload dataset', commit_description='', oid='e4f969ebf7e6b84ece6a91380cbe2dd2fc669261', pr_url=None, pr_revision=None, pr_num=None)"
|
261 |
-
]
|
262 |
-
},
|
263 |
-
"execution_count": 7,
|
264 |
-
"metadata": {},
|
265 |
-
"output_type": "execute_result"
|
266 |
-
}
|
267 |
-
],
|
268 |
-
"source": [
|
269 |
-
"from datasets import DatasetDict\n",
|
270 |
-
"\n",
|
271 |
-
"dataset_dict = DatasetDict({\n",
|
272 |
-
" 'train': train_dataset,\n",
|
273 |
-
" 'valid': valid_dataset\n",
|
274 |
-
"})\n",
|
275 |
-
"\n",
|
276 |
-
"dataset_dict.push_to_hub('iulia-elisa/XMM_OM_AI_dataset', private=False)"
|
277 |
-
]
|
278 |
-
}
|
279 |
-
],
|
280 |
-
"metadata": {
|
281 |
-
"kernelspec": {
|
282 |
-
"display_name": "env_py311",
|
283 |
-
"language": "python",
|
284 |
-
"name": "python3"
|
285 |
-
},
|
286 |
-
"language_info": {
|
287 |
-
"codemirror_mode": {
|
288 |
-
"name": "ipython",
|
289 |
-
"version": 3
|
290 |
-
},
|
291 |
-
"file_extension": ".py",
|
292 |
-
"mimetype": "text/x-python",
|
293 |
-
"name": "python",
|
294 |
-
"nbconvert_exporter": "python",
|
295 |
-
"pygments_lexer": "ipython3",
|
296 |
-
"version": "3.11.7"
|
297 |
-
},
|
298 |
-
"widgets": {
|
299 |
-
"application/vnd.jupyter.widget-state+json": {
|
300 |
-
"state": {
|
301 |
-
"048f277744ff4c8f9fe447563d554654": {
|
302 |
-
"model_module": "@jupyter-widgets/base",
|
303 |
-
"model_module_version": "2.0.0",
|
304 |
-
"model_name": "LayoutModel",
|
305 |
-
"state": {}
|
306 |
-
},
|
307 |
-
"08cf7cea944a4322ae9b6ef361862bb4": {
|
308 |
-
"model_module": "@jupyter-widgets/controls",
|
309 |
-
"model_module_version": "2.0.0",
|
310 |
-
"model_name": "HTMLModel",
|
311 |
-
"state": {
|
312 |
-
"layout": "IPY_MODEL_99548805c93d4e2bbccaf691aba88980",
|
313 |
-
"style": "IPY_MODEL_23e0985cd92e4db1a9006cab93b41a35",
|
314 |
-
"value": "Creating parquet from Arrow format: 100%"
|
315 |
-
}
|
316 |
-
},
|
317 |
-
"0e36fda6f39745ef85e3846289e165eb": {
|
318 |
-
"model_module": "@jupyter-widgets/base",
|
319 |
-
"model_module_version": "2.0.0",
|
320 |
-
"model_name": "LayoutModel",
|
321 |
-
"state": {}
|
322 |
-
},
|
323 |
-
"0f6e7836683d40efa731e77aa6746fa5": {
|
324 |
-
"model_module": "@jupyter-widgets/base",
|
325 |
-
"model_module_version": "2.0.0",
|
326 |
-
"model_name": "LayoutModel",
|
327 |
-
"state": {}
|
328 |
-
},
|
329 |
-
"11970b4573344669adcfd5d9df924aea": {
|
330 |
-
"model_module": "@jupyter-widgets/controls",
|
331 |
-
"model_module_version": "2.0.0",
|
332 |
-
"model_name": "FloatProgressModel",
|
333 |
-
"state": {
|
334 |
-
"bar_style": "success",
|
335 |
-
"layout": "IPY_MODEL_e6ec6e37a6304a2590e81ec2b4a01e15",
|
336 |
-
"max": 1,
|
337 |
-
"style": "IPY_MODEL_a2c1ef897ce849d9a1f773724f617d40",
|
338 |
-
"value": 1
|
339 |
-
}
|
340 |
-
},
|
341 |
-
"1c7cfbd83be64f8eafa6d8ad98b08bc8": {
|
342 |
-
"model_module": "@jupyter-widgets/controls",
|
343 |
-
"model_module_version": "2.0.0",
|
344 |
-
"model_name": "HTMLStyleModel",
|
345 |
-
"state": {
|
346 |
-
"description_width": "",
|
347 |
-
"font_size": null,
|
348 |
-
"text_color": null
|
349 |
-
}
|
350 |
-
},
|
351 |
-
"1fa82ba064f548319607a027721117d8": {
|
352 |
-
"model_module": "@jupyter-widgets/controls",
|
353 |
-
"model_module_version": "2.0.0",
|
354 |
-
"model_name": "HTMLModel",
|
355 |
-
"state": {
|
356 |
-
"layout": "IPY_MODEL_048f277744ff4c8f9fe447563d554654",
|
357 |
-
"style": "IPY_MODEL_5874491ff76a470e9db86621e2e5d1a7",
|
358 |
-
"value": " 1/1 [00:00<00:00, 9.50ba/s]"
|
359 |
-
}
|
360 |
-
},
|
361 |
-
"23640986547d47b3900f002fe5522f39": {
|
362 |
-
"model_module": "@jupyter-widgets/base",
|
363 |
-
"model_module_version": "2.0.0",
|
364 |
-
"model_name": "LayoutModel",
|
365 |
-
"state": {}
|
366 |
-
},
|
367 |
-
"23e0985cd92e4db1a9006cab93b41a35": {
|
368 |
-
"model_module": "@jupyter-widgets/controls",
|
369 |
-
"model_module_version": "2.0.0",
|
370 |
-
"model_name": "HTMLStyleModel",
|
371 |
-
"state": {
|
372 |
-
"description_width": "",
|
373 |
-
"font_size": null,
|
374 |
-
"text_color": null
|
375 |
-
}
|
376 |
-
},
|
377 |
-
"2bf3a5fcfc914785b99bc6e6892531be": {
|
378 |
-
"model_module": "@jupyter-widgets/controls",
|
379 |
-
"model_module_version": "2.0.0",
|
380 |
-
"model_name": "HBoxModel",
|
381 |
-
"state": {
|
382 |
-
"children": [
|
383 |
-
"IPY_MODEL_47be27d426034da9a97c49bae4626ddc",
|
384 |
-
"IPY_MODEL_71f517a070b643b3a5b6ad86c3710f95",
|
385 |
-
"IPY_MODEL_fb1c614683cf4531b6ac405a9373d74d"
|
386 |
-
],
|
387 |
-
"layout": "IPY_MODEL_db5e0e8d61d742ef823112ebe06cd33b"
|
388 |
-
}
|
389 |
-
},
|
390 |
-
"2d56d23ee7804546ab50c8ceaddd2d05": {
|
391 |
-
"model_module": "@jupyter-widgets/controls",
|
392 |
-
"model_module_version": "2.0.0",
|
393 |
-
"model_name": "HTMLModel",
|
394 |
-
"state": {
|
395 |
-
"layout": "IPY_MODEL_0e36fda6f39745ef85e3846289e165eb",
|
396 |
-
"style": "IPY_MODEL_a591c55a93f84703b8070bcf65e957e6",
|
397 |
-
"value": "Map: 100%"
|
398 |
-
}
|
399 |
-
},
|
400 |
-
"2f221cdc0bb44e23ab02f00a658801bf": {
|
401 |
-
"model_module": "@jupyter-widgets/controls",
|
402 |
-
"model_module_version": "2.0.0",
|
403 |
-
"model_name": "FloatProgressModel",
|
404 |
-
"state": {
|
405 |
-
"bar_style": "success",
|
406 |
-
"layout": "IPY_MODEL_e5f9516196b0461daf95817bb9408d7b",
|
407 |
-
"max": 5714,
|
408 |
-
"style": "IPY_MODEL_c38b2aa4bbd04b248b23de98a3fb3f04",
|
409 |
-
"value": 5714
|
410 |
-
}
|
411 |
-
},
|
412 |
-
"2f4e9a17492b430eb38dbf580a8f6112": {
|
413 |
-
"model_module": "@jupyter-widgets/controls",
|
414 |
-
"model_module_version": "2.0.0",
|
415 |
-
"model_name": "HTMLModel",
|
416 |
-
"state": {
|
417 |
-
"layout": "IPY_MODEL_692de2a4a32e4c009f021c3c604ee245",
|
418 |
-
"style": "IPY_MODEL_1c7cfbd83be64f8eafa6d8ad98b08bc8",
|
419 |
-
"value": " 1/1 [00:02<00:00, 2.68s/it]"
|
420 |
-
}
|
421 |
-
},
|
422 |
-
"326fe11988d74d66b99b448cf2001714": {
|
423 |
-
"model_module": "@jupyter-widgets/base",
|
424 |
-
"model_module_version": "2.0.0",
|
425 |
-
"model_name": "LayoutModel",
|
426 |
-
"state": {}
|
427 |
-
},
|
428 |
-
"3723e0afbc944b679032254d2b9d543c": {
|
429 |
-
"model_module": "@jupyter-widgets/base",
|
430 |
-
"model_module_version": "2.0.0",
|
431 |
-
"model_name": "LayoutModel",
|
432 |
-
"state": {}
|
433 |
-
},
|
434 |
-
"38f0c8d251154e15ba2a621db92bbf89": {
|
435 |
-
"model_module": "@jupyter-widgets/controls",
|
436 |
-
"model_module_version": "2.0.0",
|
437 |
-
"model_name": "HTMLStyleModel",
|
438 |
-
"state": {
|
439 |
-
"description_width": "",
|
440 |
-
"font_size": null,
|
441 |
-
"text_color": null
|
442 |
-
}
|
443 |
-
},
|
444 |
-
"391d57117eb649beae65ed7a6a79a18b": {
|
445 |
-
"model_module": "@jupyter-widgets/base",
|
446 |
-
"model_module_version": "2.0.0",
|
447 |
-
"model_name": "LayoutModel",
|
448 |
-
"state": {}
|
449 |
-
},
|
450 |
-
"401d5cb498aa42ccbf4e7bc4aafacb11": {
|
451 |
-
"model_module": "@jupyter-widgets/base",
|
452 |
-
"model_module_version": "2.0.0",
|
453 |
-
"model_name": "LayoutModel",
|
454 |
-
"state": {}
|
455 |
-
},
|
456 |
-
"46cba72f63ef469b82a4b1a96fb796ee": {
|
457 |
-
"model_module": "@jupyter-widgets/controls",
|
458 |
-
"model_module_version": "2.0.0",
|
459 |
-
"model_name": "HTMLStyleModel",
|
460 |
-
"state": {
|
461 |
-
"description_width": "",
|
462 |
-
"font_size": null,
|
463 |
-
"text_color": null
|
464 |
-
}
|
465 |
-
},
|
466 |
-
"47be27d426034da9a97c49bae4626ddc": {
|
467 |
-
"model_module": "@jupyter-widgets/controls",
|
468 |
-
"model_module_version": "2.0.0",
|
469 |
-
"model_name": "HTMLModel",
|
470 |
-
"state": {
|
471 |
-
"layout": "IPY_MODEL_911d271807e8414da96305fdd80796a7",
|
472 |
-
"style": "IPY_MODEL_73726b2d576c4644acaf676b9b9ec34f",
|
473 |
-
"value": "Map: 100%"
|
474 |
-
}
|
475 |
-
},
|
476 |
-
"488243dfb6574985bcbf7e790134e744": {
|
477 |
-
"model_module": "@jupyter-widgets/controls",
|
478 |
-
"model_module_version": "2.0.0",
|
479 |
-
"model_name": "ProgressStyleModel",
|
480 |
-
"state": {
|
481 |
-
"description_width": ""
|
482 |
-
}
|
483 |
-
},
|
484 |
-
"4b35ce2957784c83a9444926b0a7e976": {
|
485 |
-
"model_module": "@jupyter-widgets/controls",
|
486 |
-
"model_module_version": "2.0.0",
|
487 |
-
"model_name": "HTMLModel",
|
488 |
-
"state": {
|
489 |
-
"layout": "IPY_MODEL_b90c8d0425ac4bcca937ea6b545e48cd",
|
490 |
-
"style": "IPY_MODEL_46cba72f63ef469b82a4b1a96fb796ee",
|
491 |
-
"value": " 88/88 [00:00<00:00, 819.47 examples/s]"
|
492 |
-
}
|
493 |
-
},
|
494 |
-
"4f42920d671545ed8e0e7c5ceaedf8ed": {
|
495 |
-
"model_module": "@jupyter-widgets/controls",
|
496 |
-
"model_module_version": "2.0.0",
|
497 |
-
"model_name": "HTMLStyleModel",
|
498 |
-
"state": {
|
499 |
-
"description_width": "",
|
500 |
-
"font_size": null,
|
501 |
-
"text_color": null
|
502 |
-
}
|
503 |
-
},
|
504 |
-
"52dfe57cd5b44d62889af8a4df9467e1": {
|
505 |
-
"model_module": "@jupyter-widgets/controls",
|
506 |
-
"model_module_version": "2.0.0",
|
507 |
-
"model_name": "ProgressStyleModel",
|
508 |
-
"state": {
|
509 |
-
"description_width": ""
|
510 |
-
}
|
511 |
-
},
|
512 |
-
"5874491ff76a470e9db86621e2e5d1a7": {
|
513 |
-
"model_module": "@jupyter-widgets/controls",
|
514 |
-
"model_module_version": "2.0.0",
|
515 |
-
"model_name": "HTMLStyleModel",
|
516 |
-
"state": {
|
517 |
-
"description_width": "",
|
518 |
-
"font_size": null,
|
519 |
-
"text_color": null
|
520 |
-
}
|
521 |
-
},
|
522 |
-
"59ca0f5d7fff4b52a7051b923253c66f": {
|
523 |
-
"model_module": "@jupyter-widgets/base",
|
524 |
-
"model_module_version": "2.0.0",
|
525 |
-
"model_name": "LayoutModel",
|
526 |
-
"state": {}
|
527 |
-
},
|
528 |
-
"5d9126ed84e347379beddb410cda4381": {
|
529 |
-
"model_module": "@jupyter-widgets/base",
|
530 |
-
"model_module_version": "2.0.0",
|
531 |
-
"model_name": "LayoutModel",
|
532 |
-
"state": {}
|
533 |
-
},
|
534 |
-
"657e2016f007499cafa8ea389a461201": {
|
535 |
-
"model_module": "@jupyter-widgets/controls",
|
536 |
-
"model_module_version": "2.0.0",
|
537 |
-
"model_name": "HTMLStyleModel",
|
538 |
-
"state": {
|
539 |
-
"description_width": "",
|
540 |
-
"font_size": null,
|
541 |
-
"text_color": null
|
542 |
-
}
|
543 |
-
},
|
544 |
-
"68409dd4c6a042899d8f32b8d426bd6c": {
|
545 |
-
"model_module": "@jupyter-widgets/controls",
|
546 |
-
"model_module_version": "2.0.0",
|
547 |
-
"model_name": "FloatProgressModel",
|
548 |
-
"state": {
|
549 |
-
"bar_style": "success",
|
550 |
-
"layout": "IPY_MODEL_5d9126ed84e347379beddb410cda4381",
|
551 |
-
"max": 1,
|
552 |
-
"style": "IPY_MODEL_e7c643f02df04f39a6232d4ef37dbe53",
|
553 |
-
"value": 1
|
554 |
-
}
|
555 |
-
},
|
556 |
-
"692de2a4a32e4c009f021c3c604ee245": {
|
557 |
-
"model_module": "@jupyter-widgets/base",
|
558 |
-
"model_module_version": "2.0.0",
|
559 |
-
"model_name": "LayoutModel",
|
560 |
-
"state": {}
|
561 |
-
},
|
562 |
-
"6ebf9675899e4ffcbcb3ebebbe7d6147": {
|
563 |
-
"model_module": "@jupyter-widgets/controls",
|
564 |
-
"model_module_version": "2.0.0",
|
565 |
-
"model_name": "HBoxModel",
|
566 |
-
"state": {
|
567 |
-
"children": [
|
568 |
-
"IPY_MODEL_d753a4db07294b83a86784bfc211dcaf",
|
569 |
-
"IPY_MODEL_68409dd4c6a042899d8f32b8d426bd6c",
|
570 |
-
"IPY_MODEL_a056610c2b23491aba3f37c38f0ad8c5"
|
571 |
-
],
|
572 |
-
"layout": "IPY_MODEL_920bced53c3d42099f1a87eed19ce05e"
|
573 |
-
}
|
574 |
-
},
|
575 |
-
"71f517a070b643b3a5b6ad86c3710f95": {
|
576 |
-
"model_module": "@jupyter-widgets/controls",
|
577 |
-
"model_module_version": "2.0.0",
|
578 |
-
"model_name": "FloatProgressModel",
|
579 |
-
"state": {
|
580 |
-
"bar_style": "success",
|
581 |
-
"layout": "IPY_MODEL_dc80b5c47d4c4f9faab022f05b691228",
|
582 |
-
"max": 87,
|
583 |
-
"style": "IPY_MODEL_b9fb72eff10047289a9597d08009af95",
|
584 |
-
"value": 87
|
585 |
-
}
|
586 |
-
},
|
587 |
-
"73391c6e41d4483e93582af7934d1e54": {
|
588 |
-
"model_module": "@jupyter-widgets/controls",
|
589 |
-
"model_module_version": "2.0.0",
|
590 |
-
"model_name": "HTMLModel",
|
591 |
-
"state": {
|
592 |
-
"layout": "IPY_MODEL_e813397704674d81b3fe6dd3ce444e95",
|
593 |
-
"style": "IPY_MODEL_eaf483365e224158aad8fd8f604ac64b",
|
594 |
-
"value": "Uploading the dataset shards: 100%"
|
595 |
-
}
|
596 |
-
},
|
597 |
-
"73726b2d576c4644acaf676b9b9ec34f": {
|
598 |
-
"model_module": "@jupyter-widgets/controls",
|
599 |
-
"model_module_version": "2.0.0",
|
600 |
-
"model_name": "HTMLStyleModel",
|
601 |
-
"state": {
|
602 |
-
"description_width": "",
|
603 |
-
"font_size": null,
|
604 |
-
"text_color": null
|
605 |
-
}
|
606 |
-
},
|
607 |
-
"76f47b25344e4f1db6549e268af826ba": {
|
608 |
-
"model_module": "@jupyter-widgets/controls",
|
609 |
-
"model_module_version": "2.0.0",
|
610 |
-
"model_name": "HTMLModel",
|
611 |
-
"state": {
|
612 |
-
"layout": "IPY_MODEL_d45797a1fbc54c7cb7b5a863972fb4b1",
|
613 |
-
"style": "IPY_MODEL_cbad9576bda8439d8fa5ae8391b31ff9",
|
614 |
-
"value": " 5.71k/5.71k [00:00<00:00, 1.12MB/s]"
|
615 |
-
}
|
616 |
-
},
|
617 |
-
"7d6080218e2a4888bdfd0c184b7c5ffc": {
|
618 |
-
"model_module": "@jupyter-widgets/base",
|
619 |
-
"model_module_version": "2.0.0",
|
620 |
-
"model_name": "LayoutModel",
|
621 |
-
"state": {}
|
622 |
-
},
|
623 |
-
"842b6cc23bcc485ba3d034f5f955f314": {
|
624 |
-
"model_module": "@jupyter-widgets/base",
|
625 |
-
"model_module_version": "2.0.0",
|
626 |
-
"model_name": "LayoutModel",
|
627 |
-
"state": {}
|
628 |
-
},
|
629 |
-
"871d1f3b21d242cf86e1d1f20295fa7d": {
|
630 |
-
"model_module": "@jupyter-widgets/controls",
|
631 |
-
"model_module_version": "2.0.0",
|
632 |
-
"model_name": "HBoxModel",
|
633 |
-
"state": {
|
634 |
-
"children": [
|
635 |
-
"IPY_MODEL_afbc23b673314807bd81dcc9bcf3e3df",
|
636 |
-
"IPY_MODEL_e5d66c90b5a842de84296f97abbdaae9",
|
637 |
-
"IPY_MODEL_1fa82ba064f548319607a027721117d8"
|
638 |
-
],
|
639 |
-
"layout": "IPY_MODEL_0f6e7836683d40efa731e77aa6746fa5"
|
640 |
-
}
|
641 |
-
},
|
642 |
-
"911d271807e8414da96305fdd80796a7": {
|
643 |
-
"model_module": "@jupyter-widgets/base",
|
644 |
-
"model_module_version": "2.0.0",
|
645 |
-
"model_name": "LayoutModel",
|
646 |
-
"state": {}
|
647 |
-
},
|
648 |
-
"920bced53c3d42099f1a87eed19ce05e": {
|
649 |
-
"model_module": "@jupyter-widgets/base",
|
650 |
-
"model_module_version": "2.0.0",
|
651 |
-
"model_name": "LayoutModel",
|
652 |
-
"state": {}
|
653 |
-
},
|
654 |
-
"9376ea5e4c174f31827a0dd50a0af9b2": {
|
655 |
-
"model_module": "@jupyter-widgets/controls",
|
656 |
-
"model_module_version": "2.0.0",
|
657 |
-
"model_name": "HBoxModel",
|
658 |
-
"state": {
|
659 |
-
"children": [
|
660 |
-
"IPY_MODEL_73391c6e41d4483e93582af7934d1e54",
|
661 |
-
"IPY_MODEL_acf8c82fec8f4360877e2f1ad3d41e74",
|
662 |
-
"IPY_MODEL_2f4e9a17492b430eb38dbf580a8f6112"
|
663 |
-
],
|
664 |
-
"layout": "IPY_MODEL_ca406b13430643bdab8a048bdf35dd75"
|
665 |
-
}
|
666 |
-
},
|
667 |
-
"93b9ea63c9ee44cbbe4a266b83a86083": {
|
668 |
-
"model_module": "@jupyter-widgets/controls",
|
669 |
-
"model_module_version": "2.0.0",
|
670 |
-
"model_name": "HTMLModel",
|
671 |
-
"state": {
|
672 |
-
"layout": "IPY_MODEL_391d57117eb649beae65ed7a6a79a18b",
|
673 |
-
"style": "IPY_MODEL_657e2016f007499cafa8ea389a461201",
|
674 |
-
"value": "README.md: 100%"
|
675 |
-
}
|
676 |
-
},
|
677 |
-
"99133f4e57fe4309b610cdb4ce2a90bd": {
|
678 |
-
"model_module": "@jupyter-widgets/base",
|
679 |
-
"model_module_version": "2.0.0",
|
680 |
-
"model_name": "LayoutModel",
|
681 |
-
"state": {}
|
682 |
-
},
|
683 |
-
"99548805c93d4e2bbccaf691aba88980": {
|
684 |
-
"model_module": "@jupyter-widgets/base",
|
685 |
-
"model_module_version": "2.0.0",
|
686 |
-
"model_name": "LayoutModel",
|
687 |
-
"state": {}
|
688 |
-
},
|
689 |
-
"9b8ccb3e67354701a09c2a18ace98ad6": {
|
690 |
-
"model_module": "@jupyter-widgets/controls",
|
691 |
-
"model_module_version": "2.0.0",
|
692 |
-
"model_name": "HTMLStyleModel",
|
693 |
-
"state": {
|
694 |
-
"description_width": "",
|
695 |
-
"font_size": null,
|
696 |
-
"text_color": null
|
697 |
-
}
|
698 |
-
},
|
699 |
-
"a056610c2b23491aba3f37c38f0ad8c5": {
|
700 |
-
"model_module": "@jupyter-widgets/controls",
|
701 |
-
"model_module_version": "2.0.0",
|
702 |
-
"model_name": "HTMLModel",
|
703 |
-
"state": {
|
704 |
-
"layout": "IPY_MODEL_3723e0afbc944b679032254d2b9d543c",
|
705 |
-
"style": "IPY_MODEL_9b8ccb3e67354701a09c2a18ace98ad6",
|
706 |
-
"value": " 1/1 [00:04<00:00, 4.22s/it]"
|
707 |
-
}
|
708 |
-
},
|
709 |
-
"a2c1ef897ce849d9a1f773724f617d40": {
|
710 |
-
"model_module": "@jupyter-widgets/controls",
|
711 |
-
"model_module_version": "2.0.0",
|
712 |
-
"model_name": "ProgressStyleModel",
|
713 |
-
"state": {
|
714 |
-
"description_width": ""
|
715 |
-
}
|
716 |
-
},
|
717 |
-
"a33667021736405b82666b555a5493a8": {
|
718 |
-
"model_module": "@jupyter-widgets/controls",
|
719 |
-
"model_module_version": "2.0.0",
|
720 |
-
"model_name": "HTMLStyleModel",
|
721 |
-
"state": {
|
722 |
-
"description_width": "",
|
723 |
-
"font_size": null,
|
724 |
-
"text_color": null
|
725 |
-
}
|
726 |
-
},
|
727 |
-
"a39e3942259747fd9c7759cbbba73d3d": {
|
728 |
-
"model_module": "@jupyter-widgets/controls",
|
729 |
-
"model_module_version": "2.0.0",
|
730 |
-
"model_name": "FloatProgressModel",
|
731 |
-
"state": {
|
732 |
-
"bar_style": "success",
|
733 |
-
"layout": "IPY_MODEL_401d5cb498aa42ccbf4e7bc4aafacb11",
|
734 |
-
"max": 88,
|
735 |
-
"style": "IPY_MODEL_488243dfb6574985bcbf7e790134e744",
|
736 |
-
"value": 88
|
737 |
-
}
|
738 |
-
},
|
739 |
-
"a591c55a93f84703b8070bcf65e957e6": {
|
740 |
-
"model_module": "@jupyter-widgets/controls",
|
741 |
-
"model_module_version": "2.0.0",
|
742 |
-
"model_name": "HTMLStyleModel",
|
743 |
-
"state": {
|
744 |
-
"description_width": "",
|
745 |
-
"font_size": null,
|
746 |
-
"text_color": null
|
747 |
-
}
|
748 |
-
},
|
749 |
-
"abc65776f8504948b9e91ea432ebe8ef": {
|
750 |
-
"model_module": "@jupyter-widgets/base",
|
751 |
-
"model_module_version": "2.0.0",
|
752 |
-
"model_name": "LayoutModel",
|
753 |
-
"state": {}
|
754 |
-
},
|
755 |
-
"acf8c82fec8f4360877e2f1ad3d41e74": {
|
756 |
-
"model_module": "@jupyter-widgets/controls",
|
757 |
-
"model_module_version": "2.0.0",
|
758 |
-
"model_name": "FloatProgressModel",
|
759 |
-
"state": {
|
760 |
-
"bar_style": "success",
|
761 |
-
"layout": "IPY_MODEL_59ca0f5d7fff4b52a7051b923253c66f",
|
762 |
-
"max": 1,
|
763 |
-
"style": "IPY_MODEL_52dfe57cd5b44d62889af8a4df9467e1",
|
764 |
-
"value": 1
|
765 |
-
}
|
766 |
-
},
|
767 |
-
"afbc23b673314807bd81dcc9bcf3e3df": {
|
768 |
-
"model_module": "@jupyter-widgets/controls",
|
769 |
-
"model_module_version": "2.0.0",
|
770 |
-
"model_name": "HTMLModel",
|
771 |
-
"state": {
|
772 |
-
"layout": "IPY_MODEL_f8cd90e4cb13496780c19d3a482fb43f",
|
773 |
-
"style": "IPY_MODEL_4f42920d671545ed8e0e7c5ceaedf8ed",
|
774 |
-
"value": "Creating parquet from Arrow format: 100%"
|
775 |
-
}
|
776 |
-
},
|
777 |
-
"b90c8d0425ac4bcca937ea6b545e48cd": {
|
778 |
-
"model_module": "@jupyter-widgets/base",
|
779 |
-
"model_module_version": "2.0.0",
|
780 |
-
"model_name": "LayoutModel",
|
781 |
-
"state": {}
|
782 |
-
},
|
783 |
-
"b9fb72eff10047289a9597d08009af95": {
|
784 |
-
"model_module": "@jupyter-widgets/controls",
|
785 |
-
"model_module_version": "2.0.0",
|
786 |
-
"model_name": "ProgressStyleModel",
|
787 |
-
"state": {
|
788 |
-
"description_width": ""
|
789 |
-
}
|
790 |
-
},
|
791 |
-
"c2a692042a7748f9adea02a38012bb4c": {
|
792 |
-
"model_module": "@jupyter-widgets/controls",
|
793 |
-
"model_module_version": "2.0.0",
|
794 |
-
"model_name": "HBoxModel",
|
795 |
-
"state": {
|
796 |
-
"children": [
|
797 |
-
"IPY_MODEL_08cf7cea944a4322ae9b6ef361862bb4",
|
798 |
-
"IPY_MODEL_11970b4573344669adcfd5d9df924aea",
|
799 |
-
"IPY_MODEL_fe70cc023aa049e0ba921c8eb1c65646"
|
800 |
-
],
|
801 |
-
"layout": "IPY_MODEL_23640986547d47b3900f002fe5522f39"
|
802 |
-
}
|
803 |
-
},
|
804 |
-
"c38b2aa4bbd04b248b23de98a3fb3f04": {
|
805 |
-
"model_module": "@jupyter-widgets/controls",
|
806 |
-
"model_module_version": "2.0.0",
|
807 |
-
"model_name": "ProgressStyleModel",
|
808 |
-
"state": {
|
809 |
-
"description_width": ""
|
810 |
-
}
|
811 |
-
},
|
812 |
-
"c827c4d520c342a1bcb54966869a6edc": {
|
813 |
-
"model_module": "@jupyter-widgets/controls",
|
814 |
-
"model_module_version": "2.0.0",
|
815 |
-
"model_name": "HTMLStyleModel",
|
816 |
-
"state": {
|
817 |
-
"description_width": "",
|
818 |
-
"font_size": null,
|
819 |
-
"text_color": null
|
820 |
-
}
|
821 |
-
},
|
822 |
-
"ca406b13430643bdab8a048bdf35dd75": {
|
823 |
-
"model_module": "@jupyter-widgets/base",
|
824 |
-
"model_module_version": "2.0.0",
|
825 |
-
"model_name": "LayoutModel",
|
826 |
-
"state": {}
|
827 |
-
},
|
828 |
-
"cbad9576bda8439d8fa5ae8391b31ff9": {
|
829 |
-
"model_module": "@jupyter-widgets/controls",
|
830 |
-
"model_module_version": "2.0.0",
|
831 |
-
"model_name": "HTMLStyleModel",
|
832 |
-
"state": {
|
833 |
-
"description_width": "",
|
834 |
-
"font_size": null,
|
835 |
-
"text_color": null
|
836 |
-
}
|
837 |
-
},
|
838 |
-
"d45797a1fbc54c7cb7b5a863972fb4b1": {
|
839 |
-
"model_module": "@jupyter-widgets/base",
|
840 |
-
"model_module_version": "2.0.0",
|
841 |
-
"model_name": "LayoutModel",
|
842 |
-
"state": {}
|
843 |
-
},
|
844 |
-
"d753a4db07294b83a86784bfc211dcaf": {
|
845 |
-
"model_module": "@jupyter-widgets/controls",
|
846 |
-
"model_module_version": "2.0.0",
|
847 |
-
"model_name": "HTMLModel",
|
848 |
-
"state": {
|
849 |
-
"layout": "IPY_MODEL_326fe11988d74d66b99b448cf2001714",
|
850 |
-
"style": "IPY_MODEL_a33667021736405b82666b555a5493a8",
|
851 |
-
"value": "Uploading the dataset shards: 100%"
|
852 |
-
}
|
853 |
-
},
|
854 |
-
"db5e0e8d61d742ef823112ebe06cd33b": {
|
855 |
-
"model_module": "@jupyter-widgets/base",
|
856 |
-
"model_module_version": "2.0.0",
|
857 |
-
"model_name": "LayoutModel",
|
858 |
-
"state": {}
|
859 |
-
},
|
860 |
-
"dc80b5c47d4c4f9faab022f05b691228": {
|
861 |
-
"model_module": "@jupyter-widgets/base",
|
862 |
-
"model_module_version": "2.0.0",
|
863 |
-
"model_name": "LayoutModel",
|
864 |
-
"state": {}
|
865 |
-
},
|
866 |
-
"e2d0aec5b6f14da889ebb4876d6a6cc3": {
|
867 |
-
"model_module": "@jupyter-widgets/controls",
|
868 |
-
"model_module_version": "2.0.0",
|
869 |
-
"model_name": "HBoxModel",
|
870 |
-
"state": {
|
871 |
-
"children": [
|
872 |
-
"IPY_MODEL_93b9ea63c9ee44cbbe4a266b83a86083",
|
873 |
-
"IPY_MODEL_2f221cdc0bb44e23ab02f00a658801bf",
|
874 |
-
"IPY_MODEL_76f47b25344e4f1db6549e268af826ba"
|
875 |
-
],
|
876 |
-
"layout": "IPY_MODEL_f91d0f2d7018430fb1f6f9fef6d4bcb8"
|
877 |
-
}
|
878 |
-
},
|
879 |
-
"e5d66c90b5a842de84296f97abbdaae9": {
|
880 |
-
"model_module": "@jupyter-widgets/controls",
|
881 |
-
"model_module_version": "2.0.0",
|
882 |
-
"model_name": "FloatProgressModel",
|
883 |
-
"state": {
|
884 |
-
"bar_style": "success",
|
885 |
-
"layout": "IPY_MODEL_7d6080218e2a4888bdfd0c184b7c5ffc",
|
886 |
-
"max": 1,
|
887 |
-
"style": "IPY_MODEL_ea8839476ee147bcbdbd484c04e1e829",
|
888 |
-
"value": 1
|
889 |
-
}
|
890 |
-
},
|
891 |
-
"e5f9516196b0461daf95817bb9408d7b": {
|
892 |
-
"model_module": "@jupyter-widgets/base",
|
893 |
-
"model_module_version": "2.0.0",
|
894 |
-
"model_name": "LayoutModel",
|
895 |
-
"state": {}
|
896 |
-
},
|
897 |
-
"e6ec6e37a6304a2590e81ec2b4a01e15": {
|
898 |
-
"model_module": "@jupyter-widgets/base",
|
899 |
-
"model_module_version": "2.0.0",
|
900 |
-
"model_name": "LayoutModel",
|
901 |
-
"state": {}
|
902 |
-
},
|
903 |
-
"e7c643f02df04f39a6232d4ef37dbe53": {
|
904 |
-
"model_module": "@jupyter-widgets/controls",
|
905 |
-
"model_module_version": "2.0.0",
|
906 |
-
"model_name": "ProgressStyleModel",
|
907 |
-
"state": {
|
908 |
-
"description_width": ""
|
909 |
-
}
|
910 |
-
},
|
911 |
-
"e813397704674d81b3fe6dd3ce444e95": {
|
912 |
-
"model_module": "@jupyter-widgets/base",
|
913 |
-
"model_module_version": "2.0.0",
|
914 |
-
"model_name": "LayoutModel",
|
915 |
-
"state": {}
|
916 |
-
},
|
917 |
-
"ea8839476ee147bcbdbd484c04e1e829": {
|
918 |
-
"model_module": "@jupyter-widgets/controls",
|
919 |
-
"model_module_version": "2.0.0",
|
920 |
-
"model_name": "ProgressStyleModel",
|
921 |
-
"state": {
|
922 |
-
"description_width": ""
|
923 |
-
}
|
924 |
-
},
|
925 |
-
"eaf483365e224158aad8fd8f604ac64b": {
|
926 |
-
"model_module": "@jupyter-widgets/controls",
|
927 |
-
"model_module_version": "2.0.0",
|
928 |
-
"model_name": "HTMLStyleModel",
|
929 |
-
"state": {
|
930 |
-
"description_width": "",
|
931 |
-
"font_size": null,
|
932 |
-
"text_color": null
|
933 |
-
}
|
934 |
-
},
|
935 |
-
"f5a6d9c4be554f4f937b1afd82f934b9": {
|
936 |
-
"model_module": "@jupyter-widgets/controls",
|
937 |
-
"model_module_version": "2.0.0",
|
938 |
-
"model_name": "HBoxModel",
|
939 |
-
"state": {
|
940 |
-
"children": [
|
941 |
-
"IPY_MODEL_2d56d23ee7804546ab50c8ceaddd2d05",
|
942 |
-
"IPY_MODEL_a39e3942259747fd9c7759cbbba73d3d",
|
943 |
-
"IPY_MODEL_4b35ce2957784c83a9444926b0a7e976"
|
944 |
-
],
|
945 |
-
"layout": "IPY_MODEL_abc65776f8504948b9e91ea432ebe8ef"
|
946 |
-
}
|
947 |
-
},
|
948 |
-
"f8cd90e4cb13496780c19d3a482fb43f": {
|
949 |
-
"model_module": "@jupyter-widgets/base",
|
950 |
-
"model_module_version": "2.0.0",
|
951 |
-
"model_name": "LayoutModel",
|
952 |
-
"state": {}
|
953 |
-
},
|
954 |
-
"f91d0f2d7018430fb1f6f9fef6d4bcb8": {
|
955 |
-
"model_module": "@jupyter-widgets/base",
|
956 |
-
"model_module_version": "2.0.0",
|
957 |
-
"model_name": "LayoutModel",
|
958 |
-
"state": {}
|
959 |
-
},
|
960 |
-
"fb1c614683cf4531b6ac405a9373d74d": {
|
961 |
-
"model_module": "@jupyter-widgets/controls",
|
962 |
-
"model_module_version": "2.0.0",
|
963 |
-
"model_name": "HTMLModel",
|
964 |
-
"state": {
|
965 |
-
"layout": "IPY_MODEL_842b6cc23bcc485ba3d034f5f955f314",
|
966 |
-
"style": "IPY_MODEL_c827c4d520c342a1bcb54966869a6edc",
|
967 |
-
"value": " 87/87 [00:00<00:00, 1110.37 examples/s]"
|
968 |
-
}
|
969 |
-
},
|
970 |
-
"fe70cc023aa049e0ba921c8eb1c65646": {
|
971 |
-
"model_module": "@jupyter-widgets/controls",
|
972 |
-
"model_module_version": "2.0.0",
|
973 |
-
"model_name": "HTMLModel",
|
974 |
-
"state": {
|
975 |
-
"layout": "IPY_MODEL_99133f4e57fe4309b610cdb4ce2a90bd",
|
976 |
-
"style": "IPY_MODEL_38f0c8d251154e15ba2a621db92bbf89",
|
977 |
-
"value": " 1/1 [00:00<00:00, 6.98ba/s]"
|
978 |
-
}
|
979 |
-
}
|
980 |
-
},
|
981 |
-
"version_major": 2,
|
982 |
-
"version_minor": 0
|
983 |
-
}
|
984 |
-
}
|
985 |
-
},
|
986 |
-
"nbformat": 4,
|
987 |
-
"nbformat_minor": 5
|
988 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|