File size: 29,818 Bytes
ef73616
 
 
 
86c20bd
c03e3e3
86c20bd
ef73616
86c20bd
ef73616
86c20bd
c03e3e3
ef73616
 
 
 
 
 
c03e3e3
ef73616
 
 
 
 
c03e3e3
86c20bd
 
c03e3e3
86c20bd
 
 
 
c03e3e3
86c20bd
 
 
 
 
 
ef73616
 
 
86c20bd
c03e3e3
ef73616
 
86c20bd
 
 
 
c03e3e3
86c20bd
 
 
 
 
 
 
 
c03e3e3
 
ef73616
 
86c20bd
ef73616
 
 
 
 
86c20bd
ef73616
 
 
 
 
c03e3e3
86c20bd
ef73616
86c20bd
c03e3e3
86c20bd
c03e3e3
 
ef73616
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
{"dataset": "afp", "model": "mT0", "name": "afp-factuality-prompt-mt0", "input": "factuality claim: {{claim}}", "target": "{{lambda label: choices[label]}}", "metadata": {"languages": ["bg", "bn", "ca", "cs", "de", "el", "en", "es", "fi", "fr", "hi", "hr", "hrv", "hu", "id", "ko", "ms", "my", "nl", "pl", "pt", "ro", "sk", "sv", "th"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["bg", "bn", "ca", "cs", "de", "el", "en", "es", "fi", "fr", "hi", "hr", "hrv", "hu", "id", "ko", "ms", "my", "nl", "pl", "pt", "ro", "sk", "sv", "th"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "liar", "model": "mT0", "name": "liar-binary-factuality-prompt-mt0", "input": "factuality claim: {{statement}}", "target": "{{lambda label: choices[0 if label in [0, 1, 5] else 1]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["en"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "liar", "model": "mT0", "name": "liar-multiclass-factuality-prompt-mt0", "input": "factuality claim: {{statement}}", "target": "{{lambda label: choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["en"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "xnli", "model": "mT0", "name": "xnli-prompt-mt0", "input": "{{premise}}\\nQuestion: {{hypothesis}} True, False or Neither?", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "metrics": ["accuracy", "macro_f1"]}, "languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "cb", "model": "T5", "name": "cb-prompt-t5", "input": "cb premise: {{premise}} hypothesis: {{hypothesis}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "multiclass_f1"]}, "languages": ["en"], "metrics": ["accuracy", "multiclass_f1"]}
{"dataset": "aeslc", "model": "T5", "name": "aeslc-prompt-t5", "input": "summarize: {{email_body}}", "target": "{{subject_line}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "boolq", "model": "T5", "name": "boolq-prompt-t5", "input": "boolq question: {{question}} passage: {{passage}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "lesa2021", "model": "mT0", "name": "lesa2021-checkworthiness-prompt-mt0", "input": "checkworthiness claim: {{en}}", "target": "{{lambda claim: choices[int(claim)]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["en"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "newsroom", "model": "T5", "name": "newsroom-prompt-t5", "input": "summarize: {{text}}", "target": "{{summary}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "clef2018", "model": "mT0", "name": "clef2018-checkworthiness-prompt-mt0", "input": "checkworthiness claim: {{text}}", "target": "{{lambda label: choices[label]}}", "metadata": {"languages": ["ar", "en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["ar", "en"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "record", "model": "T5", "name": "record-prompt-t5", "input": "record query: {{query}} entities: {{\", \".join(entities)}} passage: {{passage}}", "target": "{{answers[0]}}", "metadata": {"languages": ["en"], "metrics": ["squad"], "preprocessing": ["record_preprocess"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "anli", "model": "T5", "name": "anli-prompt-t5", "input": "premise: {{premise}} hypothesis: {{hypothesis}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "skquad", "model": "mT0", "name": "skquad-prefix-prompt-mt0", "input": "question: {{question}} context: {{context}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "skquad", "model": "mT0", "name": "skquad-instruct1-prompt-mt0", "input": "Answer the question depending on the context. Context: {{context}}; Question: {{question}}; Answer:", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "skquad", "model": "mT0", "name": "skquad-instruct2-prompt-mt0", "input": "What is the answer? Context: {{context}}; Question: {{question}}; Answer:", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "skquad", "model": "mT0", "name": "skquad-instruct3-prompt-mt0", "input": "Given the following passage \"{{context}}\", answer the following question. Note that the answer is present within the text. Question: {{question}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "skquad", "model": "mT0", "name": "skquad-instruct4-prompt-mt0", "input": "Refer to the passage below and answer the following question: Passage: {{context}} Question: {{question}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "wikiann", "model": "mT0", "name": "wikiann-prompt-mt0", "input": "Sentence: {{lambda tokens: \" \".join(tokens)}}\\nIdentify all named entities in the sentence using PER, LOC, ORG.", "target": "{{lambda spans: \", \".join(spans)}}", "metadata": {"languages": ["en", "ar", "de", "es", "fr", "hi", "it", "ja", "nl", "pt", "ru", "zh", "cs", "sk"], "metrics": ["span_f1"]}, "languages": ["en", "ar", "de", "es", "fr", "hi", "it", "ja", "nl", "pt", "ru", "zh", "cs", "sk"], "metrics": ["span_f1"]}
{"dataset": "billsum", "model": "T5", "name": "billsum-prompt-t5", "input": "summarize: {{text}}", "target": "{{summary}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "mlqa", "model": "mT0", "name": "mlqa-prefix-prompt-mt0", "input": "question: {{question}} context: {{context}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "mlqa", "model": "mT0", "name": "mlqa-instruct1-prompt-mt0", "input": "Answer the question depending on the context. Context: {{context}}; Question: {{question}}; Answer:", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "mlqa", "model": "mT0", "name": "mlqa-instruct2-prompt-mt0", "input": "What is the answer? Context: {{context}}; Question: {{question}}; Answer:", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "mlqa", "model": "mT0", "name": "mlqa-instruct3-prompt-mt0", "input": "Given the following passage \"{{context}}\", answer the following question. Note that the answer is present within the text. Question: {{question}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "mlqa", "model": "mT0", "name": "mlqa-instruct4-prompt-mt0", "input": "Refer to the passage below and answer the following question: Passage: {{context}} Question: {{question}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "drop", "model": "T5", "name": "drop-prompt-t5", "input": "question: {{question}} context: {{passage}}", "target": "{{answers_spans[\"spans\"][0]}}", "metadata": {"languages": ["en"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "stsb", "model": "T5", "name": "stsb-prompt-t5", "input": "stsb sentence1: {{sentence1}} sentence2: {{sentence2}}", "target": "{{lambda label: np.round((label * 5) / 5, decimals=1)}}", "metadata": {"languages": ["en"], "metrics": ["pearson_corrcoef", "spearman_corrcoef"]}, "languages": ["en"], "metrics": ["pearson_corrcoef", "spearman_corrcoef"]}
{"dataset": "mrpc", "model": "T5", "name": "mrpc-prompt-t5", "input": "mrpc sentence1: {{sentence1}} sentence2: {{sentence2}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "f1_invalid"]}, "languages": ["en"], "metrics": ["accuracy", "f1_invalid"]}
{"dataset": "gigaword", "model": "T5", "name": "gigaword-prompt-t5", "input": "summarize: {{document}}", "target": "{{summary}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "piqa", "model": "T5", "name": "piqa-prompt-t5", "input": "question: {{goal}} choice1: {{sol1}} choice2: {{sol2}}", "target": "{{lambda label: str(label)}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "cosmos_qa", "model": "T5", "name": "cosmos_qa-prompt-t5", "input": "question: {{question}} context: {{context}} choice0: {{answer0}} choice1: {{answer1}} choice2: {{answer2}} choice3: {{answer3}}", "target": "{{lambda label: str(label)}}", "metadata": {"languages": ["en"], "metrics": ["squad"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "c4", "model": "T5", "name": "c4-prompt-t5", "input": "", "target": "{{text}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "copa", "model": "T5", "name": "copa-prompt-t5", "input": "copa premise: {{premise}} choice1: {{choice1}} choice2: {{choice2}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "mnli", "model": "T5", "name": "mnli-prompt-t5", "input": "mnli premise: {{premise}} hypothesis: {{hypothesis}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "cola", "model": "T5", "name": "cola-prompt-t5", "input": "cola sentence: {{sentence}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["matthews_corrcoef"]}, "languages": ["en"], "metrics": ["matthews_corrcoef"]}
{"dataset": "wnli", "model": "T5", "name": "wnli-prompt-t5", "input": "wnli sentence1: {{sentence1}} sentence2: {{sentence2}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "social_i_qa", "model": "T5", "name": "social_i_qa-prompt-t5", "input": "question: {{question}} context: {{context}} || choice0: {{answerA}} || choice1: {{answerB}} || choice2: {{answerC}}", "target": "{{lambda label: str(int(label) - 1)}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "wiki_auto", "model": "T5", "name": "wiki_auto-prompt-t5", "input": "{{source}}", "target": "{{target}}", "metadata": {"languages": ["en"], "metrics": ["bleu"]}, "languages": ["en"], "metrics": ["bleu"]}
{"dataset": "hellaswag", "model": "T5", "name": "hellaswag-prompt-t5", "input": "context: {{ctx}} ending0: {{endings[0]}} ending1: {{endings[1]}} ending2: {{endings[2]}} ending3: {{endings[3]}}", "target": "{{lambda label: str(label)}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "search_qa", "model": "T5", "name": "search_qa-prompt-t5", "input": "question: {{question}}", "target": "{{answer}}", "metadata": {"languages": ["en"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "demagog", "model": "mT0", "name": "demagog-factuality-prompt-mt0", "input": "factuality claim: {{claim}}", "target": "{{lambda label: choices[0 if label in [\"Zav\u00e1d\u011bj\u00edc\u00ed\", \"Nepravda\", \"Zav\u00e1dzaj\u00face\"] else (1 if label in [\"Pravda\"] else 2)]}}", "metadata": {"languages": ["cs", "sk"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["cs", "sk"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "claimbuster", "model": "mT0", "name": "claimbuster-checkworthiness-prompt-mt0", "input": "checkworthiness claim: {{text}}", "target": "{{lambda label: choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["en"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "wikipedia", "model": "mT0", "name": "wikipedia-prompt-mt0", "input": "", "target": "{{text}}", "metadata": {"languages": ["en", "ar", "de", "es", "fr", "hi", "it", "ja", "nl", "pt", "ru", "zh", "cs", "sk"], "metrics": ["span_f1"]}, "languages": ["en", "ar", "de", "es", "fr", "hi", "it", "ja", "nl", "pt", "ru", "zh", "cs", "sk"], "metrics": ["span_f1"]}
{"dataset": "wsc", "model": "T5", "name": "wsc-prompt-t5", "input": "wsc text: {{text}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"], "preprocessing": ["wsc_preprocess"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "multi_news", "model": "T5", "name": "multi_news-prompt-t5", "input": "summarize: {{document}}", "target": "{{summary}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "clef2021", "model": "mT0", "name": "clef2021-checkworthiness-prompt-mt0", "input": "checkworthiness claim: {{tweet_text}}", "target": "{{lambda check_worthiness: choices[check_worthiness]}}", "metadata": {"languages": ["ar", "bg", "nl", "en", "es", "tr"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["ar", "bg", "nl", "en", "es", "tr"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "pawsx", "model": "mT0", "name": "paws-x-prompt-mt0", "input": "Sentence1: {{sentence1}}\\nSentence2: {{sentence2}}\\nQuestion: Do Sentence 1 and Sentence 2 express the same meaning? Yes or No?", "target": "{{lambda label: choices[label]}}", "metadata": {"languages": ["en", "fr", "es", "de", "zh", "ja", "ko"], "metrics": ["accuracy", "macro_f1"]}, "languages": ["en", "fr", "es", "de", "zh", "ja", "ko"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "samsum", "model": "T5", "name": "samsum-prompt-t5", "input": "summarize: {{dialogue}}", "target": "{{summary}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "winogrande", "model": "T5", "name": "winogrande-prompt-t5", "input": "sentence: {{sentence}} option0: {{option1}} option1: {{option2}}", "target": "{{lambda answer: str(int(answer) - 1)}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "hotpot_qa", "model": "T5", "name": "hotpot_qa-prompt-t5", "input": "question: {{question}} context: {{\"\".join(context[\"sentences\"][0])}}", "target": "{{answer}}", "metadata": {"languages": ["en"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "wiki_lingua", "model": "T5", "name": "wiki_lingua-prompt-t5", "input": "{{source_aligned[\"en\"]}}", "target": "{{target_aligned[\"en\"]}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "multi_nli", "model": "T5", "name": "multi_nli-prompt-t5", "input": "premise: {{premise}} hypothesis: {{hypothesis}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "squad", "model": "T5", "name": "squad-prompt-t5", "input": "question: {{question}} context: {{context}}", "target": "{{answers[\"text\"][0]}}", "metadata": {"languages": ["en"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "squad", "model": "T5", "name": "squad-prompt-trivia-t5", "input": "squad trivia question: {{question}}", "target": "{{answers[\"text\"][0]}}", "metadata": {"languages": ["en"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "multirc", "model": "T5", "name": "multirc-prompt-t5", "input": "multirc question: {{question}} answer: {{answer}} paragraph: {{paragraph}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["exact_match", "multirc_f1"], "preprocessing": ["remove_markup"]}, "languages": ["en"], "metrics": ["exact_match", "multirc_f1"]}
{"dataset": "rte", "model": "T5", "name": "rte-prompt-t5", "input": "rte sentence1: {{sentence1}} sentence2: {{sentence2}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "mrqa", "model": "T5", "name": "mrqa-prompt-t5", "input": "question: {{question}} context: {{context}}", "target": "{{answers[0]}}", "metadata": {"languages": ["en"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "cxc", "model": "T5", "name": "cxc-prompt-t5", "input": "sentence1: {{sentence1}} sentence2: {{sentence2}}", "target": "{{lambda score: np.round((score * 5) / 5, decimals=1)}}", "metadata": {"languages": ["en"], "metrics": ["pearson_corrcoef", "spearman_corrcoef"]}, "languages": ["en"], "metrics": ["pearson_corrcoef", "spearman_corrcoef"]}
{"dataset": "doc_nli", "model": "T5", "name": "doc_nli-prompt-t5", "input": "premise: {{premise}} hypothesis: {{hypothesis}}", "target": "{{label}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "snli", "model": "T5", "name": "snli-prompt-t5", "input": "premise: {{premise}} hypothesis: {{hypothesis}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "newsqa", "model": "T5", "name": "newsqa-prompt-t5", "input": "question: {{question}} context: {{context}}", "target": "{{answer[0]}}", "metadata": {"languages": ["en"], "metrics": ["rouge"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "newsqa", "model": "T5", "name": "newsqa-prompt-t5-without-context", "input": "question: {{question}}", "target": "{{answer[0]}}", "metadata": {"languages": ["en"], "metrics": ["rouge"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "xfact", "model": "mT0", "name": "xfact-factuality-prompt-mt0", "input": "factuality claim: {{claim}}", "target": "{{lambda label: choices[{\"false\": 0, \"partly true/misleading\": 0, \"mostly false\": 0, \"true\": 1, \"mostly true\": 1, \"half true\": 1, \"complicated/hard to categorise\": 2, \"other\": 2}[label]]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["en"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "xfact", "model": "mT0", "name": "xfact-factuality-evidence-prompt-mt0", "input": "factuality claim: {{claim}} evidence1: {{evidence_1}} evidence2: {{evidence_2}} evidence3: {{evidence_3}} evidence4: {{evidence_4}} evidence5: {{evidence_5}}", "target": "{{lambda label: choices[{\"false\": 0, \"partly true/misleading\": 0, \"mostly false\": 0, \"true\": 1, \"mostly true\": 1, \"half true\": 1, \"complicated/hard to categorise\": 2, \"other\": 2}[label]]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters", "pad_punctuation"]}, "languages": ["en"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "common_gen", "model": "T5", "name": "common_gen-prompt-t5", "input": "generate: {{lambda concepts: \" \".join(concepts)}}", "target": "{{target}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "cssquad", "model": "mT0", "name": "cssquad-prefix-prompt-mt0", "input": "question: {{question}} context: {{context}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "cssquad", "model": "mT0", "name": "cssquad-instruct1-prompt-mt0", "input": "Answer the question depending on the context. Context: {{context}}; Question: {{question}}; Answer:", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "cssquad", "model": "mT0", "name": "cssquad-instruct2-prompt-mt0", "input": "What is the answer? Context: {{context}}; Question: {{question}}; Answer:", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "cssquad", "model": "mT0", "name": "cssquad-instruct3-prompt-mt0", "input": "Given the following passage \"{{context}}\", answer the following question. Note that the answer is present within the text. Question: {{question}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "cssquad", "model": "mT0", "name": "cssquad-instruct4-prompt-mt0", "input": "Refer to the passage below and answer the following question: Passage: {{context}} Question: {{question}}", "target": "{{lambda answers: answers[\"text\"][0]}}", "metadata": {"languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}, "languages": ["en", "ar", "de", "es", "hi", "vi", "zh"], "metrics": ["squad"]}
{"dataset": "qqp", "model": "T5", "name": "qqp-prompt-t5", "input": "qqp question1: {{question1}} question2: {{question2}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "f1_invalid"]}, "languages": ["en"], "metrics": ["accuracy", "f1_invalid"]}
{"dataset": "clef2023", "model": "mT0", "name": "clef2023-checkworthiness-prompt-mt0", "input": "checkworthiness claim: {{Text}}", "target": "{{lambda class_label: choices[0 if class_label.lower() == \"no\" else 1]}}", "metadata": {"languages": ["ar", "en", "es"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["ar", "en", "es"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "hover", "model": "mT0", "name": "hover-factuality-prompt-mt0", "input": "factuality claim: {{claim}}", "target": "{{lambda label: choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["en"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "fakecovid", "model": "mT0", "name": "fakecovid-factuality-prompt-mt0", "input": "factuality claim: {{source_title}}", "target": "{{lambda class: choices[class]}}", "metadata": {"languages": ["es", "en", "fr", "pt", "hi", "de", "it", "zh", "ar", "nl", "ko", "pl", "ru", "ja", "sk"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["es", "en", "fr", "pt", "hi", "de", "it", "zh", "ar", "nl", "ko", "pl", "ru", "ja", "sk"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "ctkfacts", "model": "mT0", "name": "ctkfacts-factuality-prompt-mt0", "input": "factuality claim: {{claim}} evidence: {{evidence}}", "target": "{{lambda label: choices[label]}}", "metadata": {"languages": ["cs"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["cs"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "clef2022", "model": "mT0", "name": "clef2022-checkworthiness-prompt-mt0", "input": "checkworthiness claim: {{tweet_text}}", "target": "{{lambda class_label: choices[class_label]}}", "metadata": {"languages": ["ar", "bg", "nl", "en", "es", "tr"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["ar", "bg", "nl", "en", "es", "tr"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "nq_open", "model": "T5", "name": "nq_open-prompt-t5", "input": "nq question: {{question}}", "target": "{{answer[0]}}", "metadata": {"languages": ["en"], "metrics": ["squad"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["squad"]}
{"dataset": "xsum", "model": "T5", "name": "xsum-prompt-t5", "input": "summarize: {{document}}", "target": "{{target}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "csfever", "model": "mT0", "name": "csfever-factuality-prompt-mt0", "input": "factuality claim: {{claim}} evidence: {{evidence}}", "target": "{{lambda label: choices[label]}}", "metadata": {"languages": ["cs"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["cs"], "metrics": ["accuracy", "macro_f1"]}
{"dataset": "cnn_dailymail", "model": "T5", "name": "cnn_dailymail-prompt-t5", "input": "summarize: {{article}}", "target": "{{highlights}}", "metadata": {"languages": ["en"], "metrics": ["rouge"]}, "languages": ["en"], "metrics": ["rouge"]}
{"dataset": "qnli", "model": "T5", "name": "qnli-prompt-t5", "input": "qnli question: {{question}} sentence: {{sentence}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "wic", "model": "T5", "name": "wic-prompt-t5", "input": "wic sentence1: {{sentence1}} sentence2: {{sentence2}} word: {{word}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "race", "model": "T5", "name": "race-prompt-t5", "input": "question: {{question}} context: {{article}} choice0: {{options[0]}} choice1: {{options[1]}} choice2: {{options[2]}} choice3: {{options[3]}}", "target": "{{lambda answer: str(ord(answer) - ord(\"A\"))}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "sst2", "model": "T5", "name": "sst2-prompt-t5", "input": "sst2 sentence: {{sentence}}", "target": "{{lambda label: \"<unk>\" if label == -1 else choices[label]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy"], "preprocessing": ["pad_punctuation"]}, "languages": ["en"], "metrics": ["accuracy"]}
{"dataset": "fever", "model": "mT0", "name": "fever-factuality-prompt-mt0", "input": "factuality claim: {{claim}}", "target": "{{lambda label: choices[{\"SUPPORTS\": 0, \"REFUTES\": 1, \"NOT ENOUGH INFO\": 2}[label]]}}", "metadata": {"languages": ["en"], "metrics": ["accuracy", "macro_f1"], "preprocessing": ["remove_urls", "replace_whitecharacters"]}, "languages": ["en"], "metrics": ["accuracy", "macro_f1"]}