dataset
stringlengths 2
13
| model
stringclasses 2
values | name
stringlengths 12
38
| input
stringlengths 0
157
| target
stringlengths 8
188
| metadata
dict | languages
listlengths 1
25
| metrics
listlengths 1
2
|
---|---|---|---|---|---|---|---|
afp
|
mT0
|
afp-factuality-prompt-mt0
|
factuality claim: {{claim}}
|
{{lambda label: choices[label]}}
|
{
"languages": [
"bg",
"bn",
"ca",
"cs",
"de",
"el",
"en",
"es",
"fi",
"fr",
"hi",
"hr",
"hrv",
"hu",
"id",
"ko",
"ms",
"my",
"nl",
"pl",
"pt",
"ro",
"sk",
"sv",
"th"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"bg",
"bn",
"ca",
"cs",
"de",
"el",
"en",
"es",
"fi",
"fr",
"hi",
"hr",
"hrv",
"hu",
"id",
"ko",
"ms",
"my",
"nl",
"pl",
"pt",
"ro",
"sk",
"sv",
"th"
] |
[
"accuracy",
"macro_f1"
] |
liar
|
mT0
|
liar-binary-factuality-prompt-mt0
|
factuality claim: {{statement}}
|
{{lambda label: choices[0 if label in [0, 1, 5] else 1]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"en"
] |
[
"accuracy",
"macro_f1"
] |
liar
|
mT0
|
liar-multiclass-factuality-prompt-mt0
|
factuality claim: {{statement}}
|
{{lambda label: choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"en"
] |
[
"accuracy",
"macro_f1"
] |
xnli
|
mT0
|
xnli-prompt-mt0
|
{{premise}}\nQuestion: {{hypothesis}} True, False or Neither?
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"ar",
"bg",
"de",
"el",
"en",
"es",
"fr",
"hi",
"ru",
"sw",
"th",
"tr",
"ur",
"vi",
"zh"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": null
}
|
[
"ar",
"bg",
"de",
"el",
"en",
"es",
"fr",
"hi",
"ru",
"sw",
"th",
"tr",
"ur",
"vi",
"zh"
] |
[
"accuracy",
"macro_f1"
] |
cb
|
T5
|
cb-prompt-t5
|
cb premise: {{premise}} hypothesis: {{hypothesis}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"multiclass_f1"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy",
"multiclass_f1"
] |
aeslc
|
T5
|
aeslc-prompt-t5
|
summarize: {{email_body}}
|
{{subject_line}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
boolq
|
T5
|
boolq-prompt-t5
|
boolq question: {{question}} passage: {{passage}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
lesa2021
|
mT0
|
lesa2021-checkworthiness-prompt-mt0
|
checkworthiness claim: {{en}}
|
{{lambda claim: choices[int(claim)]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"en"
] |
[
"accuracy",
"macro_f1"
] |
newsroom
|
T5
|
newsroom-prompt-t5
|
summarize: {{text}}
|
{{summary}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
clef2018
|
mT0
|
clef2018-checkworthiness-prompt-mt0
|
checkworthiness claim: {{text}}
|
{{lambda label: choices[label]}}
|
{
"languages": [
"ar",
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"ar",
"en"
] |
[
"accuracy",
"macro_f1"
] |
record
|
T5
|
record-prompt-t5
|
record query: {{query}} entities: {{", ".join(entities)}} passage: {{passage}}
|
{{answers[0]}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": [
"record_preprocess"
]
}
|
[
"en"
] |
[
"squad"
] |
anli
|
T5
|
anli-prompt-t5
|
premise: {{premise}} hypothesis: {{hypothesis}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
skquad
|
mT0
|
skquad-prefix-prompt-mt0
|
question: {{question}} context: {{context}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
skquad
|
mT0
|
skquad-instruct1-prompt-mt0
|
Answer the question depending on the context. Context: {{context}}; Question: {{question}}; Answer:
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
skquad
|
mT0
|
skquad-instruct2-prompt-mt0
|
What is the answer? Context: {{context}}; Question: {{question}}; Answer:
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
skquad
|
mT0
|
skquad-instruct3-prompt-mt0
|
Given the following passage "{{context}}", answer the following question. Note that the answer is present within the text. Question: {{question}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
skquad
|
mT0
|
skquad-instruct4-prompt-mt0
|
Refer to the passage below and answer the following question: Passage: {{context}} Question: {{question}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
wikiann
|
mT0
|
wikiann-prompt-mt0
|
Sentence: {{lambda tokens: " ".join(tokens)}}\nIdentify all named entities in the sentence using PER, LOC, ORG.
|
{{lambda spans: ", ".join(spans)}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"fr",
"hi",
"it",
"ja",
"nl",
"pt",
"ru",
"zh",
"cs",
"sk"
],
"metrics": [
"span_f1"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"fr",
"hi",
"it",
"ja",
"nl",
"pt",
"ru",
"zh",
"cs",
"sk"
] |
[
"span_f1"
] |
billsum
|
T5
|
billsum-prompt-t5
|
summarize: {{text}}
|
{{summary}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
mlqa
|
mT0
|
mlqa-prefix-prompt-mt0
|
question: {{question}} context: {{context}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
mlqa
|
mT0
|
mlqa-instruct1-prompt-mt0
|
Answer the question depending on the context. Context: {{context}}; Question: {{question}}; Answer:
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
mlqa
|
mT0
|
mlqa-instruct2-prompt-mt0
|
What is the answer? Context: {{context}}; Question: {{question}}; Answer:
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
mlqa
|
mT0
|
mlqa-instruct3-prompt-mt0
|
Given the following passage "{{context}}", answer the following question. Note that the answer is present within the text. Question: {{question}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
mlqa
|
mT0
|
mlqa-instruct4-prompt-mt0
|
Refer to the passage below and answer the following question: Passage: {{context}} Question: {{question}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
drop
|
T5
|
drop-prompt-t5
|
question: {{question}} context: {{passage}}
|
{{answers_spans["spans"][0]}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"squad"
] |
stsb
|
T5
|
stsb-prompt-t5
|
stsb sentence1: {{sentence1}} sentence2: {{sentence2}}
|
{{lambda label: np.round((label * 5) / 5, decimals=1)}}
|
{
"languages": [
"en"
],
"metrics": [
"pearson_corrcoef",
"spearman_corrcoef"
],
"preprocessing": null
}
|
[
"en"
] |
[
"pearson_corrcoef",
"spearman_corrcoef"
] |
mrpc
|
T5
|
mrpc-prompt-t5
|
mrpc sentence1: {{sentence1}} sentence2: {{sentence2}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"f1_invalid"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy",
"f1_invalid"
] |
gigaword
|
T5
|
gigaword-prompt-t5
|
summarize: {{document}}
|
{{summary}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
piqa
|
T5
|
piqa-prompt-t5
|
question: {{goal}} choice1: {{sol1}} choice2: {{sol2}}
|
{{lambda label: str(label)}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
cosmos_qa
|
T5
|
cosmos_qa-prompt-t5
|
question: {{question}} context: {{context}} choice0: {{answer0}} choice1: {{answer1}} choice2: {{answer2}} choice3: {{answer3}}
|
{{lambda label: str(label)}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en"
] |
[
"squad"
] |
c4
|
T5
|
c4-prompt-t5
|
{{text}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
|
copa
|
T5
|
copa-prompt-t5
|
copa premise: {{premise}} choice1: {{choice1}} choice2: {{choice2}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
mnli
|
T5
|
mnli-prompt-t5
|
mnli premise: {{premise}} hypothesis: {{hypothesis}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
cola
|
T5
|
cola-prompt-t5
|
cola sentence: {{sentence}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"matthews_corrcoef"
],
"preprocessing": null
}
|
[
"en"
] |
[
"matthews_corrcoef"
] |
wnli
|
T5
|
wnli-prompt-t5
|
wnli sentence1: {{sentence1}} sentence2: {{sentence2}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
social_i_qa
|
T5
|
social_i_qa-prompt-t5
|
question: {{question}} context: {{context}} || choice0: {{answerA}} || choice1: {{answerB}} || choice2: {{answerC}}
|
{{lambda label: str(int(label) - 1)}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
wiki_auto
|
T5
|
wiki_auto-prompt-t5
|
{{source}}
|
{{target}}
|
{
"languages": [
"en"
],
"metrics": [
"bleu"
],
"preprocessing": null
}
|
[
"en"
] |
[
"bleu"
] |
hellaswag
|
T5
|
hellaswag-prompt-t5
|
context: {{ctx}} ending0: {{endings[0]}} ending1: {{endings[1]}} ending2: {{endings[2]}} ending3: {{endings[3]}}
|
{{lambda label: str(label)}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
search_qa
|
T5
|
search_qa-prompt-t5
|
question: {{question}}
|
{{answer}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"squad"
] |
demagog
|
mT0
|
demagog-factuality-prompt-mt0
|
factuality claim: {{claim}}
|
{{lambda label: choices[0 if label in ["Zavádějící", "Nepravda", "Zavádzajúce"] else (1 if label in ["Pravda"] else 2)]}}
|
{
"languages": [
"cs",
"sk"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"cs",
"sk"
] |
[
"accuracy",
"macro_f1"
] |
claimbuster
|
mT0
|
claimbuster-checkworthiness-prompt-mt0
|
checkworthiness claim: {{text}}
|
{{lambda label: choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"en"
] |
[
"accuracy",
"macro_f1"
] |
wikipedia
|
mT0
|
wikipedia-prompt-mt0
|
{{text}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"fr",
"hi",
"it",
"ja",
"nl",
"pt",
"ru",
"zh",
"cs",
"sk"
],
"metrics": [
"span_f1"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"fr",
"hi",
"it",
"ja",
"nl",
"pt",
"ru",
"zh",
"cs",
"sk"
] |
[
"span_f1"
] |
|
wsc
|
T5
|
wsc-prompt-t5
|
wsc text: {{text}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": [
"wsc_preprocess"
]
}
|
[
"en"
] |
[
"accuracy"
] |
multi_news
|
T5
|
multi_news-prompt-t5
|
summarize: {{document}}
|
{{summary}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
clef2021
|
mT0
|
clef2021-checkworthiness-prompt-mt0
|
checkworthiness claim: {{tweet_text}}
|
{{lambda check_worthiness: choices[check_worthiness]}}
|
{
"languages": [
"ar",
"bg",
"nl",
"en",
"es",
"tr"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"ar",
"bg",
"nl",
"en",
"es",
"tr"
] |
[
"accuracy",
"macro_f1"
] |
pawsx
|
mT0
|
paws-x-prompt-mt0
|
Sentence1: {{sentence1}}\nSentence2: {{sentence2}}\nQuestion: Do Sentence 1 and Sentence 2 express the same meaning? Yes or No?
|
{{lambda label: choices[label]}}
|
{
"languages": [
"en",
"fr",
"es",
"de",
"zh",
"ja",
"ko"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": null
}
|
[
"en",
"fr",
"es",
"de",
"zh",
"ja",
"ko"
] |
[
"accuracy",
"macro_f1"
] |
samsum
|
T5
|
samsum-prompt-t5
|
summarize: {{dialogue}}
|
{{summary}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
winogrande
|
T5
|
winogrande-prompt-t5
|
sentence: {{sentence}} option0: {{option1}} option1: {{option2}}
|
{{lambda answer: str(int(answer) - 1)}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
hotpot_qa
|
T5
|
hotpot_qa-prompt-t5
|
question: {{question}} context: {{"".join(context["sentences"][0])}}
|
{{answer}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"squad"
] |
wiki_lingua
|
T5
|
wiki_lingua-prompt-t5
|
{{source_aligned["en"]}}
|
{{target_aligned["en"]}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
multi_nli
|
T5
|
multi_nli-prompt-t5
|
premise: {{premise}} hypothesis: {{hypothesis}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
squad
|
T5
|
squad-prompt-t5
|
question: {{question}} context: {{context}}
|
{{answers["text"][0]}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"squad"
] |
squad
|
T5
|
squad-prompt-trivia-t5
|
squad trivia question: {{question}}
|
{{answers["text"][0]}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"squad"
] |
multirc
|
T5
|
multirc-prompt-t5
|
multirc question: {{question}} answer: {{answer}} paragraph: {{paragraph}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"exact_match",
"multirc_f1"
],
"preprocessing": [
"remove_markup"
]
}
|
[
"en"
] |
[
"exact_match",
"multirc_f1"
] |
rte
|
T5
|
rte-prompt-t5
|
rte sentence1: {{sentence1}} sentence2: {{sentence2}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
mrqa
|
T5
|
mrqa-prompt-t5
|
question: {{question}} context: {{context}}
|
{{answers[0]}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"squad"
] |
cxc
|
T5
|
cxc-prompt-t5
|
sentence1: {{sentence1}} sentence2: {{sentence2}}
|
{{lambda score: np.round((score * 5) / 5, decimals=1)}}
|
{
"languages": [
"en"
],
"metrics": [
"pearson_corrcoef",
"spearman_corrcoef"
],
"preprocessing": null
}
|
[
"en"
] |
[
"pearson_corrcoef",
"spearman_corrcoef"
] |
doc_nli
|
T5
|
doc_nli-prompt-t5
|
premise: {{premise}} hypothesis: {{hypothesis}}
|
{{label}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
snli
|
T5
|
snli-prompt-t5
|
premise: {{premise}} hypothesis: {{hypothesis}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
newsqa
|
T5
|
newsqa-prompt-t5
|
question: {{question}} context: {{context}}
|
{{answer[0]}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"rouge"
] |
newsqa
|
T5
|
newsqa-prompt-t5-without-context
|
question: {{question}}
|
{{answer[0]}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"rouge"
] |
xfact
|
mT0
|
xfact-factuality-prompt-mt0
|
factuality claim: {{claim}}
|
{{lambda label: choices[{"false": 0, "partly true/misleading": 0, "mostly false": 0, "true": 1, "mostly true": 1, "half true": 1, "complicated/hard to categorise": 2, "other": 2}[label]]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"en"
] |
[
"accuracy",
"macro_f1"
] |
xfact
|
mT0
|
xfact-factuality-evidence-prompt-mt0
|
factuality claim: {{claim}} evidence1: {{evidence_1}} evidence2: {{evidence_2}} evidence3: {{evidence_3}} evidence4: {{evidence_4}} evidence5: {{evidence_5}}
|
{{lambda label: choices[{"false": 0, "partly true/misleading": 0, "mostly false": 0, "true": 1, "mostly true": 1, "half true": 1, "complicated/hard to categorise": 2, "other": 2}[label]]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters",
"pad_punctuation"
]
}
|
[
"en"
] |
[
"accuracy",
"macro_f1"
] |
common_gen
|
T5
|
common_gen-prompt-t5
|
generate: {{lambda concepts: " ".join(concepts)}}
|
{{target}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
cssquad
|
mT0
|
cssquad-prefix-prompt-mt0
|
question: {{question}} context: {{context}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
cssquad
|
mT0
|
cssquad-instruct1-prompt-mt0
|
Answer the question depending on the context. Context: {{context}}; Question: {{question}}; Answer:
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
cssquad
|
mT0
|
cssquad-instruct2-prompt-mt0
|
What is the answer? Context: {{context}}; Question: {{question}}; Answer:
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
cssquad
|
mT0
|
cssquad-instruct3-prompt-mt0
|
Given the following passage "{{context}}", answer the following question. Note that the answer is present within the text. Question: {{question}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
cssquad
|
mT0
|
cssquad-instruct4-prompt-mt0
|
Refer to the passage below and answer the following question: Passage: {{context}} Question: {{question}}
|
{{lambda answers: answers["text"][0]}}
|
{
"languages": [
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
],
"metrics": [
"squad"
],
"preprocessing": null
}
|
[
"en",
"ar",
"de",
"es",
"hi",
"vi",
"zh"
] |
[
"squad"
] |
qqp
|
T5
|
qqp-prompt-t5
|
qqp question1: {{question1}} question2: {{question2}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"f1_invalid"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy",
"f1_invalid"
] |
clef2023
|
mT0
|
clef2023-checkworthiness-prompt-mt0
|
checkworthiness claim: {{Text}}
|
{{lambda class_label: choices[0 if class_label.lower() == "no" else 1]}}
|
{
"languages": [
"ar",
"en",
"es"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"ar",
"en",
"es"
] |
[
"accuracy",
"macro_f1"
] |
hover
|
mT0
|
hover-factuality-prompt-mt0
|
factuality claim: {{claim}}
|
{{lambda label: choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"en"
] |
[
"accuracy",
"macro_f1"
] |
fakecovid
|
mT0
|
fakecovid-factuality-prompt-mt0
|
factuality claim: {{source_title}}
|
{{lambda class: choices[class]}}
|
{
"languages": [
"es",
"en",
"fr",
"pt",
"hi",
"de",
"it",
"zh",
"ar",
"nl",
"ko",
"pl",
"ru",
"ja",
"sk"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"es",
"en",
"fr",
"pt",
"hi",
"de",
"it",
"zh",
"ar",
"nl",
"ko",
"pl",
"ru",
"ja",
"sk"
] |
[
"accuracy",
"macro_f1"
] |
ctkfacts
|
mT0
|
ctkfacts-factuality-prompt-mt0
|
factuality claim: {{claim}} evidence: {{evidence}}
|
{{lambda label: choices[label]}}
|
{
"languages": [
"cs"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"cs"
] |
[
"accuracy",
"macro_f1"
] |
clef2022
|
mT0
|
clef2022-checkworthiness-prompt-mt0
|
checkworthiness claim: {{tweet_text}}
|
{{lambda class_label: choices[class_label]}}
|
{
"languages": [
"ar",
"bg",
"nl",
"en",
"es",
"tr"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"ar",
"bg",
"nl",
"en",
"es",
"tr"
] |
[
"accuracy",
"macro_f1"
] |
nq_open
|
T5
|
nq_open-prompt-t5
|
nq question: {{question}}
|
{{answer[0]}}
|
{
"languages": [
"en"
],
"metrics": [
"squad"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"squad"
] |
xsum
|
T5
|
xsum-prompt-t5
|
summarize: {{document}}
|
{{target}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
csfever
|
mT0
|
csfever-factuality-prompt-mt0
|
factuality claim: {{claim}} evidence: {{evidence}}
|
{{lambda label: choices[label]}}
|
{
"languages": [
"cs"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"cs"
] |
[
"accuracy",
"macro_f1"
] |
cnn_dailymail
|
T5
|
cnn_dailymail-prompt-t5
|
summarize: {{article}}
|
{{highlights}}
|
{
"languages": [
"en"
],
"metrics": [
"rouge"
],
"preprocessing": null
}
|
[
"en"
] |
[
"rouge"
] |
qnli
|
T5
|
qnli-prompt-t5
|
qnli question: {{question}} sentence: {{sentence}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
wic
|
T5
|
wic-prompt-t5
|
wic sentence1: {{sentence1}} sentence2: {{sentence2}} word: {{word}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
race
|
T5
|
race-prompt-t5
|
question: {{question}} context: {{article}} choice0: {{options[0]}} choice1: {{options[1]}} choice2: {{options[2]}} choice3: {{options[3]}}
|
{{lambda answer: str(ord(answer) - ord("A"))}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": null
}
|
[
"en"
] |
[
"accuracy"
] |
sst2
|
T5
|
sst2-prompt-t5
|
sst2 sentence: {{sentence}}
|
{{lambda label: "<unk>" if label == -1 else choices[label]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy"
],
"preprocessing": [
"pad_punctuation"
]
}
|
[
"en"
] |
[
"accuracy"
] |
fever
|
mT0
|
fever-factuality-prompt-mt0
|
factuality claim: {{claim}}
|
{{lambda label: choices[{"SUPPORTS": 0, "REFUTES": 1, "NOT ENOUGH INFO": 2}[label]]}}
|
{
"languages": [
"en"
],
"metrics": [
"accuracy",
"macro_f1"
],
"preprocessing": [
"remove_urls",
"replace_whitecharacters"
]
}
|
[
"en"
] |
[
"accuracy",
"macro_f1"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.