|
from typing import List |
|
import os |
|
import glob |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """Given two codes as the input, the task is to do binary classification (0/1), where 1 stands for semantic equivalence and 0 for others.""" |
|
|
|
_CITATION = """@inproceedings{10.1145/3236024.3236068, |
|
author = {Zhao, Gang and Huang, Jeff}, |
|
title = {DeepSim: Deep Learning Code Functional Similarity}, |
|
year = {2018}, |
|
isbn = {9781450355735}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3236024.3236068}, |
|
doi = {10.1145/3236024.3236068}, |
|
booktitle = {Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering}, |
|
pages = {141–151}, |
|
numpages = {11}, |
|
keywords = {Classification, Control/Data flow, Code functional similarity, Deep Learning}, |
|
location = {Lake Buena Vista, FL, USA}, |
|
series = {ESEC/FSE 2018} |
|
} |
|
""" |
|
|
|
SPLITS = { |
|
'test': [5, 6, 7, 8, 12], |
|
'deepsim': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] |
|
} |
|
_URL = "https://huggingface.co/datasets/izhx/google-code-jam/resolve/main/googlejam4.tar.gz" |
|
|
|
|
|
class GoogleCodeJam(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name='default', version=datasets.Version("1.0.0"), description=_DESCRIPTION) |
|
] |
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"fn1": datasets.Value("string"), |
|
"code1": datasets.Value("string"), |
|
"fn2": datasets.Value("string"), |
|
"code2": datasets.Value("string"), |
|
"label": datasets.Value("int32"), |
|
} |
|
), |
|
homepage="https://github.com/parasol-aser/deepsim", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
folder = dl_manager.download_and_extract(_URL) |
|
folder = os.path.join(folder, 'googlejam4_src') |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"folder": folder, "problems": SPLITS["test"]}), |
|
datasets.SplitGenerator(name='deepsim', gen_kwargs={"folder": folder, "problems": SPLITS["deepsim"]}), |
|
] |
|
|
|
def _generate_examples(self, folder, problems: list): |
|
raw = dict() |
|
for i in problems: |
|
group = list() |
|
for path in sorted(glob.glob(f'{folder}/{i}/*.java')): |
|
with open(path) as file: |
|
lines = [l for l in file] |
|
name = os.path.basename(path) |
|
group.append((name, ''.join(lines[1:]))) |
|
raw[i] = group |
|
|
|
_id = 0 |
|
reverse = False |
|
for i in range(len(problems)): |
|
vi = raw[problems[i]] |
|
for n1, (fn1, code1) in enumerate(vi): |
|
for j in range(i, len(problems)): |
|
vj = raw[problems[j]] |
|
match = i == j |
|
for n2, (fn2, code2) in enumerate(vj): |
|
if match and n2 <= n1: |
|
continue |
|
ins = {'fn1': fn1, 'code1': code1, 'fn2': fn2, 'code2': code2, 'label': int(match)} |
|
if reverse: |
|
ins['fn1'], ins['fn2'] = ins['fn2'], ins['fn1'] |
|
ins['code1'], ins['code2'] = ins['code2'], ins['code1'] |
|
yield _id, ins |
|
_id += 1 |
|
reverse = not reverse |
|
|