--- license: unknown --- ## Openrice Sentiment Classification dataset From [github.com/Christainx/Dataset_Cantonese_Openrice](https://github.com/Christainx/Dataset_Cantonese_Openrice). The dataset includes 60k instances from Cantonese reviews in Openrice. The rating ranks from 1-star (very negative) to 5-star (very positive). The instances are shuffled in order to disperse reviews of same restaurant. ### Code for the splits creation ``` import datasets def load_openrice(): # https://github.com/Christainx/Dataset_Cantonese_Openrice/blob/master/Openrice_Cantonese.7z with open('Openrice_Cantonese.txt') as file: for i, line in enumerate(file): label = int(line[0]) text = line[1:].strip() yield {'text': text, 'label': label} ds = datasets.Dataset.from_generator(load_openrice) print(ds) dsd = ds.train_test_split(0.2, seed=42) dsd['test'].to_json('data/test.jsonl', orient='records', force_ascii=False) dsd['train'].to_json('data/train.jsonl', orient='records', force_ascii=False) print(dsd) ``` ## Citation ``` @inproceedings{xiang2019sentiment, title={Sentiment Augmented Attention Network for Cantonese Restaurant Review Analysis}, author={Xiang, Rong and Jiao, Ying and Lu, Qin}, booktitle={Proceedings of the 8th KDD Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM)}, pages={1--9}, year={2019}, organization={KDD WISDOM} } ```