jaagli commited on
Commit
0c9241a
·
verified ·
1 Parent(s): 4aa0fcc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md CHANGED
@@ -5970,4 +5970,48 @@ configs:
5970
  path: data/validation-*
5971
  - split: test
5972
  path: data/test-*
 
 
 
 
 
 
5973
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5970
  path: data/validation-*
5971
  - split: test
5972
  path: data/test-*
5973
+ task_categories:
5974
+ - image-classification
5975
+ language:
5976
+ - en
5977
+ size_categories:
5978
+ - 100K<n<1M
5979
  ---
5980
+ # Dataset Description
5981
+
5982
+ "ImageNet Unique Label" (imagenet-ul) contains 5942 classes, which contains about 1 million images.
5983
+ The data undergoes a multi-step filtering process:
5984
+ 1. To ensure that all classes are not encountered during the pretraining of the vision model,
5985
+ 2. To prevent the sharing of labels between two image classes,
5986
+ 3. To exclude hyponyms from the label set,
5987
+ 4. To ensure that each class contains at least 100 images.
5988
+
5989
+ It is a subset of ImageNet dataset (https://huggingface.co/datasets/timm/imagenet-22k-wds).
5990
+
5991
+ # How to Use
5992
+
5993
+ ```python
5994
+ from datasets import load_dataset
5995
+
5996
+ # Load the dataset
5997
+ common_words = load_dataset("jaagli/imagenet-ul", split="train")
5998
+ ```
5999
+
6000
+ # Citation
6001
+
6002
+ ```
6003
+ @article{10.1162/tacl_a_00698,
6004
+ author = {Li, Jiaang and Kementchedjhieva, Yova and Fierro, Constanza and Søgaard, Anders},
6005
+ title = {Do Vision and Language Models Share Concepts? A Vector Space Alignment Study},
6006
+ journal = {Transactions of the Association for Computational Linguistics},
6007
+ volume = {12},
6008
+ pages = {1232-1249},
6009
+ year = {2024},
6010
+ month = {09},
6011
+ abstract = {Large-scale pretrained language models (LMs) are said to “lack the ability to connect utterances to the world” (Bender and Koller, 2020), because they do not have “mental models of the world” (Mitchell and Krakauer, 2023). If so, one would expect LM representations to be unrelated to representations induced by vision models. We present an empirical evaluation across four families of LMs (BERT, GPT-2, OPT, and LLaMA-2) and three vision model architectures (ResNet, SegFormer, and MAE). Our experiments show that LMs partially converge towards representations isomorphic to those of vision models, subject to dispersion, polysemy, and frequency. This has important implications for both multi-modal processing and the LM understanding debate (Mitchell and Krakauer, 2023).1},
6012
+ issn = {2307-387X},
6013
+ doi = {10.1162/tacl_a_00698},
6014
+ url = {https://doi.org/10.1162/tacl\_a\_00698},
6015
+ eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00698/2473674/tacl\_a\_00698.pdf},
6016
+ }
6017
+ ```