jbeno commited on
Commit
c993312
·
verified ·
1 Parent(s): 900fcd7

Added link to arXiv paper and citation, noted source dataset licenses

Browse files
Files changed (1) hide show
  1. README.md +19 -2
README.md CHANGED
@@ -13,7 +13,7 @@ size_categories:
13
 
14
  <!-- Provide a quick summary of the dataset. -->
15
 
16
- This is a dataset for 3-way sentiment classification of reviews (negative, neutral, positive). It is a merge of Stanford Sentiment Treebank (SST-3) and DynaSent Rounds 1 and 2.
17
 
18
  ## Dataset Details
19
 
@@ -59,7 +59,24 @@ Another potential issue is that the models will learn the dominant dataset, whic
59
  <!-- Provide the basic links for the dataset. -->
60
 
61
  - **Repository:** [jbeno/sentiment](https://github.com/jbeno/sentiment)
62
- - **Paper:** Pending
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  ## Uses
65
 
 
13
 
14
  <!-- Provide a quick summary of the dataset. -->
15
 
16
+ This is a dataset for 3-way sentiment classification of reviews (negative, neutral, positive). It is a merge of [Stanford Sentiment Treebank](https://nlp.stanford.edu/sentiment/) (SST-3) and [DynaSent](https://github.com/cgpotts/dynasent) Rounds 1 and 2, licensed under Apache 2.0 and Creative Commons Attribution 4.0 respectively.
17
 
18
  ## Dataset Details
19
 
 
59
  <!-- Provide the basic links for the dataset. -->
60
 
61
  - **Repository:** [jbeno/sentiment](https://github.com/jbeno/sentiment)
62
+ - **Paper:** [ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis](http://arxiv.org/abs/2501.00062) (arXiv:2501.00062)
63
+
64
+ ## Citation
65
+
66
+ If you use this material in your research, please cite:
67
+
68
+ ```bibtex
69
+ @article{beno-2024-electragpt,
70
+ title={ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis},
71
+ author={James P. Beno},
72
+ journal={arXiv preprint arXiv:2501.00062},
73
+ year={2024},
74
+ eprint={2501.00062},
75
+ archivePrefix={arXiv},
76
+ primaryClass={cs.CL},
77
+ url={https://arxiv.org/abs/2501.00062},
78
+ }
79
+ ```
80
 
81
  ## Uses
82