Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
jbross-ibm-research commited on
Commit
ab4e0c6
·
verified ·
1 Parent(s): 5357fa2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +280 -276
README.md CHANGED
@@ -1,279 +1,283 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
- - config_name: bn
4
- features:
5
- - name: question
6
- dtype: string
7
- - name: answer
8
- dtype: string
9
- - name: answer_number
10
- dtype: int32
11
- - name: equation_solution
12
- dtype: string
13
- splits:
14
- - name: train
15
- num_bytes: 5431
16
- num_examples: 8
17
- - name: test
18
- num_bytes: 159663
19
- num_examples: 250
20
- download_size: 72614
21
- dataset_size: 165094
22
- - config_name: de
23
- features:
24
- - name: question
25
- dtype: string
26
- - name: answer
27
- dtype: string
28
- - name: answer_number
29
- dtype: int32
30
- - name: equation_solution
31
- dtype: string
32
- splits:
33
- - name: train
34
- num_bytes: 2532
35
- num_examples: 8
36
- - name: test
37
- num_bytes: 72619
38
- num_examples: 250
39
- download_size: 49997
40
- dataset_size: 75151
41
- - config_name: en
42
- features:
43
- - name: question
44
- dtype: string
45
- - name: answer
46
- dtype: string
47
- - name: answer_number
48
- dtype: int32
49
- - name: equation_solution
50
- dtype: string
51
- splits:
52
- - name: train
53
- num_bytes: 2294
54
- num_examples: 8
55
- - name: test
56
- num_bytes: 64278
57
- num_examples: 250
58
- download_size: 45532
59
- dataset_size: 66572
60
- - config_name: es
61
- features:
62
- - name: question
63
- dtype: string
64
- - name: answer
65
- dtype: string
66
- - name: answer_number
67
- dtype: int32
68
- - name: equation_solution
69
- dtype: string
70
- splits:
71
- - name: train
72
- num_bytes: 2516
73
- num_examples: 8
74
- - name: test
75
- num_bytes: 69875
76
- num_examples: 250
77
- download_size: 48254
78
- dataset_size: 72391
79
- - config_name: fr
80
- features:
81
- - name: question
82
- dtype: string
83
- - name: answer
84
- dtype: string
85
- - name: answer_number
86
- dtype: int32
87
- - name: equation_solution
88
- dtype: string
89
- splits:
90
- - name: train
91
- num_bytes: 2635
92
- num_examples: 8
93
- - name: test
94
- num_bytes: 72120
95
- num_examples: 250
96
- download_size: 50101
97
- dataset_size: 74755
98
- - config_name: ja
99
- features:
100
- - name: question
101
- dtype: string
102
- - name: answer
103
- dtype: string
104
- - name: answer_number
105
- dtype: int32
106
- - name: equation_solution
107
- dtype: string
108
- splits:
109
- - name: train
110
- num_bytes: 3569
111
- num_examples: 8
112
- - name: test
113
- num_bytes: 84022
114
- num_examples: 250
115
- download_size: 53420
116
- dataset_size: 87591
117
- - config_name: ru
118
- features:
119
- - name: question
120
- dtype: string
121
- - name: answer
122
- dtype: string
123
- - name: answer_number
124
- dtype: int32
125
- - name: equation_solution
126
- dtype: string
127
- splits:
128
- - name: train
129
- num_bytes: 3955
130
- num_examples: 8
131
- - name: test
132
- num_bytes: 113932
133
- num_examples: 250
134
- download_size: 65114
135
- dataset_size: 117887
136
- - config_name: sw
137
- features:
138
- - name: question
139
- dtype: string
140
- - name: answer
141
- dtype: string
142
- - name: answer_number
143
- dtype: int32
144
- - name: equation_solution
145
- dtype: string
146
- splits:
147
- - name: train
148
- num_bytes: 2479
149
- num_examples: 8
150
- - name: test
151
- num_bytes: 70435
152
- num_examples: 250
153
- download_size: 47068
154
- dataset_size: 72914
155
- - config_name: te
156
- features:
157
- - name: question
158
- dtype: string
159
- - name: answer
160
- dtype: string
161
- - name: answer_number
162
- dtype: int32
163
- - name: equation_solution
164
- dtype: string
165
- splits:
166
- - name: train
167
- num_bytes: 6693
168
- num_examples: 8
169
- - name: test
170
- num_bytes: 179526
171
- num_examples: 250
172
- download_size: 78183
173
- dataset_size: 186219
174
- - config_name: th
175
- features:
176
- - name: question
177
- dtype: string
178
- - name: answer
179
- dtype: string
180
- - name: answer_number
181
- dtype: int32
182
- - name: equation_solution
183
- dtype: string
184
- splits:
185
- - name: train
186
- num_bytes: 6225
187
- num_examples: 8
188
- - name: test
189
- num_bytes: 154900
190
- num_examples: 250
191
- download_size: 72250
192
- dataset_size: 161125
193
- - config_name: zh
194
- features:
195
- - name: question
196
- dtype: string
197
- - name: answer
198
- dtype: string
199
- - name: answer_number
200
- dtype: int32
201
- - name: equation_solution
202
- dtype: string
203
- splits:
204
- - name: train
205
- num_bytes: 2341
206
- num_examples: 8
207
- - name: test
208
- num_bytes: 60817
209
- num_examples: 250
210
- download_size: 46382
211
- dataset_size: 63158
212
- configs:
213
- - config_name: bn
214
- data_files:
215
- - split: train
216
- path: bn/train-*
217
- - split: test
218
- path: bn/test-*
219
- - config_name: de
220
- data_files:
221
- - split: train
222
- path: de/train-*
223
- - split: test
224
- path: de/test-*
225
- - config_name: en
226
- data_files:
227
- - split: train
228
- path: en/train-*
229
- - split: test
230
- path: en/test-*
231
- - config_name: es
232
- data_files:
233
- - split: train
234
- path: es/train-*
235
- - split: test
236
- path: es/test-*
237
- - config_name: fr
238
- data_files:
239
- - split: train
240
- path: fr/train-*
241
- - split: test
242
- path: fr/test-*
243
- - config_name: ja
244
- data_files:
245
- - split: train
246
- path: ja/train-*
247
- - split: test
248
- path: ja/test-*
249
- - config_name: ru
250
- data_files:
251
- - split: train
252
- path: ru/train-*
253
- - split: test
254
- path: ru/test-*
255
- - config_name: sw
256
- data_files:
257
- - split: train
258
- path: sw/train-*
259
- - split: test
260
- path: sw/test-*
261
- - config_name: te
262
- data_files:
263
- - split: train
264
- path: te/train-*
265
- - split: test
266
- path: te/test-*
267
- - config_name: th
268
- data_files:
269
- - split: train
270
- path: th/train-*
271
- - split: test
272
- path: th/test-*
273
- - config_name: zh
274
- data_files:
275
- - split: train
276
- path: zh/train-*
277
- - split: test
278
- path: zh/test-*
279
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - found
4
+ language_creators:
5
+ - found
6
+ - expert-generated
7
+ language:
8
+ - en
9
+ - es
10
+ - fr
11
+ - de
12
+ - ru
13
+ - zh
14
+ - ja
15
+ - th
16
+ - sw
17
+ - bn
18
+ license:
19
+ - cc-by-sa-4.0
20
+ multilinguality:
21
+ - multilingual
22
+ size_categories:
23
+ - 1K<n<10K
24
+ source_datasets:
25
+ - extended|gsm8k
26
+ task_categories:
27
+ - text2text-generation
28
+ task_ids: []
29
+ paperswithcode_id: multi-task-language-understanding-on-mgsm
30
+ pretty_name: Multilingual Grade School Math Benchmark (MGSM)
31
+ tags:
32
+ - math-word-problems
33
  dataset_info:
34
+ - config_name: en
35
+ features:
36
+ - name: question
37
+ dtype: string
38
+ - name: answer
39
+ dtype: string
40
+ - name: answer_number
41
+ dtype: int32
42
+ - name: equation_solution
43
+ dtype: string
44
+ splits:
45
+ - name: train
46
+ num_bytes: 3963202
47
+ num_examples: 8
48
+ - name: test
49
+ num_bytes: 713732
50
+ num_examples: 250
51
+ download_size: 4915944
52
+ dataset_size: 4676934
53
+ - config_name: es
54
+ features:
55
+ - name: question
56
+ dtype: string
57
+ - name: answer
58
+ dtype: string
59
+ - name: answer_number
60
+ dtype: int32
61
+ - name: equation_solution
62
+ dtype: string
63
+ splits:
64
+ - name: train
65
+ num_bytes: 3963202
66
+ num_examples: 8
67
+ - name: test
68
+ num_bytes: 713732
69
+ num_examples: 250
70
+ download_size: 4915944
71
+ dataset_size: 4676934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ---
73
+
74
+ # Dataset Card for MGSM
75
+
76
+ ## Table of Contents
77
+ - [Dataset Description](#dataset-description)
78
+ - [Dataset Summary](#dataset-summary)
79
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
80
+ - [Languages](#languages)
81
+ - [Dataset Structure](#dataset-structure)
82
+ - [Data Instances](#data-instances)
83
+ - [Data Fields](#data-instances)
84
+ - [Data Splits](#data-instances)
85
+ - [Dataset Creation](#dataset-creation)
86
+ - [Curation Rationale](#curation-rationale)
87
+ - [Source Data](#source-data)
88
+ - [Annotations](#annotations)
89
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
90
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
91
+ - [Social Impact of Dataset](#social-impact-of-dataset)
92
+ - [Discussion of Biases](#discussion-of-biases)
93
+ - [Other Known Limitations](#other-known-limitations)
94
+ - [Additional Information](#additional-information)
95
+ - [Dataset Curators](#dataset-curators)
96
+ - [Licensing Information](#licensing-information)
97
+ - [Citation Information](#citation-information)
98
+
99
+ ## Dataset Description
100
+
101
+ - **Homepage:** https://openai.com/blog/grade-school-math/
102
+ - **Repository:** https://github.com/openai/grade-school-math
103
+ - **Paper:** https://arxiv.org/abs/2110.14168
104
+ - **Leaderboard:** [Needs More Information]
105
+ - **Point of Contact:** [Needs More Information]
106
+
107
+ ### Dataset Summary
108
+
109
+ Copy of [this MGSM Dataset](https://huggingface.co/datasets/juletxara/mgsm), but in training samples we removed the prompt formatting, e.g. removed `Question: ...` in question field or `Answer: ...` in answer field.
110
+ Multilingual Grade School Math Benchmark (MGSM) is a benchmark of grade-school math problems, proposed in the paper [Language models are multilingual chain-of-thought reasoners](http://arxiv.org/abs/2210.03057).
111
+
112
+ The same 250 problems from [GSM8K](https://arxiv.org/abs/2110.14168) are each translated via human annotators in 10 languages. The 10 languages are:
113
+ - Spanish
114
+ - French
115
+ - German
116
+ - Russian
117
+ - Chinese
118
+ - Japanese
119
+ - Thai
120
+ - Swahili
121
+ - Bengali
122
+ - Telugu
123
+
124
+ GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning.
125
+
126
+ You can find the input and targets for each of the ten languages (and English) as `.tsv` files.
127
+ We also include few-shot exemplars that are also manually translated from each language in `exemplars.py`.
128
+
129
+ ### Supported Tasks and Leaderboards
130
+
131
+ [Needs More Information]
132
+
133
+ ### Languages
134
+
135
+ The same 250 problems from [GSM8K](https://arxiv.org/abs/2110.14168) are each translated via human annotators in 10 languages. The 10 languages are:
136
+ - Spanish
137
+ - French
138
+ - German
139
+ - Russian
140
+ - Chinese
141
+ - Japanese
142
+ - Thai
143
+ - Swahili
144
+ - Bengali
145
+ - Telugu
146
+
147
+ ## Dataset Structure
148
+
149
+ ### Data Instances
150
+
151
+ Each instance in the train split contains:
152
+ - a string for the grade-school level math question
153
+ - a string for the corresponding answer with chain-of-thought steps.
154
+ - the numeric solution to the question
155
+ - the equation solution to the question
156
+
157
+ ```python
158
+ {'question': 'Question: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?',
159
+ 'answer': 'Step-by-Step Answer: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.',
160
+ 'answer_number': 11,
161
+ 'equation_solution': '5 + 6 = 11.'}
162
+ ```
163
+
164
+ Each instance in the test split contains:
165
+ - a string for the grade-school level math question
166
+ - the numeric solution to the question
167
+
168
+ ```python
169
+ {'question': "Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?",
170
+ 'answer': None,
171
+ 'answer_number': 18,
172
+ 'equation_solution': None}
173
+ ```
174
+
175
+ ### Data Fields
176
+
177
+ The data fields are the same among `train` and `test` splits.
178
+
179
+ - question: The question string to a grade school math problem.
180
+
181
+ - answer: The full solution string to the `question`. It contains multiple steps of reasoning with calculator annotations and the final numeric solution.
182
+
183
+ - answer_number: The numeric solution to the `question`.
184
+
185
+ - equation_solution: The equation solution to the `question`.
186
+
187
+ ### Data Splits
188
+
189
+ - The train split includes 8 few-shot exemplars that are also manually translated from each language.
190
+ - The test split includes the same 250 problems from GSM8K translated via human annotators in 10 languages.
191
+
192
+ | name |train|test |
193
+ |--------|----:|---------:|
194
+ |en | 8 | 250 |
195
+ |es | 8 | 250 |
196
+ |fr | 8 | 250 |
197
+ |de | 8 | 250 |
198
+ |ru | 8 | 250 |
199
+ |zh | 8 | 250 |
200
+ |ja | 8 | 250 |
201
+ |th | 8 | 250 |
202
+ |sw | 8 | 250 |
203
+ |bn | 8 | 250 |
204
+ |te | 8 | 250 |
205
+
206
+ ## Dataset Creation
207
+
208
+ ### Curation Rationale
209
+
210
+ [Needs More Information]
211
+
212
+ ### Source Data
213
+
214
+ #### Initial Data Collection and Normalization
215
+
216
+ From the paper:
217
+
218
+ > We initially collected a starting set of a thousand problems and natural language solutions by hiring freelance contractors on Upwork (upwork.com). We then worked with Surge AI (surgehq.ai), an NLP data labeling platform, to scale up our data collection. After collecting the full dataset, we asked workers to re-solve all problems, with no workers re-solving problems they originally wrote. We checked whether their final answers agreed with the original solu- tions, and any problems that produced disagreements were either repaired or discarded. We then performed another round of agreement checks on a smaller subset of problems, finding that 1.7% of problems still produce disagreements among contractors. We estimate this to be the fraction of problems that con- tain breaking errors or ambiguities. It is possible that a larger percentage of problems contain subtle errors.
219
+
220
+ #### Who are the source language producers?
221
+
222
+ [Needs More Information]
223
+
224
+ ### Annotations
225
+
226
+ #### Annotation process
227
+
228
+ [Needs More Information]
229
+
230
+ #### Who are the annotators?
231
+
232
+ Surge AI (surgehq.ai)
233
+
234
+ ### Personal and Sensitive Information
235
+
236
+ [Needs More Information]
237
+
238
+ ## Considerations for Using the Data
239
+
240
+ ### Social Impact of Dataset
241
+
242
+ [Needs More Information]
243
+
244
+ ### Discussion of Biases
245
+
246
+ [Needs More Information]
247
+
248
+ ### Other Known Limitations
249
+
250
+ [Needs More Information]
251
+
252
+ ## Additional Information
253
+
254
+ ### Dataset Curators
255
+
256
+ [Needs More Information]
257
+
258
+ ### Licensing Information
259
+
260
+ The GSM8K dataset is licensed under the [MIT License](https://opensource.org/licenses/MIT).
261
+
262
+ ### Citation Information
263
+
264
+ ```bibtex
265
+ @article{cobbe2021gsm8k,
266
+ title={Training Verifiers to Solve Math Word Problems},
267
+ author={Cobbe, Karl and Kosaraju, Vineet and Bavarian, Mohammad and Chen, Mark and Jun, Heewoo and Kaiser, Lukasz and Plappert, Matthias and Tworek, Jerry and Hilton, Jacob and Nakano, Reiichiro and Hesse, Christopher and Schulman, John},
268
+ journal={arXiv preprint arXiv:2110.14168},
269
+ year={2021}
270
+ }
271
+ @misc{shi2022language,
272
+ title={Language Models are Multilingual Chain-of-Thought Reasoners},
273
+ author={Freda Shi and Mirac Suzgun and Markus Freitag and Xuezhi Wang and Suraj Srivats and Soroush Vosoughi and Hyung Won Chung and Yi Tay and Sebastian Ruder and Denny Zhou and Dipanjan Das and Jason Wei},
274
+ year={2022},
275
+ eprint={2210.03057},
276
+ archivePrefix={arXiv},
277
+ primaryClass={cs.CL}
278
+ }
279
+ ```
280
+
281
+ ### Contributions
282
+
283
+ Thanks to [@juletx](https://github.com/juletx) for adding this dataset.