File size: 6,358 Bytes
9bb456c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import json
import datasets

_DESCRIPTION = """
SciFact

A dataset of expert-written scientific claims paired with evidence-containing
abstracts and annotated with labels and rationales.
"""

_CITATION = """
@InProceedings{Wadden2020FactOF,
  author =      {David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang,
                 Madeleine van Zuylen, Arman Cohan, Hannaneh Hajishirzi},
  title =       {Fact or Fiction: Verifying Scientific Claims},
  booktitle =   {EMNLP},
  year =        2020,
}
"""

_DOWNLOAD_URL = "https://testerstories.com/files/ai_learn/data.tar.gz"


class ScifactConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(ScifactConfig, self).__init__(
            version=datasets.Version("1.0.0", ""), **kwargs
        )


class Scifact(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("0.1.0")

    BUILDER_CONFIGS = [
        ScifactConfig(name="corpus", description="The corpus of evidence documents"),
        ScifactConfig(
            name="claims", description="The claims are split into train, test, dev"
        ),
    ]

    def _info(self):
        if self.config.name == "corpus":
            features = {
                "doc_id": datasets.Value("int32"),
                "title": datasets.Value("string"),
                "abstract": datasets.features.Sequence(datasets.Value("string")),
                "structured": datasets.Value("bool"),
            }
        else:
            features = {
                "id": datasets.Value("int32"),
                "claim": datasets.Value("string"),
                "evidence_doc_id": datasets.Value("string"),
                "evidence_label": datasets.Value("string"),
                "evidence_sentences": datasets.features.Sequence(
                    datasets.Value("int32")
                ),
                "cited_doc_ids": datasets.features.Sequence(datasets.Value("int32")),
            }

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            supervised_keys=None,
            homepage="https://scifact.apps.allenai.org/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive = dl_manager.download(_DOWNLOAD_URL)

        if self.config.name == "corpus":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": "data/corpus.jsonl",
                        "split": "train",
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": "data/claims_train.jsonl",
                        "split": "train",
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": "data/claims_test.jsonl",
                        "split": "test",
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": "data/claims_dev.jsonl",
                        "split": "dev",
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
            ]

    def _generate_examples(self, filepath, split, files):
        for path, f in files:
            if path == filepath:
                for id_, row in enumerate(f):
                    data = json.loads(row.decode("utf-8"))

                    if self.config.name == "corpus":
                        yield id_, {
                            "doc_id": int(data["doc_id"]),
                            "title": data["title"],
                            "abstract": data["abstract"],
                            "structured": data["structured"],
                        }
                    else:
                        if split == "test":
                            yield id_, {
                                "id": data["id"],
                                "claim": data["claim"],
                                "evidence_doc_id": "",
                                "evidence_label": "",
                                "evidence_sentences": [],
                                "cited_doc_ids": [],
                            }
                        else:
                            evidences = data["evidence"]

                            if evidences:
                                for id1, doc_id in enumerate(evidences):
                                    for id2, evidence in enumerate(evidences[doc_id]):
                                        yield str(id_) + "_" + str(id1) + "_" + str(
                                            id2
                                        ), {
                                            "id": data["id"],
                                            "claim": data["claim"],
                                            "evidence_doc_id": doc_id,
                                            "evidence_label": evidence["label"],
                                            "evidence_sentences": evidence["sentences"],
                                            "cited_doc_ids": data.get(
                                                "cited_doc_ids", []
                                            ),
                                        }
                            else:
                                yield id_, {
                                    "id": data["id"],
                                    "claim": data["claim"],
                                    "evidence_doc_id": "",
                                    "evidence_label": "",
                                    "evidence_sentences": [],
                                    "cited_doc_ids": data.get("cited_doc_ids", []),
                                }
                break