GermEval18 / __GermEval18.py
jfrei's picture
Convert dataset to Parquet (#1)
d3abd97 verified
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loader script for the GermEval 18 dataset"""
import csv
import json
import os
import datasets
_CITATION = """\
@data{data/0B5VML_2019,
author = {Wiegand, Michael},
publisher = {heiDATA},
title = {{GermEval-2018 Corpus (DE)}},
year = {2019},
version = {V1},
doi = {10.11588/data/0B5VML},
url = {https://doi.org/10.11588/data/0B5VML}
}
"""
_DESCRIPTION = """\
This dataset comprises the training and test data (German tweets) from the GermEval 2018 Shared on Offensive Language Detection.
"""
_HOMEPAGE = "https://doi.org/10.11588/data/0B5VML"
_LICENSE = "CC-BY-4.0 Deed"
# The files are pulled from the official GitHub repository.
# https://github.com/uds-lsv/GermEval-2018-Data
# We use the hashed URL from master branch / June 3th 2024.
_URLS = {
"germeval18.test.txt": "https://raw.githubusercontent.com/uds-lsv/GermEval-2018-Data/9877472d39523effd54cd079b4c61157ed141508/germeval2018.test.txt",
"germeval18.train.txt": "https://raw.githubusercontent.com/uds-lsv/GermEval-2018-Data/9877472d39523effd54cd079b4c61157ed141508/germeval2018.training.txt",
}
class GermEval18(datasets.GeneratorBasedBuilder):
"""The GermEval18 dataset"""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
'coarse': datasets.ClassLabel(num_classes=2, names=['OTHER', 'OFFENSE'], names_file=None, id=None),
'fine': datasets.ClassLabel(num_classes=4, names=['OTHER', 'ABUSE', 'INSULT', 'PROFANITY'], names_file=None, id=None),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["germeval18.train.txt"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["germeval18.test.txt"],
"split": "test"
},
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
# Every line only has two "\t" tabs.
data_text, lbl_coarse, lbl_fine = row.rstrip().split("\t")
yield key, {
"text": data_text,
"coarse": lbl_coarse,
"fine": lbl_fine,
}