File size: 3,687 Bytes
4e3b836
 
 
11e49b7
 
 
 
 
 
 
 
 
4e3b836
 
11e49b7
 
 
 
 
 
 
 
 
 
 
 
 
4e3b836
 
 
11e49b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3b836
 
 
 
 
 
11e49b7
 
4e3b836
 
 
 
 
 
 
 
11e49b7
4e3b836
 
 
11e49b7
 
4e3b836
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from mpi4py import MPI
from mpi4py.futures import MPICommExecutor

import warnings
from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder
from Bio.PDB.NeighborSearch import NeighborSearch
from Bio.PDB.Selection import unfold_entities

import numpy as np
import dask.array as da

from rdkit import Chem

import os
import re

# all punctuation
punctuation_regex  = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""

# tokenization regex (Schwaller)
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""

cutoff = 5
max_seq = 2048
max_smiles = 512
chunk_size = '1G'

def parse_complex(fn):
    try:
        name = os.path.basename(fn)

        # parse protein sequence and coordinates
        parser = PDBParser()
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            structure = parser.get_structure('protein',fn+'/'+name+'_protein.pdb')

#        ppb = PPBuilder()
        ppb = CaPPBuilder()
        seq = []
        for pp in ppb.build_peptides(structure):
            seq.append(str(pp.get_sequence()))
        seq = ''.join(seq)

        # parse ligand, convert to SMILES and map atoms
        suppl = Chem.SDMolSupplier(fn+'/'+name+'_ligand.sdf')
        mol = next(suppl)
        smi = Chem.MolToSmiles(mol)

        # position of atoms in SMILES (not counting punctuation)
        atom_order = mol.GetProp("_smilesAtomOutputOrder")
        atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))]

        # tokenize the SMILES
        tokens = list(filter(None, re.split(molecule_regex, smi)))

        # remove punctuation
        masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens]

        k = 0
        token_pos = []
        token_id = []
        for i,token in enumerate(masked_tokens):
            if token != '':
                token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k])))
                token_id.append(i)
                k += 1

        # query protein for ligand contacts
        atoms  = unfold_entities(structure, 'A')
        neighbor_search = NeighborSearch(atoms)

        close_residues = [neighbor_search.search(center=t, level='R', radius=cutoff) for t in token_pos]
        residue_id = [[c.get_id()[1]-1 for c in query] for query in close_residues] # zero-based

        # contact map
        contact_map = np.zeros((max_seq, max_smiles),dtype=np.float32)

        for query,t in zip(residue_id,token_id):
            for r in query:
                contact_map[r,t] = 1

        return name, seq, smi, contact_map
    except Exception as e:
        print(e)
        return None


if __name__ == '__main__':
    import glob

    filenames = glob.glob('data/pdbbind/v2020-other-PL/*')
    filenames.extend(glob.glob('data/pdbbind/refined-set/*'))
    comm = MPI.COMM_WORLD
    with MPICommExecutor(comm, root=0) as executor:
        if executor is not None:
            result = executor.map(parse_complex, filenames)
            result = list(result)
            names = [r[0] for r in result if r is not None]
            seqs = [r[1] for r in result if r is not None]
            all_smiles = [r[2] for r in result if r is not None]
            all_contacts = [r[3] for r in result if r is not None]

            import pandas as pd
            df = pd.DataFrame({'name': names, 'seq': seqs, 'smiles': all_smiles})
            all_contacts = da.from_array(all_contacts, chunks=chunk_size)
            da.to_npy_stack('data/pdbbind_contacts/', all_contacts)
            df.to_parquet('data/pdbbind_complex.parquet')