jimregan commited on
Commit
d4c7b74
·
1 Parent(s): 48f4d79

add initial version of loader script

Browse files
Files changed (1) hide show
  1. nst_swedish_tts.py +154 -0
nst_swedish_tts.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ # Copyright 2023 Jim O'Regan for Språkbanken Tal
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ # Lint as: python3
18
+ """Datasets loader for NST Swedish TTS data"""
19
+
20
+ import soundfile as sf
21
+ import os
22
+ from pathlib import Path
23
+ import datasets
24
+ from datasets.tasks import AutomaticSpeechRecognition
25
+
26
+
27
+
28
+ _HEADER = b'PCM44 \x00\x00\x00\x00\x00\x00\x00S'
29
+
30
+ _AUDIO_URL = "https://www.nb.no/sbfil/talesyntese/sve.ibm.talesyntese.tar.gz"
31
+
32
+ _DESCRIPTION = """
33
+ Database for Swedish speech synthesis, originally produced by Nordic Language Technology AS (NST).
34
+ """
35
+
36
+ _URL = "https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-18/"
37
+
38
+
39
+ def is_pcm(filename) -> bool:
40
+ """
41
+ Check the header of a .pcm file
42
+
43
+ Args:
44
+ filename: the file to check
45
+
46
+ Returns:
47
+ True is header is present, False otherwise
48
+ """
49
+ with open(filename, "rb") as pcm:
50
+ pcm.seek(0)
51
+ cond = (pcm.read(16) == _HEADER)
52
+ # reset location, just in case
53
+ pcm.seek(0)
54
+ return cond
55
+
56
+
57
+ IGNORE_SENT = [
58
+ "stod man på torget kunde man se huset och det var ingen tvekan om att det dominerade sin omgivning och det rådde knappast heller något tvivel om att det förr i tiden hade väckt en hel del avund känslor som någon enstaka gång fortfarande kunde framkallas hos de äldre",
59
+ "viktor hade skickat ut det innan novell sålde unixware till sco",
60
+ "det gläder oss självklart"
61
+ ]
62
+ IGNORE_ID = [
63
+ "4913",
64
+ ]
65
+ # MAYBE_FIX = {
66
+ # "4913": "en annan gång tar vi ett annat grepp"
67
+ # }
68
+
69
+ def read_with_soundfile(filename):
70
+ return sf.read(filename, channels=2, samplerate=44100, endian="BIG",
71
+ dtype="int16", format="RAW", subtype="PCM_16", start=16)
72
+
73
+
74
+ class NSTDataset(datasets.GeneratorBasedBuilder):
75
+
76
+ VERSION = datasets.Version("1.1.0")
77
+
78
+ BUILDER_CONFIGS = [
79
+ datasets.BuilderConfig(name="speech", version=VERSION, description="Data for speech recognition"),
80
+ ]
81
+
82
+ def _info(self):
83
+ features = datasets.Features(
84
+ {
85
+ "audio": datasets.Audio(sampling_rate=44_100),
86
+ "pitch_tracker": datasets.Audio(sampling_rate=44_100),
87
+ "text": datasets.Value("string"),
88
+ }
89
+ )
90
+
91
+ return datasets.DatasetInfo(
92
+ description=_DESCRIPTION,
93
+ features=features,
94
+ supervised_keys=None,
95
+ homepage=_URL,
96
+ task_templates=[
97
+ AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")
98
+ ],
99
+ )
100
+
101
+ def _split_generators(self, dl_manager):
102
+ if hasattr(dl_manager, 'manual_dir') and dl_manager.manual_dir is not None:
103
+ data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
104
+ AUDIO_FILE = os.path.join(data_dir, _AUDIO_URL.split("/")[-1])
105
+ audio_dir = dl_manager.extract(AUDIO_FILE)
106
+ else:
107
+ audio_dir = dl_manager.download_and_extract(_AUDIO_URL)
108
+ return [
109
+ datasets.SplitGenerator(
110
+ name=datasets.Split.TRAIN,
111
+ gen_kwargs={
112
+ "split": "train",
113
+ "audio_dir": audio_dir,
114
+ },
115
+ ),
116
+ ]
117
+
118
+ def _generate_examples(
119
+ self, split, audio_dir
120
+ ):
121
+ filepath = Path(audio_dir) / "sw_pcms" / "mf"
122
+ textpath = Path(audio_dir) / "sw_pcms" / "scripts" / "mf" / "sw_all"
123
+ transcripts = {}
124
+ counter = 1
125
+ with open(str(textpath), encoding="latin1") as text:
126
+ for line in text.readlines():
127
+ line = line.strip()
128
+ if line in IGNORE_SENT:
129
+ continue
130
+ else:
131
+ id = f"sw_all_mf_01_{counter:04d}"
132
+ if str(id) not in IGNORE_ID:
133
+ transcripts[id] = line
134
+ counter += 1
135
+ for file in filepath.glob("*.pcm"):
136
+ stem = file.stem
137
+ if is_pcm(str(file)):
138
+ data, _ = read_with_soundfile(str(file))
139
+ yield stem, {
140
+ "audio": {
141
+ "array": data[:, 1],
142
+ "sampling_rate": 44_100,
143
+ "path": str(file),
144
+ "id": stem,
145
+ },
146
+ "pitch_tracker": {
147
+ "array": data[:, 0],
148
+ "sampling_rate": 44_100,
149
+ "path": str(file),
150
+ "id": stem,
151
+ },
152
+ "text": transcripts[stem],
153
+ }
154
+