File size: 9,109 Bytes
6d08226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64831e
6d08226
 
 
 
20b6835
6d08226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64831e
6d08226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64831e
6d08226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""DatasetBuilder for earnings_call dataset."""
from pathlib import Path
from typing import Optional

import datasets
import pandas as pd

from .stocks import StockMarketAnalyzer
from .transcripts import load_earnings_calls, load_stock_prices

_CITATION = """\
@data{TJE0D0_2021,
author = {Roozen, Dexter and Lelli, Francesco},
publisher = {DataverseNL},
title = {{Stock Values and Earnings Call Transcripts: a Sentiment Analysis Dataset}},
year = {2021},
version = {V1},
doi = {10.34894/TJE0D0},
url = {https://doi.org/10.34894/TJE0D0}
}
"""


_DESCRIPTION = """\
The dataset reports a collection of earnings call transcripts, the related stock prices, and the sector index In terms of volume, there is a total of 188 transcripts, 11970 stock prices, and 1196 sector index values. Furthermore, all of these data originated in the period 2016-2020 and are related to the NASDAQ stock market. Furthermore, the data collection was made possible by Yahoo Finance and Thomson Reuters Eikon. Specifically, Yahoo Finance enabled the search for stock values and Thomson Reuters Eikon provided the earnings call transcripts. Lastly, the dataset can be used as a benchmark for the evaluation of several NLP techniques to understand their potential for financial applications. Moreover, it is also possible to expand the dataset by extending the period in which the data originated following a similar procedure.
"""  # noqa: E501


_HOMEPAGE = "https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/TJE0D0"


_LICENSE = " CC0 1.0"


_URLS = {
    "transcripts": "./transcripts.zip",
    "stock_prices": "./stock_prices.zip",
    "transcript-sentiment": {
        "stocks": "./stock_prices.zip",
        "transcripts": "./transcripts.zip",
    },
}


class EarningsCallDataset(datasets.GeneratorBasedBuilder):
    """Stock Values and Earnings Call Transcripts - a Sentiment Analysis Dataset"""

    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="transcripts",
            version=VERSION,
            description="Raw Earnings Call Transcripts",
        ),
        datasets.BuilderConfig(
            name="stock_prices", version=VERSION, description="Raw Company Stock Prices"
        ),
        datasets.BuilderConfig(
            name="transcript-sentiment",
            version=VERSION,
            description="Paragraphs from Earnings Call Transcripts with Sentiment Labels",  # noqa: E501
        ),
    ]

    DEFAULT_CONFIG_NAME = "transcript-sentiment"

    def _info(self):
        if self.config.name == "transcripts":
            features = datasets.Features(
                {
                    "company": datasets.Value("string"),
                    "date": datasets.Value("date64"),
                    "transcript": datasets.Value("string"),
                }
            )
        elif self.config.name == "stock_prices":
            features = datasets.Features(
                {
                    "date": datasets.Value("date64"),
                    "open": datasets.Value("float32"),
                    "high": datasets.Value("float32"),
                    "low": datasets.Value("float32"),
                    "close": datasets.Value("float32"),
                    "adj_close": datasets.Value("float32"),
                    "volume": datasets.Value("int64"),
                    "company": datasets.Value("string"),
                }
            )
        elif self.config.name == "transcript-sentiment":
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(
                        names=["negative", "positive"]
                    ),
                    "company": datasets.Value("string"),
                    "date": datasets.Value("date64"),
                    "para_no": datasets.Value("int32"),
                }
            )
        else:
            raise ValueError(f"Unknown config name: {self.config.name}")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            features=features,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS[self.config.name])

        if self.config.name == "transcript-sentiment":
            transcript_dir = Path(data_dir["transcripts"])
            stocks_dir = Path(data_dir["stocks"])

            return [
                datasets.SplitGenerator(
                    name="train",
                    gen_kwargs={
                        "filepath": transcript_dir / "train.txt",
                        "split": "train",
                        "transcript_dir": transcript_dir,
                        "stock_prices_dir": stocks_dir,
                    },
                ),
                datasets.SplitGenerator(
                    name="test",
                    gen_kwargs={
                        "filepath": transcript_dir / "test.txt",
                        "split": "test",
                        "transcript_dir": transcript_dir,
                        "stock_prices_dir": stocks_dir,
                    },
                ),
            ]
        elif self.config.name == "transcripts":
            data_dir = Path(data_dir) / "transcripts"
            return [
                datasets.SplitGenerator(
                    name="train",
                    gen_kwargs={
                        "filepath": data_dir / "train.txt",
                        "split": "train",
                        "transcript_dir": data_dir,
                    },
                ),
                datasets.SplitGenerator(
                    name="test",
                    gen_kwargs={
                        "filepath": data_dir / "test.txt",
                        "split": "test",
                        "transcript_dir": data_dir,
                    },
                ),
            ]
        elif self.config.name == "stock_prices":
            data_dir = Path(data_dir) / "stock_prices"
            return [
                datasets.SplitGenerator(
                    name="train",
                    gen_kwargs={
                        "filepath": data_dir,
                        "split": "train",
                    },
                ),
            ]
        else:
            raise ValueError(f"Unknown config name: {self.config.name}")

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(
        self,
        filepath: Path,
        split: str,
        transcript_dir: Optional[Path] = None,
        stock_prices_dir: Optional[Path] = None,
    ):
        if self.config.name == "transcript-sentiment":
            assert (
                transcript_dir is not None
            ), "transcript_dir must passed in as a parameter"
            assert (
                stock_prices_dir is not None
            ), "stock_prices_dir must passed in as a parameter"

            transcript_filepaths = [
                transcript_dir / p for p in filepath.read_text().splitlines()
            ]
            calls = list(load_earnings_calls(transcript_filepaths))

            companies = set(call.company for call in calls) | {"NASDAQ"}

            company_stocks_paths = [stock_prices_dir / f"{c}.csv" for c in companies]
            stock_prices = load_stock_prices(company_stocks_paths)
            market_analyzer = StockMarketAnalyzer(stock_prices)

            idx = 0

            for call in calls:
                call.set_sentiment(market_analyzer)
                for prompt in call.generate_prompts():
                    yield idx, prompt.to_dict()
                    idx += 1

        elif self.config.name == "transcripts":
            transcript_filepaths = [
                transcript_dir / p for p in filepath.read_text().splitlines()
            ]
            calls = load_earnings_calls(transcript_filepaths)

            for i, call in enumerate(calls):
                call.load_transcript()
                yield i, {
                    "company": call.company,
                    "date": call.date,
                    "transcript": call.transcript,
                }

        elif self.config.name == "stock_prices":
            i = 0
            for f in filepath.iterdir():
                company = f.stem
                df = pd.read_csv(f, parse_dates=["Date"])

                for _, dt, open, high, low, close, adj_close, vol in df.itertuples():
                    yield i, {
                        "date": dt,
                        "open": open,
                        "high": high,
                        "low": low,
                        "close": close,
                        "adj_close": adj_close,
                        "volume": vol,
                        "company": company,
                    }
                    i += 1
        else:
            raise ValueError(f"Unknown config name: {self.config.name}")