import datetime from pathlib import Path from typing import Iterable, Union import pandas as pd class StockMarketAnalyzer: def __init__( self, market_data: dict[str, pd.DataFrame], sector: str = "NASDAQ", date_col: str = "Date", price_col: str = "Open", ): self._market_data = market_data self._sector = sector self._date_col = date_col self._price_col = price_col def compute_sector_ratio( self, date: datetime.datetime, days_before: int = 1, days_after: int = 1 ): return self.compute_stock_ratio(self._sector, date, days_before, days_after) def query(self, company: str, cond: Union[pd.Series, str]): return self._market_data[company][cond] def get_stock_price(self, company: str, date: datetime.datetime) -> float: stocks = self._market_data[company] query = stocks[self._date_col] == date return self.query(company, query)[self._price_col].iloc[0] def get_previous_price( self, company: str, date: datetime.datetime, offset: int = 1 ): stocks = self._market_data[company] query = stocks[self._date_col] < date value = self.query(company, query)[self._price_col].iloc[-offset] return float(value) def get_next_price(self, company: str, date: datetime.datetime, offset: int = 1): stocks = self._market_data[company] query = stocks[self._date_col] > date value = self.query(company, query)[self._price_col].iloc[offset - 1] return float(value) def compute_stock_ratio( self, company: str, date: datetime.datetime, days_before: int = 1, days_after: int = 1, ): before_price = self.get_previous_price(company, date, offset=days_before) after_price = self.get_next_price(company, date, offset=days_after) stock_ratio = after_price / before_price return stock_ratio def beats_market( self, company: str, date: datetime.datetime, days_before: int = 1, days_after: int = 1, ): stock_ratio = self.compute_stock_ratio(company, date, days_before, days_after) sector_ratio = self.compute_sector_ratio(date, days_before, days_after) return stock_ratio > sector_ratio def load_stock_prices(files: Iterable[Path]) -> Dict[str, pd.DataFrame]: """ Load stock prices from CSV files into a dictionary of DataFrames. Args: files (Iterable[Path]): An iterable of Path objects representing the CSV files to load. Returns: dict[str, pd.DataFrame]: A dictionary where the keys are the company names (extracted from the file names) and the values are pandas DataFrames containing the stock prices for each company. """ market_data = {} for f in files: path = f.as_posix() company = f.stem market_data[company] = pd.read_csv( path, usecols=["Date", "Open"], parse_dates=["Date"] ) return market_data