diff --git "a/analysis.ipynb" "b/analysis.ipynb"
deleted file mode 100644--- "a/analysis.ipynb"
+++ /dev/null
@@ -1 +0,0 @@
-{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"collapsed_sections":["B9QyV8XVDZeE"],"authorship_tag":"ABX9TyOb2sV4nBxeh1d6FKoXGNru"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"},"widgets":{"application/vnd.jupyter.widget-state+json":{"b5c22da1fe364821bb41657e57fe232f":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_18f7771eb6a94f83af23b65dc7d14172","IPY_MODEL_bb568f7a8baf466dbef44145af78ff64","IPY_MODEL_82afeee502434a00a832e57271a88c9d"],"layout":"IPY_MODEL_5b224814297441118032ac2e90d0a944"}},"18f7771eb6a94f83af23b65dc7d14172":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_9fae3e3bbdb14c488e3b4e468dd1a263","placeholder":"","style":"IPY_MODEL_7dbe3fb6dd2147ada73587ee065a2ab0","value":"config.json: 100%"}},"bb568f7a8baf466dbef44145af78ff64":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_aa9c5f378f8e4ac68692ac888822eb2d","max":4186,"min":0,"orientation":"horizontal","style":"IPY_MODEL_842cfb6973ec451eb530646e623bf7a9","value":4186}},"82afeee502434a00a832e57271a88c9d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_1d793b75bde14544846af9185a29c8be","placeholder":"","style":"IPY_MODEL_6071c27995de492cb837a35069800604","value":" 4.19k/4.19k [00:00<00:00, 71.5kB/s]"}},"5b224814297441118032ac2e90d0a944":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9fae3e3bbdb14c488e3b4e468dd1a263":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7dbe3fb6dd2147ada73587ee065a2ab0":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"aa9c5f378f8e4ac68692ac888822eb2d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"842cfb6973ec451eb530646e623bf7a9":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"1d793b75bde14544846af9185a29c8be":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6071c27995de492cb837a35069800604":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"527f6a6f40484b59993082ba1f8b3d7b":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_41c1ef7d32b646adabbd21dc6baec2ce","IPY_MODEL_b28e001c1669439789e7fb56e2254863","IPY_MODEL_96563e713fbb4d44b5014708f28f43ff"],"layout":"IPY_MODEL_33cc4946e0894548af46c936db23ffe2"}},"41c1ef7d32b646adabbd21dc6baec2ce":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_f625aba3421b4fc6b0b5fc5827471a4f","placeholder":"","style":"IPY_MODEL_807e515826dc4e00a9825794084d817f","value":"pytorch_model.bin: 100%"}},"b28e001c1669439789e7fb56e2254863":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_a5ea5ee97b314a98b8710a13988b63db","max":605247071,"min":0,"orientation":"horizontal","style":"IPY_MODEL_f067efd988204a05b19812cd4223c918","value":605247071}},"96563e713fbb4d44b5014708f28f43ff":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_63a8be3a5d384835b9a6cd3e4939a413","placeholder":"","style":"IPY_MODEL_32844eb6bd4b4f409bf01bd724f976a3","value":" 605M/605M [00:12<00:00, 88.4MB/s]"}},"33cc4946e0894548af46c936db23ffe2":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f625aba3421b4fc6b0b5fc5827471a4f":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"807e515826dc4e00a9825794084d817f":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"a5ea5ee97b314a98b8710a13988b63db":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f067efd988204a05b19812cd4223c918":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"63a8be3a5d384835b9a6cd3e4939a413":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"32844eb6bd4b4f409bf01bd724f976a3":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"797baeaf58f44a3d9e4dbdd61294cfdf":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_b020811557b04e9086d0bad0477165ae","IPY_MODEL_7fcbddb67ab846d58f91d04569e281d8","IPY_MODEL_9ebfa41d6316401dab2a076650cf5ece"],"layout":"IPY_MODEL_430f2b11c03647048fe101ea855b6cac"}},"b020811557b04e9086d0bad0477165ae":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_582c0ffe13f34289b9850a2ed3ed2c27","placeholder":"","style":"IPY_MODEL_8f80bf53e7b1498fbfaf0ed452ad1a77","value":"preprocessor_config.json: 100%"}},"7fcbddb67ab846d58f91d04569e281d8":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_0ce0424ade8d45db83b6c2616e095fc0","max":316,"min":0,"orientation":"horizontal","style":"IPY_MODEL_91577a802ad74c65a6943c4edaed2dbf","value":316}},"9ebfa41d6316401dab2a076650cf5ece":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_8741228e068e4fb1a9a6cd89f0122dbf","placeholder":"","style":"IPY_MODEL_a306b2b6379e490086e1d6504fbd73f0","value":" 316/316 [00:00<00:00, 6.53kB/s]"}},"430f2b11c03647048fe101ea855b6cac":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"582c0ffe13f34289b9850a2ed3ed2c27":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"8f80bf53e7b1498fbfaf0ed452ad1a77":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"0ce0424ade8d45db83b6c2616e095fc0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"91577a802ad74c65a6943c4edaed2dbf":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"8741228e068e4fb1a9a6cd89f0122dbf":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a306b2b6379e490086e1d6504fbd73f0":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}}}}},"cells":[{"cell_type":"markdown","source":["# Aphantasia Drawing Analysis\n","This analysis uses the [Aphantasia Drawing Dataset](https://huggingface.co/datasets/jmc255/aphantasia_drawing_dataset) on Hugging Face to try and find any patterns in the drawings between individuals with aphantasia (inability to form visual images) and without. The data includes drawings of a kitchen, living room, and bedroom, each drawn from memory (`memory`) and while looking at the actual image (`perception`). For a full description of the dataset you can visit the link above.\n","\n","This analysis is done by using OpenAI's ViT CLIP model for feature extraction and cosine similarity to measure how good a drawing is to the actual images from the feature embeddings.\n","\n","Using these similarity scores I see if I can classify aphantasia and also do an ANOVA to see if I can mimic the results of the paper the data was collected from."],"metadata":{"id":"3WFYVBoANBsp"}},{"cell_type":"markdown","source":["#### Load Packages and Dataset"],"metadata":{"id":"KXE7tNlIl8XL"}},{"cell_type":"code","execution_count":null,"metadata":{"id":"pHhxcej4BWL-"},"outputs":[],"source":["!pip install -q datasets\n","from datasets import load_dataset\n","import pandas as pd\n","import numpy as np\n","from PIL import Image\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","import plotly.express as px\n","\n","# Hugging Face Dataset\n","dataset = load_dataset(\"jmc255/aphantasia_drawing_dataset\", trust_remote_code=True)"]},{"cell_type":"code","source":["actual_imgs = dataset[\"train\"][\"image\"][0] # Dictionary of actual images"],"metadata":{"id":"Fb3R6Kugpg--"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["#### Load ViT CLIP Model and Calculate Similarites\n","The [ViT CLIP model](https://huggingface.co/openai/clip-vit-base-patch32) from OpenAI was originally trained on image-text pairs and can be used for zero-shot image classification. In my case I am using it as a feature extractor to get embedding vectors from the drawings and actual images. From the embeddings I calculate the cosine similarity between the drawings and actual images to get a similarity score.\n","\n","Cosine similarity basically measures how close 2 vectors are in a vector space:\n","\n","$\\cos(\\theta) = \\frac{\\mathbf{A} \\cdot \\mathbf{B}}{\\|\\mathbf{A}\\| \\|\\mathbf{B}\\|}$\n","\n"],"metadata":{"id":"_rnmbFBOmIbX"}},{"cell_type":"code","source":["import torch\n","from transformers import CLIPImageProcessor, CLIPModel, CLIPProcessor\n","\n","model_ID = \"openai/clip-vit-base-patch32\"\n","model = CLIPModel.from_pretrained(model_ID)\n","preprocess = CLIPImageProcessor.from_pretrained(model_ID)"],"metadata":{"id":"iP_ZOqvvDoze","colab":{"base_uri":"https://localhost:8080/","height":168,"referenced_widgets":["b5c22da1fe364821bb41657e57fe232f","18f7771eb6a94f83af23b65dc7d14172","bb568f7a8baf466dbef44145af78ff64","82afeee502434a00a832e57271a88c9d","5b224814297441118032ac2e90d0a944","9fae3e3bbdb14c488e3b4e468dd1a263","7dbe3fb6dd2147ada73587ee065a2ab0","aa9c5f378f8e4ac68692ac888822eb2d","842cfb6973ec451eb530646e623bf7a9","1d793b75bde14544846af9185a29c8be","6071c27995de492cb837a35069800604","527f6a6f40484b59993082ba1f8b3d7b","41c1ef7d32b646adabbd21dc6baec2ce","b28e001c1669439789e7fb56e2254863","96563e713fbb4d44b5014708f28f43ff","33cc4946e0894548af46c936db23ffe2","f625aba3421b4fc6b0b5fc5827471a4f","807e515826dc4e00a9825794084d817f","a5ea5ee97b314a98b8710a13988b63db","f067efd988204a05b19812cd4223c918","63a8be3a5d384835b9a6cd3e4939a413","32844eb6bd4b4f409bf01bd724f976a3","797baeaf58f44a3d9e4dbdd61294cfdf","b020811557b04e9086d0bad0477165ae","7fcbddb67ab846d58f91d04569e281d8","9ebfa41d6316401dab2a076650cf5ece","430f2b11c03647048fe101ea855b6cac","582c0ffe13f34289b9850a2ed3ed2c27","8f80bf53e7b1498fbfaf0ed452ad1a77","0ce0424ade8d45db83b6c2616e095fc0","91577a802ad74c65a6943c4edaed2dbf","8741228e068e4fb1a9a6cd89f0122dbf","a306b2b6379e490086e1d6504fbd73f0"]},"executionInfo":{"status":"ok","timestamp":1714832397004,"user_tz":240,"elapsed":34688,"user":{"displayName":"Jon Campbell Jr","userId":"09087198626790021717"}},"outputId":"4e868c2a-527f-4b59-a80a-c46335bcf51a"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n"," warnings.warn(\n"]},{"output_type":"display_data","data":{"text/plain":["config.json: 0%| | 0.00/4.19k [00:00, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"b5c22da1fe364821bb41657e57fe232f"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["pytorch_model.bin: 0%| | 0.00/605M [00:00, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"527f6a6f40484b59993082ba1f8b3d7b"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["preprocessor_config.json: 0%| | 0.00/316 [00:00, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"797baeaf58f44a3d9e4dbdd61294cfdf"}},"metadata":{}}]},{"cell_type":"code","source":["def preprocess_image(image):\n"," image = image.convert('L') # Convert to grayscale\n"," image = preprocess(image, return_tensors=\"pt\") #preprocess image\n"," return image"],"metadata":{"id":"EQfmIR_tDssZ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# Compute simiarity score between drawings and actual images\n","def compute_similarity(img1,img2):\n"," img1_preprocessed = preprocess_image(img1)['pixel_values']\n"," img2_preprocessed = preprocess_image(img2)['pixel_values']\n"," with torch.no_grad():\n"," embedding_a = model.get_image_features(img1_preprocessed)\n"," embedding_b = model.get_image_features(img2_preprocessed)\n"," similarity_score = torch.nn.functional.cosine_similarity(embedding_a, embedding_b)\n"," return similarity_score.item()"],"metadata":{"id":"GESWEZUicuYt"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# Extract Similarity Scores from all the drawings\n","def get_similarities(subject_dict):\n"," drawings = subject_dict[\"drawings\"]\n"," similarities = {\n"," \"kitchen\": [],\n"," \"bedroom\": [],\n"," 'livingroom': []\n"," }\n"," for room in [\"kitchen\",\"livingroom\",\"bedroom\"]:\n"," mod_similarities = {\"memory\": np.nan, \"perception\": np.nan}\n","\n"," for t in [\"memory\", \"perception\"]:\n"," if drawings[room][t]:\n"," similarity = compute_similarity(drawings[room][t], actual_imgs[room])\n"," mod_similarities[t] = similarity\n","\n"," similarities[room] = mod_similarities\n"," return {\n"," 'subject_id': subject_dict[\"subject_id\"],\n"," 'treatment': subject_dict[\"treatment\"],\n"," 'drawings': subject_dict[\"drawings\"],\n"," 'similarity': similarities\n"," }"],"metadata":{"id":"FB00XBNVFm1M"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["new_data = []\n","for row in iter(dataset[\"train\"]):\n"," new_data.append(get_similarities(row))\n","\n","similarities_df = pd.json_normalize(new_data)\n","rename_mapping = {\n"," \"similarity.kitchen.memory\": \"kitchen_mem\",\n"," \"similarity.kitchen.perception\": 'kitchen_percep',\n"," \"similarity.bedroom.memory\": 'bedroom_mem',\n"," \"similarity.bedroom.perception\": 'bedroom_percep',\n"," \"similarity.livingroom.memory\": 'livingroom_mem',\n"," \"similarity.livingroom.perception\": 'livingroom_percep',\n"," 'drawings.kitchen.perception': 'kitchen_percep_drawing',\n"," 'drawings.kitchen.memory': 'kitchen_mem_drawing',\n"," 'drawings.livingroom.perception': 'livingroom_percep_drawing',\n"," 'drawings.livingroom.memory': 'livingroom_mem_drawing',\n"," 'drawings.bedroom.perception': 'bedroom_percep_drawing',\n"," 'drawings.bedroom.memory': 'bedroom_mem_drawing'\n","}\n","similarities_df.rename(columns = rename_mapping, inplace = True)\n","all_cols = [col for col in similarities_df.columns if \"draw\" not in col]\n","all_cols = all_cols[2:]"],"metadata":{"id":"wdHMwCQPIH_K"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["#### Summary Statistics"],"metadata":{"id":"FjlUhD3Z_RUQ"}},{"cell_type":"markdown","source":["Overall the mean for perception drawings between the rooms are higher than the mean for memory drawings which makes sense since the perception drawings were done while looking at the image.\n","\n"],"metadata":{"id":"a6p37NndAgZv"}},{"cell_type":"code","source":["similarities_df[[\n"," 'kitchen_mem', 'kitchen_percep',\n"," 'bedroom_mem',\t'bedroom_percep',\n"," 'livingroom_mem',\t'livingroom_percep'\n","]].describe().round(3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":300},"id":"Tw0cnyuv8dFf","executionInfo":{"status":"ok","timestamp":1714832806425,"user_tz":240,"elapsed":13,"user":{"displayName":"Jon Campbell Jr","userId":"09087198626790021717"}},"outputId":"7f605f5a-6a6b-4fd2-f642-1c981402fe03"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" kitchen_mem kitchen_percep bedroom_mem bedroom_percep \\\n","count 113.000 111.000 110.000 113.000 \n","mean 0.559 0.585 0.588 0.639 \n","std 0.040 0.036 0.054 0.054 \n","min 0.450 0.517 0.445 0.474 \n","25% 0.532 0.558 0.561 0.610 \n","50% 0.560 0.583 0.590 0.644 \n","75% 0.581 0.610 0.617 0.669 \n","max 0.672 0.666 0.759 0.752 \n","\n"," livingroom_mem livingroom_percep \n","count 111.000 112.000 \n","mean 0.613 0.676 \n","std 0.053 0.060 \n","min 0.461 0.454 \n","25% 0.574 0.643 \n","50% 0.618 0.672 \n","75% 0.649 0.721 \n","max 0.724 0.835 "],"text/html":["\n","
\n","\n",""]},"metadata":{}}]},{"cell_type":"markdown","source":["### Best and Worst Drawings"],"metadata":{"id":"B9QyV8XVDZeE"}},{"cell_type":"code","source":["def get_top_bottom(column, top = True):\n"," if top:\n"," r = \"Top\"\n"," else:\n"," r = \"Bottom\"\n"," room, typ = column.split('_')\n"," draw_col = column + '_drawing'\n"," sel_cols = ['treatment',draw_col, column]\n"," top_bottom_df = similarities_df.sort_values(by = column, ascending = not top).head(3)\n"," top_bottom_df = top_bottom_df[sel_cols].set_index(np.array(range(3))+1)\n"," top_bottom_df = top_bottom_df.rename(columns = {draw_col:'Drawing', column: 'Similarity'})\n"," top_bottom_df['Similarity'] = top_bottom_df['Similarity'].apply(lambda x: round(x*100,2))\n"," top_bottom_dict = top_bottom_df.to_dict(orient = 'index')\n","\n"," fig, axes = plt.subplots(1, 4, figsize=(7, 3))\n"," ranking = {1: 'First', 2: 'Second', 3: 'Third'}\n"," for i in range(3):\n"," axes[i+1].imshow(np.array(top_bottom_dict[i+1]['Drawing']))\n"," axes[i+1].axis('off')\n"," axes[i+1].set_title(f\"{ranking[i+1]}: {top_bottom_dict[i+1]['Similarity']}\")\n"," axes[0].imshow(actual_imgs[room])\n"," axes[0].axis('off')\n"," axes[0].set_title(f'Actual {room}')\n"," plt.subplots_adjust(left=0.1)\n"," fig.suptitle(f\"{r} Drawings of {room} for {typ}\", fontsize=12, color='black')\n"," path = column + \"_\" + r + \".png\"\n"," plt.savefig(path)\n"," plt.close()"],"metadata":{"id":"1p0-50FV9WmY"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from itertools import product\n","\n","for col, typ in product(all_cols,[True,False]):\n"," get_top_bottom(col, top = typ)"],"metadata":{"id":"ZyaATlP1IJVT"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["### **Living Room**\n","Perception | Memory\n","--- | ---\n","![img](https://drive.google.com/uc?id=1-d_t_7Hp2_4KPi6oB-UP8Ot9PRIYD5mG) | ![img](https://drive.google.com/uc?id=1-DMyAxhgXnj27GTH1VLQZ_vH-Yrv8JtN)\n","![img](https://drive.google.com/uc?id=1-ReAvAojCotmBJ8btlxHOeG7PaxGloDg) | ![img](https://drive.google.com/uc?id=1-DfrMJW_1uBeUGfPLq2FBP8UheYlDYXp)\n","\n"],"metadata":{"id":"w0UihB_lSmoh"}},{"cell_type":"markdown","source":["### **Bedroom**\n","Perception | Memory\n","--- | ---\n","![img](https://drive.google.com/uc?id=1--6B7I0ZNA1qw6y4nC9W9cM08YLuv3M-) | ![img](https://drive.google.com/uc?id=1-DMyAxhgXnj27GTH1VLQZ_vH-Yrv8JtN)\n","![img](https://drive.google.com/uc?id=1-MgzKZiKjQO-K-W20VVJwr2wOljE7Zp2) | ![img](https://drive.google.com/uc?id=1-477dfBgoU7lcc9AYlaiQUEMRJzqfjs3)"],"metadata":{"id":"x4ngc9m5dNDi"}},{"cell_type":"markdown","source":["### **Kitchen**\n","Perception | Memory\n","--- | ---\n","![img](https://drive.google.com/uc?id=17RqgTTSnJxA3-RrBnuhM9jXRCDoPnVyZ) | ![img](https://drive.google.com/uc?id=1U1n277EBxfwsOfWrFMLpeC4smOg1w21I)\n","![img](https://drive.google.com/uc?id=1lfJPc82bNtSx_03kS4XZzEoNLxZ89T6U) | ![img](https://drive.google.com/uc?id=1Cw_y7VymfmAClY6ynBHBeC68_bSaxcxL)"],"metadata":{"id":"HEtPSeXpdM3y"}},{"cell_type":"markdown","source":["The top and bottom drawings from the similarity scores seem to be pretty accurate. Though there are some drawings that I thought shouldn't have been a top drawing or a bottom drawing.\n","\n","The best overall drawing came from the living room perception drawings with a similarity of 83.52.\n","\n","When experimenting with the preprocessing of the images I found that turning the images to grayscale and then back to RGB gave the most accurate scores among the drawings. This way drawings without color aren't pentalized. However there's a tradeoff as a few drawings had low similarity when color was taken away."],"metadata":{"id":"eGfK7C-S5SRY"}},{"cell_type":"markdown","source":["### Outliers\n","There are a few drawings that were given generous similarity scores even though they looked nothing like the picture or were just words.\n","\n","For the analysis I decided to keep the observations that had these type of drawings because they had other drawings that were of use. Also The dataset only has around 115 rows so there's not much room to throw away data. This is also why I imputed missing similarity scores with the mean of that column."],"metadata":{"id":"HDIxBIosiVaQ"}},{"cell_type":"code","source":["outlier1 = similarities_df[similarities_df.subject_id == 145].iloc[0]\n","outlier2 = similarities_df[similarities_df.subject_id == 195].iloc[0]\n","\n","fig, axes = plt.subplots(1, 2, figsize=(10, 3))\n","\n","axes[0].imshow(np.array(outlier1['kitchen_mem_drawing']))\n","axes[0].set_title(f\"{outlier1['treatment']}, {round(outlier1['kitchen_mem']*100,2)}\")\n","axes[1].imshow(np.array(outlier2['kitchen_mem_drawing']))\n","axes[1].set_title(f\"{outlier2['treatment']}, {round(outlier2['kitchen_mem']*100,2)}\")\n","fig.suptitle('Outliers')"],"metadata":{"id":"4IJxhXhQYVy8","executionInfo":{"status":"ok","timestamp":1714832814664,"user_tz":240,"elapsed":887,"user":{"displayName":"Jon Campbell Jr","userId":"09087198626790021717"}},"colab":{"base_uri":"https://localhost:8080/","height":338},"outputId":"3aea3baf-897b-4854-864f-3809b833dec8"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["Text(0.5, 0.98, 'Outliers')"]},"metadata":{},"execution_count":20},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAsUAAAEwCAYAAABffAwvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACK0UlEQVR4nOzdd1gU19cH8O/2pfcOUkRBQFCxYYm995LEEmM3iZqYmKqJMd0kmsQYY4zG2GLvJcaGBQt2sWFBAQEpItLblrnvH74zv11YYFGUdj7Ps48yOztzZ2H3nr177rkixhgDIYQQQggh9Zi4uhtACCGEEEJIdaOgmBBCCCGE1HsUFBNCCCGEkHqPgmJCCCGEEFLvUVBMCCGEEELqPQqKCSGEEEJIvUdBMSGEEEIIqfcoKCaEEEIIIfUeBcWEEEIIIaTeo6CYEEJqoFWrVkEkEiE+Pl7Y1rlzZ3Tu3Lna2kQIIXUZBcWEEGKkGzdu4LXXXoObmxsUCgVcXV0xevRo3Lhx46mP+d1332Hnzp1V10hCCCFPhYJiQggxwvbt29GiRQuEh4dj/PjxWLJkCSZOnIijR4+iRYsW2LFjx1MdtzJB8cGDB3Hw4MGnOg8hhJDySau7AYQQUtPdu3cPY8aMgY+PDyIiIuDg4CDcN2PGDHTs2BFjxozB1atX4ePj89zaIZfLq+xYHMdBpVJBqVRW2TEJIaQ2o5FiQgipwPz581FQUIBly5bpBcQAYG9vjz///BP5+fn48ccfAQDjxo2Dl5dXqeN88cUXEIlEws8ikQj5+flYvXo1RCIRRCIRxo0bV2Y7DOUUFxcXY+7cufD19YVCoYCHhwc++ugjFBcX6+0nEokwffp0rFu3DoGBgVAoFNi/fz8AYOPGjQgNDYWFhQUsLS3RtGlT/Prrr5V4hgghpPajkWJCCKnAnj174OXlhY4dOxq8/6WXXoKXlxf+/fffSh137dq1mDRpElq3bo0pU6YAABo2bGj04zmOw8CBA3Hy5ElMmTIFTZo0wbVr1/DLL7/gzp07pdIyjhw5gs2bN2P69Omwt7eHl5cXDh06hJEjR6Jbt2744YcfAAA3b97EqVOnMGPGjEpdDyGE1GYUFBNCSDmys7ORnJyMQYMGlbtfcHAwdu/ejdzcXKOP/dprr+HNN9+Ej48PXnvttUq3bf369Th8+DCOHz+ODh06CNuDgoLw5ptv4vTp02jXrp2w/fbt27h27RoCAgKEbe+++y4sLS1x4MABSCSSSreBEELqCkqfIISQcvBBroWFRbn78ffn5OQ89zbxtmzZgiZNmsDf3x+PHj0Sbl27dgUAHD16VG//Tp066QXEAGBtbY38/HwcOnTohbWbEEJqIgqKSbWJj4+HSCTCqlWrqrsphJSJD3YrGgE2NniuSjExMbhx4wYcHBz0bo0bNwYAPHz4UG9/b2/vUseYOnUqGjdujD59+sDd3R0TJkwQco0JqYxx48bB3Ny8upvxXIlEInzxxRfV3QzynFBQXEvcu3cPb7zxBnx8fKBUKmFpaYn27dvj119/RWFh4XM7b3R0NL744gu9BQRqis6dOwuTk3RvvXv31tsvLy8Pc+fORe/evWFra/tUgXhWVhamTJkCBwcHmJmZoUuXLrh06ZLePseOHTPYHv727bffPuslk2pgZWUFFxcXXL16tdz9rl69Cjc3N1haWupNptOl1WqrtG0cx6Fp06Y4dOiQwdvUqVP19jcxMSl1DEdHR0RFRWH37t0YOHAgjh49ij59+mDs2LFV2lZSMy1ZsgQikQht2rSp7qY8k9OnT+OLL75AVlZWdTflmfETckveSlaKSUxMxJdffonWrVvDxsYG9vb26Ny5Mw4fPmz0uTiOw48//ghvb28olUoEBwdjw4YNpfYrr2/r0aPHM19zTUE5xbXAv//+i5dffhkKhQKvv/46goKCoFKpcPLkSXz44Ye4ceMGli1b9lzOHR0djS+//BKdO3c2OJu+urm7u2PevHl621xdXfV+fvToEb766is0aNAAISEhOHbsWKXOwXEc+vXrhytXruDDDz+Evb09lixZgs6dO+PixYto1KgRAKBJkyZYu3ZtqcevXbsWBw8eRM+ePSt3caTG6N+/P5YvX46TJ0/q5e7yTpw4gfj4eLzxxhsAABsbG4Od8/3790ttKyuANkbDhg1x5coVdOvW7ZmOI5fLMWDAAAwYMAAcx2Hq1Kn4888/MWfOHPj6+j71cUnNt27dOnh5eeHcuXO4e/durf19nz59Gl9++SXGjRsHa2vr53aewsJCSKUvJnT6448/9EbeS+b879q1Cz/88AMGDx6MsWPHQqPRYM2aNejRowf+/vtvjB8/vsJzfPrpp/j+++8xefJktGrVCrt27cKoUaMgEokwYsQIYT9DfduFCxfw66+/1q2+jZEaLTY2lpmbmzN/f3+WnJxc6v6YmBi2cOHC53b+LVu2MADs6NGjFe7LcRwrKCgw+thxcXEMAFu5cuVTta1Tp04sMDCwwv2KiopYSkoKY4yx8+fPV/qcmzZtYgDYli1bhG0PHz5k1tbWbOTIkRU+3tfXlzVq1Mjo85Ga586dO8zExIQFBASwR48e6d2XkZHBAgICmKmpKbt79y5jjLHFixczAOzKlSvCfsnJyczc3JyVfNt1cnJigwYNKnXOlStXMgAsLi5O2NapUyfWqVMn4edVq1YxAOzPP/8s9fiCggKWl5cn/AyATZs2rdR+Ja+HMcZ+//13BoBdv3691H2k7oiNjWUA2Pbt25mDgwP74osvnul4Y8eOZWZmZlXUusqZP39+qddLbTV37lwGgKWnp5e73/Xr10vtU1RUxPz9/Zm7u3uF50lKSmIymUzvfYHjONaxY0fm7u7ONBpNuY+fOHEiE4lELDExscJz1RaUPlHD/fjjj8jLy8OKFSvg4uJS6n5fX1+9skkajQZff/01GjZsCIVCAS8vL8yePbtUzVIvLy/0798fJ0+eROvWraFUKuHj44M1a9YI+6xatQovv/wyAKBLly7CVyX8SCt/jAMHDqBly5YwMTHBn3/+CQCIjY3Fyy+/DFtbW5iamqJt27aVLldlLI1Gg7y8vDLvVygUcHZ2furjb926FU5OThg6dKiwzcHBAa+88gp27dpV6rnVxY++jB49+qnPT6pfo0aNsHr1asTExKBp06aYM2cO/v77b3z++edo2rQp7t69i7Vr1wrl1EaMGAEzMzMMGTIEv/76K+bNm4c2bdoIub66QkNDcfjwYfz888/YuHEjzp49a3S7xowZg759++LNN9/EyJEjsXjxYvz6669466234O7ujps3b1Z4jEmTJqFTp0748ssvsWLFCnz++ef49NNP0axZMzRp0sT4J4nUOuvWrYONjQ369euH4cOHY926daX24ed+LFiwAL/88gs8PT1hYmKCTp064fr16waP++DBAwwePBjm5uZwcHDABx98UCp1aMGCBWjXrh3s7OxgYmKC0NBQbN26tdSx+PraO3fuRFBQEBQKBQIDA/Xy3r/44gt8+OGHAJ7kzfN9FZ/2t3LlSnTt2hWOjo5QKBQICAjAH3/8UepcFy5cQK9evWBvbw8TExN4e3tjwoQJpdqjm1N8//59TJ06FX5+fjAxMYGdnR1efvnlKkk5ZIwhJycHjDGD9wcGBsLe3l5vm0KhQN++fZGUlFThPIhdu3ZBrVbrpVmJRCK89dZbSEpKQmRkZJmPLS4uxrZt29CpUye4u7tX4qpquOqOykn53NzcmI+Pj9H7jx07lgFgw4cPZ7///jt7/fXXGQA2ePBgvf08PT2Zn58fc3JyYrNnz2aLFy9mLVq0YCKRSBgdunfvHnvnnXcYADZ79my2du1atnbtWpaamiocw9fXl9nY2LBPPvmELV26lB09epSlpqYyJycnZmFhwT799FP2888/s5CQECYWi9n27duFNlTFSLFMJmNyuZwBYE5OTuyzzz5jKpWqzMc8zUixr68v69OnT6ntf/31FwPArl69WuZj+ecvJibG6PORmuvq1ats5MiRzMXFhclkMubs7MxGjhzJrl27VmrfgwcPsqCgICaXy5mfnx/7559/hBEgXbdu3WIvvfQSMzExYQDY2LFjGWPGjRQzxphKpWI//PADCwwMZAqFgtnY2LDQ0FD25ZdfsuzsbGE/lDFSvHXrVtazZ0/m6OjI5HI5a9CgAXvjjTeEb1dI3eXv788mTpzIGGMsIiKCAWDnzp3T24d/n27atCnz8vJiP/zwA/vyyy+Zra0tc3BwEPoDxp70P0qlkgUGBrIJEyawP/74gw0bNowBYEuWLNE7rru7O5s6dSpbvHgx+/nnn1nr1q0ZALZ37169/QCwkJAQ5uLiwr7++mu2cOFC5uPjw0xNTYVvOa5cucJGjhzJALBffvlF6Kv4b0patWrFxo0bx3755Rf222+/sZ49ezIAbPHixcJ50tLSmI2NDWvcuDGbP38+W758Ofv0009ZkyZNSrVn7ty5ws9btmxhISEh7PPPP2fLli1js2fPZjY2NszT05Pl5+c/1e+Ff5/gv1kyMzNjo0eP1nuuyzNq1Chmampa4UjvpEmTmJmZGeM4Tm/73bt3GQC2aNGiMh+7fft2BoAtX77cqDbVFhQU12DZ2dkMgMGvVg2JiopiANikSZP0tn/wwQcMADty5IiwzdPTkwFgERERwraHDx8yhULB3n//fWFbeekT/DH279+vt/3dd99lANiJEyeEbbm5uczb25t5eXkxrVbLGHv2oHjChAnsiy++YNu2bWNr1qxhAwcOZADYK6+8UuZjniYoNjMzYxMmTCi1/d9//zV4/TyNRsOcnJxY69atjT4XIYS8CBcuXGAA2KFDhxhjT742d3d3ZzNmzNDbj3+fNjExYUlJScL2s2fPMgDsvffeE7bxgzJfffWV3jGaN2/OQkND9baVTLVTqVQsKCiIde3aVW87ACaXy4XUJMaeBMEA2G+//SZsKy99wlBaX69evfQGnHbs2MEAsPPnz5fat2R7dINiQ8eOjIxkANiaNWvKPVZZFi5cyKZPn87WrVvHtm7dymbMmMGkUilr1KiR3gddQ2JiYphSqWRjxoyp8Dz9+vUzOOiWn5/PALBPPvmkzMcOGzaMKRQKlpmZWeF5ahNKn6jB+HqnxpZ42rdvHwBg5syZetvff/99ACiVvhAQEKC3QpeDgwP8/PwQGxtrdBu9vb3Rq1evUu1o3bq13oQkc3NzTJkyBfHx8YiOjjb6+OVZsWIF5s6di6FDh2LMmDHYtWsXJk+ejM2bN+PMmTNVcg7gycQKhUJRajs/E7is6h/h4eFIS0uj1AlCSI2zbt06ODk5oUuXLgCefG3+6quvYuPGjQarpAwePBhubm7Cz61bt0abNm2EfkfXm2++qfdzx44dS/UrupVQMjMzkZ2djY4dO5aq6gMA3bt311vpMTg4GJaWlkb3Vbrnys7OxqNHj9CpUyfExsYiOzsbAITJeXv37oVarTbquCWPrVarkZGRAV9fX1hbWxu8FmPMmDEDv/32G0aNGoVhw4Zh4cKFQvrWkiVLynxcQUEBXn75ZZiYmOD777+v8DxP27fl5OTg33//Rd++fZ/rpMbqQEFxDWZpaQmg4vqovPv370MsFpeaPezs7Axra+tSM98bNGhQ6hg2NjbIzMw0uo2G6p7ev38ffn5+pbbz+YmGZuBXFf4DQGVK0lTExMTEYN5wUVGRcL8h69atg0QiwauvvlplbSGEkGel1WqxceNGdOnSBXFxcbh79y7u3r2LNm3aIC0tDeHh4aUew1fZ0dW4ceNSubNKpRIODg562wz1K3v37kXbtm2hVCpha2sLBwcH/PHHH0KQqutZ+6pTp06he/fuMDMzg7W1NRwcHDB79mwAEM7XqVMnDBs2DF9++SXs7e0xaNAgrFy5stw5I8CTwPHzzz+Hh4cHFAoF7O3t4eDggKysLIPX8rRGjRoFZ2fnMvs2rVaLESNGIDo6Glu3bi1VhcmQp+3btm3bhqKiojo54ENBcQ1maWkJV1fXMiczlMXY0kxlLenKykjqN6SsF0118fDwAAA8fvy4yo7p4uKClJSUUtv5bYbefAoLC7Fjxw50794dTk5OVdYWQgh5VkeOHEFKSgo2btyIRo0aCbdXXnkFAAxOuDOWMUuFnzhxAgMHDoRSqcSSJUuwb98+HDp0CKNGjTLY/zxLX3Xv3j1069YNjx49ws8//4x///0Xhw4dwnvvvQfgSclN4Em/uXXrVkRGRmL69Ol48OABJkyYgNDQ0HIncr/99tv49ttv8corr2Dz5s04ePAgDh06BDs7O+HYVcXDw6PMvm3y5MnYu3cvVq1aJaxoWREXFxekpqaWeh7L69uAJ38fVlZW6N+/fyVaXztQneIarn///li2bBkiIyMRFhZW7r6enp7gOA4xMTF6s8bT0tKQlZUFT0/PSp//aWqfenp64vbt26W237p1S7j/eeG/Tis5UvEsmjVrhhMnToDjOIjF//scefbsWZiamhqsKLB7927k5ubWyU/ShJDabd26dXB0dMTvv/9e6r7t27djx44dWLp0qd6gR0xMTKl979y581T167dt2walUokDBw7ofX2/cuXKSh+LV1ZftWfPHhQXF2P37t16I84ll0DntW3bFm3btsW3336L9evXY/To0di4cSMmTZpkcP+tW7di7Nix+Omnn4RtRUVFVb6ICGMM8fHxaN68ean7PvzwQ6xcuRILFy7EyJEjjT5ms2bN8Ndff+HmzZt6y7/zFXCaNWtW6jEpKSk4evQoxo0bZzD1orajkeIa7qOPPoKZmRkmTZqEtLS0Uvffu3cPv/76KwCgb9++AICFCxfq7fPzzz8DAPr161fp85uZmQFApV7gffv2xblz5/TKueTn52PZsmXw8vLSe/E9rZycnFJf+zDG8M033wBAqTxnY6WkpODWrVt6OWXDhw9HWloatm/fLmx79OgRtmzZggEDBhh8Y1i/fj1MTU0xZMiQp2oHIYQ8D4WFhdi+fTv69++P4cOHl7pNnz4dubm52L17t97jdu7ciQcPHgg/nzt3DmfPnkWfPn0q3QaJRAKRSKSXuxwfH4+dO3c+9XWV1Vfxo8y6o6HZ2dmlAvDMzMxSI6Z8UFheCoVEIin1uN9+++2ZVq9MT08vte2PP/5Aenp6qRVb58+fjwULFmD27Nl65VlLys7Oxq1bt/RSOgYNGgSZTKaXp8wYw9KlS+Hm5oZ27dqVOs7GjRvBcVydHfChkeIarmHDhli/fj1effVVNGnSRG9Fu9OnT2PLli0YN24cACAkJARjx47FsmXLkJWVhU6dOuHcuXNYvXo1Bg8eLEyoqIxmzZpBIpHghx9+QHZ2NhQKhVDvsSyffPIJNmzYgD59+uCdd96Bra0tVq9ejbi4OGzbtk1vtLWk+Ph4eHt7Y+zYseUuxXzp0iWMHDkSI0eOhK+vr5CucOrUKUyZMgUtWrTQ23/x4sXIyspCcnIygCejB0lJSQCefP1lZWUFAJg1a5bQVn4EZPjw4Wjbti3Gjx+P6OhoYUU7rVaLL7/8slTbHj9+jP/++w/Dhg3TW42IEEKqG/8t1sCBAw3e37ZtWzg4OGDdunV68yF8fX3RoUMHvPXWWyguLsbChQthZ2eHjz76qNJt6NevH37++Wf07t0bo0aNwsOHD/H777/D19e3wuXUyxIaGgrgyQptI0aMgEwmw4ABA9CzZ09hxcY33ngDeXl5WL58ORwdHfXS4lavXo0lS5ZgyJAhaNiwIXJzc7F8+XJYWloKA06G9O/fH2vXroWVlRUCAgIQGRmJw4cPw87OrtS+fJ9SUQ1jT09PvPrqq2jatCmUSiVOnjyJjRs3olmzZsKqmQCwY8cOfPTRR2jUqBGaNGmCf/75R+84PXr0ENL3duzYgfHjx2PlypVCzODu7o53330X8+fPh1qtRqtWrbBz506cOHFCmBNT0rp16+Dq6orOnTuXew21VnWVvSCVc+fOHTZ58mTm5eXF5HI5s7CwYO3bt2e//fYbKyoqEvZTq9Xsyy+/ZN7e3kwmkzEPDw82a9YsvX0Ye1JOrV+/fqXOY6gO6vLly5mPjw+TSCR65dnKOgZjT2ocDx8+nFlbWzOlUslat25dqv6koZJs165dq7AUDGNPVmJ6+eWXmZeXF1MqlczU1JSFhoaypUuXlqq5yLcVgMGbbgkfvqRQybI+jx8/ZhMnTmR2dnbM1NSUderUqczSPUuXLmUA2O7du8u9BkIIedEGDBjAlEpluTV0x40bx2QyGXv06JHwPj1//nz2008/MQ8PD6ZQKFjHjh31VmxkrOwV7QzV516xYgVr1KgRUygUzN/fn61cudLgfiijvranp6dQ05v39ddfMzc3NyYWi/Xex3fv3s2Cg4OZUqkUai3//fffevtcunSJjRw5kjVo0IApFArm6OjI+vfvzy5cuFCqPbol2TIzM9n48eOZvb09Mzc3Z7169WK3bt0y2D57e3vWtm3bUtdS0qRJk1hAQACzsLBgMpmM+fr6so8//pjl5OTo7cc/X2XddEup8nXPS5Yj1Wq17LvvvmOenp5MLpezwMBA9s8//xhs161btxgANnPmzAqvobYSMVaJWVWEPGdLlizBRx99hHv37tEENUIIqWb8t3fz58/HBx98UN3NqbWio6MRGBiIvXv3PlUqI3kxKKeY1ChHjx7FO++8QwExIYSQOuPo0aMICwujgLiGo5xiUqNs2bKluptACCGEVKlp06Zh2rRp1d0MUgEaKSaEEEIIIfVetQbFv//+O7y8vKBUKtGmTRucO3euOptDCCGknqN+SZ+XlxcYY5RPTOqFaguKN23ahJkzZ2Lu3Lm4dOkSQkJC0KtXLzx8+LC6mkQIIaQeo36JkPqt2qpPtGnTBq1atcLixYsBPFlq0cPDA2+//TY++eSTch/LcRySk5NhYWHxVCuuEUKeD8YYcnNz4erqWm49akJqomfpl/j9qW8ipOYxtm+qlol2KpUKFy9exKxZs4RtYrEY3bt311sFjVdcXKy3osyDBw+qZFU0QsjzkZiYCHd39+puBiFGq2y/BFDfREhtU1HfVC1B8aNHj6DVakuV3XJycsKtW7dK7T9v3jyDK4clJibC0tLyubWTEFI5OTk58PDwgIWFRXU3hZBKqWy/BFDfREhtYWzfVCtKss2aNQszZ84UfuYvztLSkt54CKmB6KtjUh9Q30RI7VJR31QtQbG9vT0kEgnS0tL0tqelpcHZ2bnU/gqFAgqF4kU1z6CyUq8ZY3pPMgUDhBBS+1S2XwJqRt9ECKk61TITRi6XIzQ0FOHh4cI2juMQHh6OsLCw6miSUbRaLTiOg1arhVqtBsdx4DgOAIR/CSGE1D61tV8ihFSdakufmDlzJsaOHYuWLVuidevWWLhwIfLz8zF+/PjqalKFxGKxEPzKZDIATwJlrVZbnc0ihBBSBWpjv0QIqTrVFhS/+uqrSE9Px+eff47U1FQ0a9YM+/fvLzXJoSYqKirCV199hdatW2Po0KHQarVUfooQQmq52twvEUKeXbXVKX4WOTk5sLKyQnZ29gubzKD7NMXFxSEkJARdu3bFzp079fKKKaeY1GfV8dokpKagv39CaiZjX5s0vPkUGGPIy8uDSqUCAAqICSGEEEJquVpRkq2mo2CYEEIIIaR2o6D4OeHTLUQikfD/jIwM5Ofnw9bWlhY3IIQQQgipQSh94jniS7cxxpCSkoKff/4ZU6ZMwe7du5Gfn1/dzSOEEEIIIf+PRoqfE8aYMAGvqKgI27dvx44dO5CVlYWcnJwyFwMhhBBCCCEvHgXFzxFfpm3Hjh34559/YGZmhuHDh6Njx45QKpXV3DpCCCGEEMKjoLgKcRynN+lOLBbj8uXLWL16NfLz8/Hmm2+if//+cHFxgUQiMeqY/IgyP+rMH193JPpFT/Tjz83/nw/+aclrQgghhNRWlFNcRXSDRD44vHXrFpYsWYLo6Gj07t0b/fv3R4MGDSCVSiuVPsEfk+M4JCYm4uHDh6XO+aLxS1zz7dL9P6WGEEIIIaS2oaC4CumOjKrVamzevBn//vsv/P39MXDgQDg5OemNshqLDzbz8/OxaNEirF69GsCTiXzVFYDygf/Vq1exYsUKZGVlUb1mQgghhNRaFBRXkZJpA5cuXcLu3bthaWmJMWPGIDAwEDKZTK9UW0nlBcwikQh5eXn4559/sG3btudzEZUgEokgFouxf/9+fPvtt0hKSqJgmBBCCCG1FgXFVYQfzRWJRLh58yaWLFmC9PR0DBs2DD169ICVlRUAGMwB5oPhsgJisVgMsVgMxhiKi4tRVFQEAJBIJNUWiPI50YmJiUhISEBOTg4A/brMhBBCCCG1BU20q2IZGRn4/fffcfDgQfTv3x+jR4+Gvb29MBmtrBFijuOgVqtRWFgIpVIJU1PTUvuXPEZ5x3xR+DaU/JcQQgghpDahCKYKMcawZ88ebNy4Ec2bN8e7774LX19fYVS1vOCV4zjExsZi06ZNOH/+/ItqMiGEEEIIAQXFVYJPF7h79y5+++03mJqaYsqUKfDx8TGq9JpYLAbHcbh06RK+/fZb7Nix43k3mRBCCCGE6KCg+BnwI78cx6G4uBhLly7F7du3MXToUHTu3BkmJiYQi8VGpTcwxqDRaFBUVCTkDBNCCCGEkBeDcoqrgFgsxs2bN7Fu3To4Oztj3LhxMDc3F+4zFj8Jj6o4EEIIIYS8WDRSXAU4jsPWrVuRk5ODsWPHonHjxjThjBBCCCGkFqGR4irw8OFD7NixA+bm5hg4cCDkcvlzK0vGlzzjS6CVRyKRCCkcho5RcpshuvsZO4Jd8jFarVbv/vI+MDDGoFKpUFxcXO45lEolFApFqWWwdRlzTbrbiouLoVarhaWrFQoFZDKZwWPQaD4hhBBSt1BQ/Az44HLnzp2IiYnBqFGj4OvrK9QVfh4kEgkePnyIn376qcLA297eHkOHDoWLi4vB1Ax+SWZ+W3nHE4lERk0a5I+j1WrBcRwKCwvx8OFDqNVqcBwHsVgMZ2dnWFlZ6Z2XP3dGRgbOnDmDS5cuGWwPfw1hYWFo06YNlEolZDIZ1Go15HK58Dvh6zqXFbzyNaUBoKioCKmpqbh8+TJu3LgBtVoNa2trtGrVCs2bN4epqaleW4x9HgghhBBSe1BQ/AxEIhE0Gg22bt0KuVyO1157DQqFAoDhkcuqIBaL8fDhQ/zyyy9Gtc/d3R29e/eGQqEoteoe386srCwkJyejsLBQ7/GMMUilUjRo0AB2dnaVaqdWq8XBgwexceNGHDt2DPn5+RCJRJBKpZg0aRKmTJmCBg0aCAExf10rV67ETz/9hIKCAoOjtPyERKlUiq5du6J3794YM2ZMqeur6PnnOA4AUFxcjO3bt2Px4sW4du0agCdBr0ajgbOzM6ZMmYJJkybB2toaIpEIHMdRUEwIIYTUQRQUPwM+NeDatWvw9vZGy5Ytn3susVarhZeXF3755ZdSaQkl2djYoHnz5lAqlQYDRLFYjAcPHmD58uVYvnw5Hj16VGofa2trvPnmm/jmm2/KPZfudavVavz111/46quvkJ2dDUdHR4SEhEAul+PKlSv4+++/0aRJE7z88svC6K5Wq8WJEyewfv16mJubY+zYsejSpYsQvOpef0REBDZv3oyDBw/i33//xb59+zBjxgx06tRJbylt4H/BcclRZ34k+cCBA/j9998RGxuL9u3bo0uXLvD29sb58+exc+dO/Pjjj7hw4QLmzJmD4ODgal1FkBBCCCHPDwXFz0gmk0EqlQqjoHzw9bwCJ61WC2tra/Tv39+o85SXO5yRkYEVK1Zg6dKlMDU1RZ8+fWBmZqa3v4WFBTp06GDwuPzIKQDcunULbdq0AcdxWLJkCT799FNwHIepU6di4sSJaNy4MSQSCWbPno2VK1di+/btaNKkCVq2bAkAuHjxIjZt2oTk5GSMGjUKc+fO1VsaW9eQIUMwffp0HDp0CHPnzsX+/fsRHh6Ozz77DBMnToSDg4Pe70E371j33ytXrmDVqlW4efMmJk+ejA8++ADOzs7COfr3749vvvkGBw4cwKNHj7Bo0SKEhISU+3wTQgghpHaioPgpiUQiFBQUYO3atcjPz4e9vb0QgPEB4/MMjHkVpQmUd19mZiZiY2NhZ2eH999/H5MmTap0m/mgdvfu3Xj99ddx8OBBfPHFF1AqlVi8eDEGDx4MExMT4bhvvPEGoqKicPLkSZw5cwZNmjSBRCJBZGQkTp48iVatWmHKlCmwtLSEVqs1mKogFovh6+sLX19f9O3bF0uXLsWCBQvw2Wef4dixY/jkk0/QqVMnaLVaYQSbf57i4+Nx+vRpiEQibN++HSdOnMCAAQMwZswYODs7CwGzUqlEly5d0KhRI/z666/4888/8fbbb2PTpk1CjjYhhBBC6g6qG/aUpFIpzp07h4kTJyInJwdqtRoqlQpSqdToBTuqW1xcHBITE2FpaQk7O7tKtZkfIW7fvj0AwMTEBBzHYe7cucjLy8MHH3yAQYMGwcTERO9xPj4+6N69O8zNzXHt2jU8ePAAhYWFSElJgUQiQbt27RAQEADAuFHwBg0aYN68edi4cSOCgoIQHh6OoUOHYt26daUmx0kkEvz777+YM2cOXn/9dezcuRPBwcEYN24cgoODhWviP9yIRCJ4eHjgnXfeQe/evXHlyhUsWrQIGo3G6OeJEEIIIbUDBcVPSa1WIywsDJs2bYKnpydu3bqFKVOm4M6dO3qjxPzIsaFbdYuPj0dSUhIaNGgAPz+/Sj2WDxwVCgVsbGxw+fJlbNiwAVeuXIGfnx8mTZoEqVRqMIBs1aoV3NzccOnSJcTExAjPl1KphJWVFaTSJ19gVJSfrftcDhs2DHv27MHUqVORl5eHCRMmYNWqVVCr1WWWoHNxccFrr72Gdu3aCcfhOE6oysH/38XFBe+//z7c3Nzw999/IyUlpUb9HgkhhBDy7CgofgYymQzDhw/Hv//+i2HDhmHnzp3o0KED3nzzTVy7dk0vINRqtUKZspoSSPGBu4WFBWxsbCr1WD4g9PLyQpcuXXDr1i0sXLgQarUaY8aMgaWlJeRyuRDg6goKCoK3tzfi4+MRHR2NgoICoYwd36aKRolFIpHeY0QiETw9PfHbb7/h448/hkQiwc2bNxEfH4/CwkLhOeeff8YYQkJCEBQUJNRylkgkesfjjy+VSuHl5YWQkBCoVCqcPXtWOBYhhBBC6gbKKX4GfKAVEBCAf/75B7/88gtWr16NlStX4uDBg5g9ezaGDh2ql5rwvCfiVYa9vT1sbW0RExODy5cvw9XV1ejH8tUbgP9dy+XLl+Hg4IDBgwfrlVMrWRvZxsYGrVu3xpkzZxAREYGgoCCIxWJoNBoUFRUhLS0NFy9eRFJSUqWqeXAcB6lUivj4eADAhg0bsGbNGsydOxfjx4+HhYUFtFqt0O7g4GC4u7sbLFWnSyQSwcrKCq+++ir27duHRYsWoW/fvlAqldBqtQYDf0IIIYTULtSbVwGtVgu5XI6PP/4YEyZMwN9//40FCxZg6tSpWLZsGb799lu89NJLUCqV1d1UPYGBgfDz88Pt27dRVFT01MfRDSTNzMzg7u5ebl61WCxGx44d8d9//yE/Px+MMTg6OqKoqAinT5+GpaUlfvjhByQmJj51m4AnKw0GBwejRYsWQpAeHBwMW1tbJCcnw8nJCZaWluVOjORHlRUKBVq1agUvLy/ExsaiqKioVL40IYQQQmovCoqfAj/SyKdE8DmrHMfB0dERH374ITp06IBVq1Zh+/btmDBhAiZPnoyJEyfCw8OjVC7qs44alxyxNXY0WjdNoKIFKcpaXQ54Ur5s69atAJ6kRhizuAWfWpGfnw+tVovAwEAEBgbi+vXrCA4Oxu+//44HDx5UeBy+bYwxSCQSqFQq/Pzzz4iPj8e3336LSZMmwc7OTmi/v78/LCws9K7JmOefMQaZTAZHR0ckJCTgxIkTGDhwYI0Y8SeEEELIs6OguBL44Mve3h7NmzfHuXPnEB8fDx8fH2H1N+BJZYp27dqhdevW6NatGxYsWIAFCxYgIyMDM2bMgK+vrzCJSzcNoeS5gIoDNo7jhNJjla16wVdkSElJQUxMDNRqdZmryOmuPMe3m9egQQPh/2FhYRWmEzDGYGZmBisrK5w+fRpXr17FlClTMGTIEHz77be4c+cOPvroo6caiZ05cyYSExPxyiuv4K233oKVlZWwpDPHcVAqlXB0dBQWNDHm+eI/OJiZmWHgwIE4ffo0EhISKCAmhBBC6hCaaPcULC0t4efnh6ysLOTl5QH4X/Cq+69YLMawYcOwdu1aDBgwAJs2bcKYMWOwdOlSpKSkGFVyzNhJeXyAp1arsW3bNrz55ps4fPhwqaWbdbm6uqJJkybgOA4JCQlQqVTlHl+lUiEqKgoFBQV61+rj4wMvLy8A0JuoVhaO4+Dh4YEmTZrA0tISGo0GZmZm8PT0hL29PWJiYnD8+HHIZLIyb1KpFBKJRBgh1mg0mDFjBv766y8MHz4cixYtEgJi3efSzs4OwcHBsLKyQmZmJvLz8yt8XhljQs1kvkbxxYsXK1xRkBBCCCG1BwXFlaAb8Hbu3BkAcPDgwXL3lUgk8PPzw7fffouJEyciLS0Nc+bMwapVq5CZmWnwseUFwrqLdfD/l8lkEIvFuHz5Mt544w28+eabWLNmDe7cuVNmTV0+T9bFxQUWFhaIj49HTExMmddSWFiIVatWYfDgwfjvv//0gl4nJydhJThj8YFzUVERcnJyUFxcjJCQEPTt2xdxcXFYvXo1EhISyj2GbsrExx9/jJUrV6JLly74+eefYW9vL4wQ67ZVdzT96tWrSEpKqvAcwJPfo0KhQIsWLWBnZ0dBMSGEEFLHUFBsJN3AijGGoKAgAE9q/ZYVxPIlvsRiMTw9PTFr1iwsWLAAjRo1wubNm7Fv3z4UFRXpLRZRXFyM8+fP459//tGrl8unLlhYWCA5OVmvHvLZs2cxdepUDBw4EJs2bYKbmxu+//57DB06tNSyzSX5+fnBz88PV69exerVq3H+/PlSgXRhYSH27t2LefPmwcLCQm+pY5FIBIlEAltbWyFFoaLRbb7doaGhGDJkCAIDAyGXy+Hm5oZBgwYhLCwMkZGRWLFiRbkTAPmKFWvWrMHff/8NW1tbfPbZZ3B0dNTLly5r5Lq4uBhqtbrctuq2VyQSwcTERBiZ5u8jhBBCSO1HOcVGKpnj6+rqCicnJ0RHRyMvL0+YvMUrGSyJxWKYm5ujd+/eKCgowO+//47FixdDJBJh+PDhEIvFMDExgampKaKjo7Fq1Sr07NkTDg4OQgqAhYUFOnXqhA0bNuD999+Hp6cnCgoKEB4ejszMTDg6OmLkyJGYOXMm3N3dYWpqWm7Qxq8IFxoainPnzmHlypU4fPiwUKEBeJLqUFBQgOPHjyMzMxNff/21kEOte+wBAwZg//79Ro+echyHDh06oEWLFlAoFDA1NYVYLEbTpk3x8ssv49KlS/jrr78QExODtm3bom3btsLIMP9B4fTp0zh58iROnDiBoqIiLFu2DKGhocIIMZ/3rPuhQ/d3Y0xOcckPQyWX8iaEEEJI3UBBcSXojoC6ubnBy8sLly9fRmZmZqmgGChdn5dPWRgwYAAKCgqwbNkybNy4Ee7u7ujUqRPCwsIwe/ZsHD16FB07dhRGeflATC6X4/XXX8ft27dx5MgRyOVyaLVauLq6Yvz48RgwYABcXFzg6OhoVH1fPsd2zJgx8Pf3R3h4OA4dOoRdu3bpTZbjOA4SiQQzZszA4MGDSwWKANCuXTsMHDgQYWFh5Vaf0H0OTUxM9CbTcRwHMzMzdO3aFdOnT8fatWuxe/duHDlyBObm5nrPKWMMubm5yMvLg6+vL0aOHIk+ffoI7S5ZZo0fxdb9XcTExOD+/fsIDQ2FXC6v8Pnij1OTak0TQgghpGpQUFxJfEAkk8nQrFkznD9/HsePH8drr71mdGkvCwsL9OvXD2KxGAUFBXBzcwPwJDd39OjR6NevHywsLPQCNT7ACwsLw/Lly3Hr1i3hvgYNGsDHx0dYJIQfSTUmMBaLxXBzc4OdnR1atWqFkSNHIjk5udQ+SqUSLVu2hKmpqcH0iMaNG2PBggVC6kJZI6l8cGpowQz+MW5ubpg0aRI6d+6Mq1ev4sKFC8jPzxcqdfD7K5VKvPTSSwgJCYGzszPMzMyEwLdkYK7bZg8PD1hYWCAtLQ1ZWVml2lMe3VFiY0rPEUIIIaR2oKC4Ekp+3f7SSy9h2bJluHPnToVfp5dcAc7Z2RlDhw6FRqOBtbW1MGHOzs5OqKtraFEJMzMzNG3aFL6+vsI2hUIhBGiG0gTKaxPP3NwcZmZmcHV1LVWFgm+DUqksc5RUoVCgYcOGRuUTlxVM8seUSqVwdnaGvb09goKC0Lt3b2g0mlLBtkQigYODA8zMzEqVtivZPt3nMTg4GHZ2drh//z4SEhLw+PFj4YNJRfg0mMzMTNy5cwf+/v5GPY4QQgghNRsFxUYqGWQxxuDl5QWlUolHjx5VmGdacmRUKpXCzs6uwnMaSlXga+ZWpr3G3M8H5oZqFZf1OGOutzLt0iWTyWBjYwMbGxuj9i/v2CU/WMhkMqjVaiQkJCA9Pd3ooNjU1BQDBw7EypUrkZaWRkExIYQQUkdQUPwMGjVqhK+++grBwcFG7V+ZgLCsoLUqz/E8VPf5y6LbLnt7e7i5uUGpVCImJgaJiYkIDg6uMN2Erz4xZswYeHh4oFGjRkanqRBCCCGkZqOg+BnY2tpi/PjxQuUEUjvY2toiODgYp06dwoMHD5Cenm700tsSiQSNGjWCm5sbLC0tjV5chRBCCCE1G0Vyz0AsFsPW1hYmJiYUFNciUqkUTZs2haOjIwoKCpCZmYnCwkJhgqIxj7eysjJ6mWhCCCGE1HxVHsl98cUXeosdiEQivbzLoqIiTJs2DXZ2djA3N8ewYcOQlpZW1c147nSvT/dnUjv4+voKkwoTEhKQkZEhjBaXN/pbckEQ+jBESO1QX/omQsjTey49emBgIFJSUoTbyZMnhfvee+897NmzB1u2bMHx48eRnJyMoUOHPo9mEFImNzc3NGnSBGZmZkhKSkJ6errBSY2EkLqD+iZCSHmeS04xX1KrpOzsbKxYsQLr169H165dAQArV65EkyZNcObMGbRt29bg8YqLi1FcXCz8nJOT8zyaTeoJxhjMzc0RGhqKQ4cOISEhAQ8ePECLFi2E+2nUn5C6h/omQkh5nstIcUxMDFxdXeHj44PRo0cjISEBAHDx4kWo1Wp0795d2Nff3x8NGjRAZGRkmcebN28erKyshJuHh8fzaDapRxhjCA4ORkBAAIqLi5GVlQWg5lbPIIQ8O+qbCCHlqfKguE2bNli1ahX279+PP/74A3FxcejYsSNyc3ORmpoKuVwOa2trvcc4OTkhNTW1zGPOmjUL2dnZwi0xMbGqm03qEX5CnZeXFwYNGoQRI0bAz88PQOlccUJI3UB9EyGkIlWePtGnTx/h/8HBwWjTpg08PT2xefNmmJiYPNUxFQoFFApFVTWR1HN8wCuTyTBo0CAwxmjJZkLqOOqbCCEVee5T562trdG4cWPcvXsXzs7OUKlUwlfVvLS0NIN5XoQ8D/xIMB8My2QySCQSGiUmpB6hvokQUtJzD4rz8vJw7949uLi4IDQ0FDKZDOHh4cL9t2/fRkJCAsLCwp53UwgRSCQSSKVSSCQSvRJrFBQTUj9Q30QIKanK0yc++OADDBgwAJ6enkhOTsbcuXMhkUgwcuRIWFlZYeLEiZg5cyZsbW1haWmJt99+G2FhYWXO7iWEEEKeFfVNhJCKVHlQnJSUhJEjRyIjIwMODg7o0KEDzpw5AwcHBwDAL7/8ArFYjGHDhqG4uBi9evXCkiVLqroZhBBCiID6JkJIRUSsFq5SkJOTAysrK2RnZ8PS0rK6m0MI+X/02iT1Gf39E1IzGfvapDVqCSGEEEJIvUdBMSGEEEIIqfcoKCaEEEIIIfUeBcWEEEIIIaTeo6CYEEIIIYTUexQUE0IIIYSQeo+CYkIIIYQQUu9RUEwIIYQQQuo9CooJIYQQQki9R0ExIYQQQgip9ygoJoQQQggh9R4FxYQQQgghpN6joJgQQgghhNR7FBQTQgghhJB6j4JiQgghhBBS71FQTAghhBBC6j0KigkhhBBCSL0nre4GkPqF47hS20Qikd7PjDEwxiASiYQbIYQQQsjzRCPF5IVjjAnBsaGAlw+KGWMvummEEEIIqadopJi8cPwocHJyMu7cuYOsrCwAgFwuh7u7O/z9/SGTySgoJoQQQsgLQ0ExqRbx8fFYv349jhw5gpycHIhEIkgkEnh4eGDQoEEYPHgwzMzMhACaEEJI7cRxnF4qHD/gYex7e2X3N1bJgRdj26f7ON1Uv8rSarUQi8XUx9UgFBSTF04sFuPs2bPYuXMnVCoVAgMDYWZmhqSkJJw7dw4pKSnQarUYMmQILCwsoNVqhTcNsZgyfgghpCbTDRr5gLFkSlxlAmLdx1ZlEFnyuJXFcZwQFEskEqPPCQB3797FuXPn0KNHD9jb21PfVkNQUExeKP7NLDk5GY8ePUL37t0xefJk2NraIiEhAdu2bcO///6LP/74A8XFxRg+fDisra0plYIQQmqZ27dvIyoqCk2aNIGPjw9MTEyEPuBpA9uq+vaQD4j5UezMzEw8fPgQxcXFBvfXPadEIoGNjQ0cHR2FY1XWyZMnsXTpUvj4+MDa2hpyufzpLoRUKQqKSbXgP+07OTnBz88P1tbW8PLygo2NDaRSKcLDw7F48WJkZWWhb9++CAgIqO4mE0IIMQIfQO7btw8rV65EUFAQXnvtNfTo0cPoEVVdWq0WKpUKEokECoWiytrJB9hRUVEIDw/H7du3UVhYWGHQLZPJEBgYiDfeeAMWFhZPde579+7h5s2bSE9Ph1arfapjkKpHQTGpErpl1EpuL5lvVVRUhIyMDBQWFqKoqEj4ZC6VStG0aVNMnz4dHh4eWL9+PRYuXIjk5GTMnTtXb8T4WfK4CCGEPH+3bt3CjRs3cP36dbi5uaFr166QSCSlcnfLotFokJycjMuXLyM+Ph6WlpYICAiAp6cn7O3tIZPJhOM8TRoEYwxisRhnzpzBxo0bwRiDubk5GGNITExEWloanJ2d4e7uDpFIBI7jkJmZifj4eLRo0QIjR46EpaXlUz03xcXFYIxBo9HQN6E1CAXFpMqUDFgNTVYQiUTIzs5GbGwssrKykJiYiKSkJDg4OAB4Ehg3btwY48ePh7W1NRYuXIjt27ejVatWGDp0KExMTISvvGiCAiGE1Fy6o8IqlUpvMIP/f3p6OhISEuDh4QF7e3u9gDkpKQnbtm3D2rVrcf/+fdjZ2aFJkyYIDQ1F8+bN4e3tDVdXV9ja2ur1Ocbi+xA/Pz8MHz4cnp6ecHR0BGMM69evx/79+9G1a1eMGDECYrEYxcXFOH/+PDZv3ozQ0FCYmpqWmkRYEWM/EJDqQUExeSb8Czs9PR3FxcWwsbGBXC4X3iQMfWpXqVQoKCiAWq3G1atXceXKFQQGBgpl2EQiEezs7DB48GDk5ORgwYIF+PXXX2FpaYkePXpQ7hUhhNRgjDGoVCo8fPhQ2KY7WZof2JBIJIiKisL69esxatQodOrUCTKZDCqVCrGxsdizZw82bdqEtLQ0tG7dGjY2Nrhz5w6ioqJgaWmJ4OBgtGjRAiEhIfD19YWXl5fRbdQNzrt27YqXXnoJUqlUaN+5c+egVCrh6+uLnj17AnjyLae9vT3Mzc3Rr18/mu9SB1FQXA+VV27maUrf5OTkYNWqVcjKykJgYCA8PDwQEBAAa2tr4Y1P9/gmJiawtbWFiYkJ4uPjERkZiQ4dOsDX11dvtNna2hoDBw5EdHQ0/v33X3z55ZeQyWTo1q0bjRATQkgNdufOHZw+fRrm5ubIzc0tdT8/YJKQkIBLly6hS5cu0Gg0UCgUyMrKwsaNG7F8+XIUFxejT58+mDlzJpycnHDlyhVERETg/PnzuHz5Mk6ePAkLCwt0794dr7/+OkJCQio9cMIYE/opPqWBz/PV/WZSLpcjNDQULVu2hEgkEkqqPW/PqyQdKY2C4jqs5CfYkmkNFT3O2Bfg7du38cknn0AikcDKygqurq5YuXIlOI5DTEwMvLy84OTkBIlEAo7jYGNjg3bt2uHs2bO4efMmjh49iqCgIEyYMEHI5+JzvXx8fPDZZ59BKpViy5Yt+Pzzz9G0aVM4OzvTGwQhhNQAhvqajRs3IiMjA926dcPBgwfLfGxeXh4KCgpQXFwMrVYLxhgKCgqQkpKCjIwMuLi4ICQkBMHBwRCLxXBzc0PPnj2RkJCAs2fP4s6dOwgPD8fatWtx/vx5bN26Fe7u7ka33VA1DEM1lfntUqlUr48q77nQnWfzNP1VyWOV1/6yHmdoP2NGt+tr/0qF8eo4juOg1Wr1bvwnX61WK9RZ1C1PU9kllvkJA97e3mjdujV8fX1hZWWFM2fOYOLEiVixYgUyMzOF84nFYoSFhcHX1xdisRj379/Hjh07cOzYMWHSHcdxQq6Wp6cnPv30U3Tr1g05OTnIzs5+qhnMhBBCng/dfiMjIwNbtmyBr68vxowZY3D+B/9zQUEBCgsLUVxcDI7jAAD29vZo1qwZPD09hXQ73XQHmUyGhg0bYuTIkZgzZw5Wr16NkJAQXLp0CWlpaUa3WSwWQywWQyKRCP/nb4bay2/nHyOVSiGVSkv1R4wxob/lr6m85628+/i+sGRfzvfVFT2W/5CRn5+P/Px8FBQUCMfT3Y8/Zn2vhEEjxXUc/6JRqVTIycmBSqWCXC6HpaWlwa+YnmayAv/m0atXL/z4448AAKVSiYiICKSnp2PLli0YMmQILC0thePb2trCwcEBSqUSRUVFOHfuHP766y/Y2tqiZcuWkEqlesd2cXHBnDlzcOnSJXh7e1d6cgMhhJDnR7fvOHv2LO7du4cvv/wSDRs2LDVaqvu+XXIgRiQSwdLSEu3atUNERARiY2MRHBwMiURisG8Si8VwcnKCj48PIiMja0Sf8KJWYq3oHBzHISsrC0ePHhXaJZPJEBAQADMzM1hZWUEqlSInJwempqZQKBRCTnVNeB6rAwXF9UBRUREiIyOxfv163L17Fz4+PpgwYQLCwsKg1WqRm5uLoqIiAE+qP1haWgpLLAPGf40ikUggk8mE/a2trSGTyRAbG4sbN27Ay8sLJiYm4DgOTk5OCA4OxpEjR5CamgqZTIajR49CrVbjs88+Q8uWLfXK7UgkEgQGBiI4OJgmNhBCSA2Wnp4OjuPg4eEhbNMNfMt6Dy8ZHItEIiiVyqeuBfyiGLqeR48eAQCsrKygUCgq3W+p1WqoVCpoNBoUFRVBpVJBKpXCwsJCqHqhG7waOj7HcVi+fDk+/fRTmJiYQCKRQKvVwsfHB25ubhg4cCAcHR2xe/duhIWFYeDAgfU+NZGC4npg48aN+PHHH5GcnAwAOHfuHMzMzODo6Ij4+Hj89ddfuH79OgDA3d0dr7/+OoYPHw6lUlkqz6o8/Ncx/H7t27eHq6srrl69ijNnzqB9+/ZCsC0SidC8eXP4+vrC1dUVwcHBiIqKQkREBL7++mvMmzcPISEhescrq8wbIYSQ6qVbq55/nzbmq/iyAmU+TYH/el93u6H/V/dgie51JCQk4K233oJKpcJ7772Hnj176lVXKqv/4o+h0WgQHR2NixcvIjY2FleuXMHt27fh5uaGV199FS+//LLB+si6bRCLxbh69SqWLFkCExMTDBs2DE5OTkhLS0NERAQuXLiAU6dOAXiSwrJ+/XrI5XIMHz4cVlZWz+MpqhUoKK7DRCIRYmJi8OeffyIpKQmjRo2Cr68vtm7dit27d0OpVCIxMRH79u2DnZ0dTExMcPXqVcydOxcJCQkYM2YMGjRo8NR1GM3NzYX/79ixA926dRPOIxKJYGZmBqVSKbwQe/Xqhfnz5+Px48eIjY0VgmJaE54QQmoHrVaLzMxMAGUPZOhu153TUha+/ymvD6oJQTHHcXjw4AEmTpyIEydOQKFQYNSoUdi0aZNQ1g0of1BHq9Xi4sWL+O6773D06FFwHAdTU1PI5XJcvHgRV69exblz5zBv3jxhmemSbeAdPHgQDx48wFtvvYXff/8dwJPBq7S0NNy5cweRkZFYvnw5EhISoNVqhflB9XnQiYLiOu78+fNISUlB586d8d5778Hf3x9isRiLFy/G8ePHodFoEBwcjPfffx9dunTBwYMH8c033+CXX35BbGwsfvjhB9jZ2T3VG47up+LExEQsXrwY7u7uCAkJEVYH4svfSKVS9O7dG40aNUJ6ejpatGgBgEaECSGkNomOjsb8+fOFvGC+VnF1B60vQkpKCiZNmoSIiAh06dIF/fr1w3vvvYeLFy+id+/eFT5eJBLhwoULmDt3Lm7duoUxY8agZcuWaNiwITw8PHDo0CEsXLgQN27cwKNHj+Dk5GTwGGKxGCkpKVizZg2srKzw7rvvAvhfn+zi4gIXFxd06tQJgYGBePfddxEfH0/9LSgorvP4P/LWrVvDysoKIpEIYWFhOHDgACIiIsAYQ2hoKORyOezt7TFkyBBYWVnh008/xY4dOyCXy7Fo0SKhDI2hY5eH4zhYWFhAoVDg+PHjWL9+PWxsbNCgQYNS+yoUCgQEBAijCPX9EyshhNQW/Ht1QkIC0tLSMG7cODRu3BgPHjzQ26+mBscVVXIorz/SarWIjo7GJ598gmPHjiEsLAwbNmzAmTNnAECY1F7eMfjz79ixA1euXMEbb7yBadOmCSvs8bnA5ubmwlLZhlaPFYlEePToEaZMmYK4uDjMnTsXjRo10ktv5BdXkclk6Nu3L/75559KVe2oy+h76TqOfwEeOHAAb7/9No4dO4bQ0FAMGjQIDRo00CvRBgAmJibo0aMHfvnlF3h4eGDDhg2YOnUqCgsLAUCvlEtZ59L9Wkyj0cDT0xOjR4+Gk5MT/vrrLyxcuBB3797VK31T8rFlrYZHCCGkZuHfvx89eoRffvkFSqUSffv21buP/1e3vBgAoRxaZUuBVjWO46BSqaBWq4XSoYZymg3Jy8vD3LlzceDAAYSFhWHLli2ws7ODSqUC8GTSHKCfNsL3b/w3prpl1qRSKezs7GBhYQGO4/Dw4UP88ccfmDZtGjIyMjBs2DD4+PjotUG3rGpUVBT+++8/DBkyBLNnz4ZWqxX6VL7P5QN1iUSCVq1awdzcvMIyb/UBRR11nG6JnJ07dyIqKgqFhYUYMWIE+vfvDzMzM+GFAjx50SoUCrRr1w6LFi2Ch4cHdu7ciXXr1unVNSxZ0NzQOflgV6PR4JVXXsHYsWNhYmKCv//+GytWrMCpU6fw6NGjcgNtQgghNR9jDHFxcThy5AgGDRqE4cOHG6z1y7/f84s5JSUlwcLCAq6urlAoFMJATXWQSCSQSCTIzs5Geno6RCKRMAemLHx/WFxcDKVSiYULFwppDRYWFnB2doaTk5NecK1SqZCUlCQE38CT5+bevXu4fPky7O3t4enpiezsbOzevRvvvfcevv76azDG8MEHH+Ddd9/VK6mqO7Ck1Wqxa9cuAIC/v79wXSWvgT93VlYWsrKyoNVqcfz4cb2luesjSp+oJ/hPvPwL0N7eHi1atMChQ4dQXFwsjATzb0YKhQLt27fHn3/+idGjR+Obb75Bt27d0LBhQ2HiHa+sihCFhYXQaDTgOA6WlpaYM2cOHj9+jPXr1wv1jAHU+9muhBBSF/BBn7m5ucH7+VHQgoIC3Lt3Dzt27MDu3bvRpEkT+Pr6GixdpjtiyzPU/zzrgk5isVgYUY2Pj0dsbCy8vb3RokULIX3Q0MRBrVaL5ORk3LlzB6GhoWjUqBE0Gg0YY+jYsSOuX78OExMTobQo8GREPSIiAt7e3mjSpIlQH/j06dNISEhAr169EBQUhGPHjuH777/HlStXYGpqiqFDh2L8+PHCYBM/yq77XPAT6cRiMYYNG2bwd8A/XydOnMD06dMRHR0NrVaLxMREFBQUPFWqZF1BQXEdp/vCBfQD2Hbt2qFdu3bYvn07Tp8+jb59+8LS0lJvCcuAgACMHTsW33//PaZMmYJ169aVmvHKvxGeP38eKpVK+GS9ceNGJCcnw83NTfjq5rPPPkNQUBAOHjyIhw8fwsvLC6+99hoCAwNLBduEEEJqj9zcXAAo95u/06dPY+7cuTh58iSKi4vRtGlTfPjhhwgMDNQbNeVlZWXh6tWrUCqVsLa2hr+/v7C4E3+uhIQEoeRoVbh27Rri4+PRokULuLm5lbsvx3FIT09HYmIiunTpAgsLC710BRsbGwD/C1jFYrFQns3CwgIWFhaQSCTIzMzEv//+i+zsbAQHB8PZ2RmdO3eGi4sLMjIyYGJiAm9vb8jlcr30Dp7uoBffh9+6dUuo7V9yYa7Y2FhMmDABcXFx6Ny5M4qKihAdHY2FCxdi1qxZ8Pf3r5fzeiqdPhEREYEBAwbA1dUVIpEIO3fu1LufMYbPP/8cLi4uMDExQffu3RETE6O3z+PHjzF69GhYWlrC2toaEydORF5e3jNdCDFMd7lKV1dXNGjQAKampgAAX19ftGrVCmZmZrh06RIiIyNLFU+3sLDA6NGjERYWhnPnzuHo0aOlcn09PDzg4OCA06dP49NPP8XKlSvRt29ffPLJJygoKMDkyZPh4OAAjUYDBwcHvPHGG9i2bRtOnDiBtWvXolevXpDJZAaX1iSEkIpQv1Qz8AGgofkgYrEYZ8+exZgxY3DhwgX07dsXGzduxN69e9G1a1coFIpS80s4jsO1a9fw/vvvo2PHjujQoQOGDh2KFStWYMuWLVi3bh1mzpyJ9u3b48CBA8+8yinfByUnJyMnJwfe3t5CWVL+ZijHmD+nRqMRftbdVrLs3L59+5CXlwdfX18hDSI3NxfJycnw8fGBn58flEolHB0d8dJLL2HIkCHo3bs3/Pz8hCWm+YU4+FxkjuOg0WiEwSyO4zBixAh06dIFe/fuFdrGi4iIwMOHD9GyZUusXLkSv/76K3r27Indu3fjs88+Q1RUlF66i+6S03U675hV0r59+9inn37Ktm/fzgCwHTt26N3//fffMysrK7Zz50525coVNnDgQObt7c0KCwuFfXr37s1CQkLYmTNn2IkTJ5ivry8bOXKk0W3Izs5mAFh2dnZlm1/vrF69mrm5uTEArFWrVuz06dNMo9EwtVrNtFotO3r0KOvZsyezs7NjH3/8MVOpVEyr1TKNRiPcVCoVi4qKYu+++y67d+8e02q1eufgOI599913zNTUlIlEIiYSiRgAZm1tzX766SeWmZkpHFOr1TKO46rp2SDPG702SXWoCf0SY/X771+r1bJz584xAGz8+PGM4zhWXFzMcnNzWevWrZm9vT1zcHBgYrGYzZkzhz169EjoD/gbY0/6E41Gw9LS0tjGjRvZjBkz2IwZM9jEiRNZaGgoA8BEIhETi8VMJBIxhULBOnXqxGbMmMHmzp3LMjIynqr9fBtycnLYe++9x+zt7dlnn33GcnNzhf6L4zim1Wr1+rHi4mJ27NgxBoDZ2dmxn376ieXn5+tdF3/TaDRszpw5zNHRkTk4OLDw8HBWVFTEGGPs/v37rF27dqxt27bs+PHjpc5TVnv5m1qtZmq1WnjO9+/fz3r37s2kUikTi8UsNDSU/fjjjywlJYXdvn2bOTs7My8vL3by5ElWWFjIOI5jRUVF7KuvvmJubm6se/fubPfu3SwnJ0fvumtrH27sa7PSQbHeg0u8+XAcx5ydndn8+fOFbVlZWUyhULANGzYwxhiLjo5mANj58+eFff777z8mEonYgwcPjDpvfX7jqawLFy6wkJAQJpFIWHBwMDt27JgQEHMcx9LT09ns2bOZmZkZ69+/P7tx44bw4lWr1UylUrGioiJWUFAg/Kz7guBfkCqVioWHh7N58+axefPmsV9++YVdu3aNFRUVseLiYoNvfqTuodcmqW7V1S8xVr///vn+ZOzYsWzXrl1Mq9WyoqIixnEc27hxI1MoFAwAe+ONN1h6eroQxOn2R/xx+P6H/5cP9h48eMC2b9/OvvvuO/bdd9+xH3/8ke3YsYPl5OQI+z1t/8L3TXFxcWz48OHMxcWFLV68mKnValZQUMDu3r3Lrl+/zgoKCvTaq1ar2aVLl1hQUBCzsbFhMpmMjRw5kt24cYPFxMQIt9jYWLZx40ZmamrKLCws2Pbt21lBQYFwXj4obtasGQsPDxcC0bKup7CwkEVGRrJZs2ax6OhovT6bf04LCgrYmTNn2EcffcTs7OyYRCJhnp6eLDQ0lEkkEvbdd9+x7OxsVlxcLDx3BQUF7LvvvmNeXl7M3d2dzZ49m0VHR7PCwsJaGxAzVk1B8b179xgAdvnyZb39XnrpJfbOO+8wxhhbsWIFs7a21rtfrVYziUTCtm/fbvA8RUVFLDs7W7glJibW2zeeyuA4jmVlZbFOnToxmUzGZDIZW7x4MXv8+LHep77w8HDWvXt31q1bN3bx4kW9T4MlPyHyn5Z1z8Hvw48q8zf+GHl5eeznn39mO3fuZBkZGbX2RUUqVp+DAlIzvKh+iTHqm3TxfUFRUZEQ0PLbCgoKWOvWrVmjRo2EAE436Cs5WFKy39Htf/gAubi4WAgAjR1s4c/3+PFjdvnyZXbhwgV28eJFduHCBfbff/+xuXPnsuHDhzMPDw/m6OjIevTowSZMmMD69+/PPDw8WNeuXVlUVJTBke2srCx2+fJlNnnyZCaRSJiJiUmpG//BYNSoUezx48d6357Gx8ezdu3aMbFYzAYPHsyOHDkiBM3p6eksKiqKnT9/nt26dYvl5+ezoqIitn//fmZra8veffddg6O5/HNWXFzMbt++zWbPns0aN27MZDIZ69mzJ4uJiWEqlarU7yMvL4/t2rWLvfTSS0ypVLLRo0eza9euCc9/bWRs31SlE+1SU1MBoNQqK05OTsJ9qamppSZqSaVS2NraCvuUNG/ePHz55ZdV2dR6gTEGhUIBX19fREVFITc3t1R+k0gkQtu2bbFo0SIUFBSgcePGpWbXlrXWvC4+h8rQDOCEhAT8/fff8PLygq+vr5B3Rgghz9vz6pcA6pt08X1DyQoSIpEISqUSK1asgFgshq+vr8G+pazjldxmaDurRI5rSkoK3n77bRw/flyoIwxAyMnVzZs9evQoRCIRTE1N0aRJEwwePBhubm7QarVCX8dPqLOwsEDTpk0xf/58hIWFYevWrcIE95IGDhwIhUIBAMKkPHNzc3Tv3h1SqRSnT5/GpUuX4O3tDXNzcyQmJiIuLg7Ak8oefn5+aNq0KZycnITV6ww9Z3zbJBIJfH198dlnn2HatGm4desWmjVrJizoVfL3YWJigt69e8PZ2Rn79++Hq6sr7O3thX1YHZ6AVyuqT8yaNQszZ84Ufs7JyYGHh0c1tqj2kMvlGD16NE6fPo2bN28KLwCmk/Qvk8ng7e0tlMvh/+CN+aM39oWhUqnKLN1GCCG1EfVNhhkKzvhJYgAq7GMq20cYuz+/2ltsbCw6duwIc3NziMViyOVyhISEoHHjxlAqlXr7M8agVCrh5OQEBwcHyOVyvUEl3UEmjuNgamqKESNGYMiQIWW2Q6lUChU0+OfE0tISH374IaZOnYotW7Zg9erVuHz5MrRaLRo0aIBevXrBzMwMGRkZuHLlCs6dO6cXzBrzHEilUjg6OsLBwUHvg0TJ3wf/c3BwMAICAvQqZtT1RbWqNCh2dnYGAKSlpcHFxUXYnpaWhmbNmgn7lCwOrdFo8PjxY+HxJSkUCuFTFTEeX8swLCwMc+fORWJiIrp27SpUn9B9QUkkklJlW57Xp8FnDY5LjkIQQkhZnle/BFDfVBn8Yh3V/Z7t7++PjRs3wsbGRq+0m0KhgFQqLfObUd1g0FAQqtsvSaVSIXg2VFVJd1CKP55EIoGZmRlMTU0xbtw49OzZEzk5OWCMwcrKCra2thCLxSguLkZqaiqio6Nx+fJlmJqaonPnzkZdO38NYrHYqAWzJBJJqeekrqvSoNjb2xvOzs4IDw8X3mxycnJw9uxZvPXWWwCAsLAwZGVl4eLFiwgNDQUAHDlyBBzHoU2bNlXZHIInL06pVIr+/ftDo9HAxMQEMpnsmY6p+4Lm/y2vnBr/4uNXKtJqtRCLxVCr1YiLi8OpU6dw79494ViGXqz810AODg4YPHgwPD09hWPq1mysTy9eQkjFqF+qGcpKr3vRZDIZfH19K91flEzRKBk8V+baKholNzc3R8OGDfUGkPjjM8bg4OCAxo0bo3fv3kJ6R2XPWV57RSKR3geG+qTSV52Xl4e7d+8KP8fFxSEqKgq2trZo0KAB3n33XXzzzTdo1KgRvL29MWfOHLi6umLw4MEAgCZNmqB3796YPHkyli5dCrVajenTp2PEiBFwdXWtsgsj+i9aMzOz53Jsvo5heZRKJczNzXHr1i0kJyejUaNGyMzMxKZNm7BlyxbcvXsXRUVFRp1XLpdj8+bNmDp1Kl555RXIZLK6XzeREFIu6pdqvpowYMG34WmC86pK9TBWWW3kA1apVFqpfr0y7awJv6vqUumg+MKFC+jSpYvwM59PNXbsWKxatQofffQR8vPzMWXKFGRlZaFDhw7Yv3+/Xp7OunXrMH36dHTr1k1YinDRokVVcDnkRcnIyMC2bdswaNAgODg4lLuvm5sbAgMDsXfvXly/fh0tWrRAeHg41q1bh/v376NZs2bo0KGD0PmU9YIsKipCeHg4Dh48iM8//xzx8fH48MMP6+0nWkLIE9QvEUKqgojVwiG2nJwcWFlZITs7G5aWltXdnHqHMYakpCR8/fXX+Oijj+Dj46P31QyfN8aPIotEIqxevRpffPEF2rVrh88++wwHDhzAokWL0KFDB7z11lto2LAhTExMABgOivlJDCkpKTh69Ch+/fVX5Ofn44MPPsCMGTOEFIqyHk9eDHptkvqM/v4JqZmMfW3SEBt5KnZ2dnjjjTfg5ORkcELexYsXkZSUJKwF37p1a7i5ueHy5ctITU0V0h3c3d3h7+8PW1vbCs/J/n+teAcHB0gkEnz88cdYsmQJOnToIOQBEkIIIYQ8jbpdW4M8N0qlEs2bNzeY0yQSibBmzRp89913ePDgAbRaLby8vODm5obHjx8jNTUVKpVKGE2uzMgux3GwsbHBkCFDMHnyZNy7dw9Lly7VW3OeEEIIIaSyKCgmZSpZNqas+wzVpLx79y6uXbuG/Px8MMZgYmKCkJAQKBQKREZG4sGDB0/VJr5knI2NDSZNmgRfX1/s3r0bly5deqrjEUIIIYQAFBTXK7or9fA5uiW38VQqFW7evInffvsNGzZsQGFhod6x+HI25c3ILZnj2717d7i5ueHs2bOIjY0VSrSVvJVHt/Raw4YNMXz4cKSnp2Pfvn3CNRp7LEIIIYQQHgXF9QgfKKpUKuTk5KCoqEgvQNalVqtx9+5dLF26FEuWLMGjR4+E+/hguLyJbSVHkhljCAwMRFBQENLS0nDjxg3k5uYC+F8gW1FpNf6cfM1GsViMAQMGwNzcHP/99x/S0tJKnZsQQgghxBgUFNczxcXFiIiIwLJly3D8+HHk5eUZ3E8mk8HOzg5yuRyxsbFCAFtSRXnBuuvDm5qaIjQ0FHK5HElJScjJycHDhw+RkZEBwPj163WXovT390eHDh1w7do1REZGVuo4hBBCCCE8CorrEEMjpLqpBGKxGAkJCVizZg2+//577Nu3D5mZmQYDWrlcDg8PD/j5+UGtViM+Pt7otATd1e745SjPnj2L7OxstGzZEm5ubgCerEZ36dIlXL58WZh4V9nrtbKywvDhw6HRaLBv3z5otdpKHYMQQgghBKCguE7QaDRlph7opiZwHIcrV67g6tWrQhWIx48flxnompqaokmTJiguLsb58+cBwGCqRUnZ2dnIyMgAx3H4559/MH/+fHzzzTe4fv06vL29ERAQAAsLCwDA7du3ERERgQcPHlQ6KObTNzp27AgrKyucOnUKKpVKb416QgghhBBjUPRQizHGoFarcfToUVy5csXg/fw+Fy5cwPHjxxEREYH09HQAwP3795GYmFgq/YF/nKmpKQIDA8FxHHJycoT7KqK77969e3Hu3DkkJycjLy8PSqUSPXr0QFhYGOzt7aFWq3Hu3DlcunTpqdIeOI6Dj48PbGxskJmZCbVaDYBKsxFCCCGkcmjxjlouLy8PH3zwAVq3bo0lS5ZAKpXqLaYhFouRm5uLxYsX49q1a8jIyEBmZiYA4MGDB4iNjUV+fn6Za6jzE9tUKpWwOl1FXFxcMGbMGNy5cwdOTk6YNm0afH190apVKyiVSnTr1g0mJibYvn079u/fj7i4OMTExIDjuEot2aw7kc/ExASPHj1CSkqKsFoNBcaEEEIIMRaNFNdyRUVFuHnzJq5fvy4sYKGLDwwLCgoQExODBw8eCMHno0ePcPz4cURFRQn76uYDFxcXIz8/HwBw584d5OfnQyQSQa1W486dO8jJyTGYZyyRSDB48GB4eHggNzcXAQEB6NKlC2xsbAAA5ubm6NWrF2bMmIEePXrAwcEBCoWi0teuG/i3a9cOlpaWSEhIoOoThBBCCKk0CorrADMzMzx69AiPHj3SGyXm/7W2tkazZs1gZWUFAGjcuDEaN24MmUyGiIgI7N27V3gsjy/JtmXLFqhUKly7dg1xcXHgOA4JCQl4//33cfToUYM5xlqtFq6urujUqRNycnKwatUqpKSklMpvbtKkCcaPH4/p06ejTZs2EIvFlQpmdcvCzZkzB59++imaN29u9Ig2IYQQQgiPguJazszMDEFBQbh79y6ioqLKnATHB5tSqRQvv/wyZs6cidDQUOTk5ODgwYM4ePCgkI8LPMnVzcjIwOXLl4UR45MnTwIAUlJScPjwYSxfvhwqlarUufiUizFjxsDV1RX79+/HiRMnSpV102g0aNasGSZMmIC2bdtW6rp1S8GJRCK4ublh8uTJsLOzo4l2hBBCCKk0ih5qMZFIBEtLS7Rs2RIikQj79+8vtUpcSTKZDC4uLhg8eDCGDh0KLy8v3L59G7t27cLNmzeFxyuVSvj7+6N58+YAngTJeXl5EIvFaNGiBRo3boyzZ8+iqKhICIJ1abVahIaGYvjw4ZBKpfjyyy/x33//ISsrC1qtFlqtFtnZ2Th27BgiIiKQnZ39zM9HWctOE0IIIYRUhCba1QHdu3fHokWLEBMTg+LiYsjlciGNgjEGrVaL/Px8aDQaKJVKiMViKJVKvPLKKygoKMCKFStw9OhRWFhY4JNPPoG3t7ew6IbuqCs/KiuXyyGRSPTSFEpO7tNqtRCLxfj000+hUqmwdu1azJkzB+np6QgKCoJUKsXRo0exZcsWtG7dGl5eXrC1tX3m54JvI+UUE0IIIaQyKCiuxfjAz8/PD6ampoiMjERSUhL8/Pz07r9x4wZOnDiBvLw8DBo0CC1atIBCoYCTkxPeeecdeHp64ueff8aePXug1Wrx9ttvo2nTpmXWJNYdiebzhHVHZ0UikVBFwtTUFF999RUkEgnWrl2Ljz/+WO9YQUFB6NOnD7y9vYVA+mlHeksG8IQQQgghxqKguJZjjKFBgwYICwvD4cOHcePGDfj6+gql2RhjWLt2Le7cuYOuXbvigw8+QNOmTQE8yelVKBQYOHAgVCoVvvvuO2zYsAEXL17EzJkz0aJFi3IX6iguLsbdu3fRsmXLctuoVCrx+eefw9XVFdevX9erJdylSxd07doVMpmswkVBCCGEEEKeFwqKazmRSASZTIauXbviyJEjOH78OPr16wexWAyxWIzr16/j0KFDAIDXX38d/v7+EIlEQgCq1WqhVCrx8ssvw9HREQsWLEBERASmT58OJycnZGRkCKkUfL6xWCxGjx49cPv2bSEoLm9kluM4KBQKvP3223rtBvRHnUsuIkIIIYQQ8qJQUFzL8cFk+/btIRaLERUVhfz8fCgUCohEImzbtg3Jycno2bMnmjVrBhMTEwBPqlDojsyamJigT58+CAwMxLp167BmzRrcuXMHjDFIJBI4ODigffv2wv7ffPMNBgwYgFatWlXYRj6toayJcBQME0IIIaS6UVBcy/FBcUBAABo2bIioqCgkJyfDxsYGubm5OH78OAoLC9GtWzc4OTnp5d3yI8D8cfhUjI8++ggjRozAxo0bceDAAQQEBOCNN95ASEiIkPcrkUjQsWNHo9pYsm6yofsIIYQQQqoTlWSrA7RaLWxtbeHp6YnCwkKsX78eRUVFOH/+PO7duwc3NzcEBwfDwsKiwqoM/OhxgwYNMGvWLBw7dgxLliwRAmIAVN2BEEIIIXUOjRTXcnx+MGMMEyZMQEREBBYvXgw/Pz/s2rULjx8/xqBBg+Ds7FypY/KVJUoGwDSySwghhJC6iILiWowPUPnyZ0OHDsXx48fx119/4c0334RarUbDhg0xatQoODk5VRjQlpXbS4EwIYQQQuo6CoprOd2AVSKR4P3330dycjISExNhamqKDz/8EM2aNRNKtJUV4FLgSwghhJD6jILiOsbLywubN28WAmB+5TmO4/Qm2RFCCCGEkP+hoLiO0V1Njl/imUqeEUIIIYSUj4LiOsTQpDg+QCaEEEIIIWWjiKmOoRFhQgghhJDKoyRTQgghhBBS71FQTAghhBBC6j0KigkhhBBCSL1HQTEhhBBCCKn3KCgm5CkxxpCVlYWkpKTqbgohhBBCnhEFxYRUAmMMHMcJNaB/+eUXvPvuu8jJyQFjTK8kHiGEEEJqDyrJRkglcRwHkUgEjuNw6tQpnD9/Hvn5+bCwsKjuphFCCCHkKdFIMSHPQKVSQaVSgeM4YRuNFhNCCCG1D40U12MlV78zdD9/E4vFVbYwCH/ekuc35viGHss/XvdfY4/D/7/k4yo6jm47dB9f8li6+5VsY8n7aOEVQgghpPpQUFyP8QFdRkYGrl+/joSEBCFAUygU8PPzQ3BwcJUGbXwuLvC/QJgxhuzsbDx+/BgajabMAF0kEsHMzAwuLi7Cz7qBpVhs/BcfJYPrkoGq7raSSi6nbSioLu88JQNq/vFV+cGDEEIIIZVDQXE99+DBA+zZswc7d+7E/fv3haBMqVSiZ8+eCAgIgFRadX8m/EQ1sVgMtVqNBw8eIDo6GlevXsX9+/eh0WjKfKxIJIKVlRWCgoIgFovRpk0bNG7c+JnaAgAajQbp6emIjY3FgwcPkJ+frzeqy/+fzyVWKBRo3749XF1dDbax5PFLbje0PwXDhBBCSPWioLieu3jxItasWYPk5GS0aNECCoUC169fx+3bt+Hm5lbuCKyhoM9QPq1uwCcSiSCRSFBcXIyzZ89i7969OHHiBOLj42FiYgJ7e3uD52OMoaioCMnJybC1tYVarcbLL7+M77//vlIjxPyx+Hbm5OTg6tWrOHr0KM6cOYO4uDgUFhZCIpEI+6nVaojFYigUCqjVapiYmOCbb77BoEGDyswf5rcXFRXh7t27KC4uLrWPRCKBhYUFioqKYG5uDhcXFyiVykpdB2B8qgcF3oQQQkjZKCiux0QiEZKTk5Gamor27dvj448/RkpKChYsWID09HQEBwdDIpGUepxuUKk7iqp7XN1c5JLpBSKRCI8ePcL69euxe/duODk5oUePHggJCUHDhg3LPGdOTg4uXLiAwsJCbNq0CXv37sV3330nBLCVpVarcfLkSaxYsQLnzp2DQqGAl5cXXFxcYGFhAY7jkJaWhkOHDkGpVKJly5Z4+PAhoqKihNrEJQNyfjQZALKzs3HkyBHs3LkTeXl5pdool8thb2+P3Nxc+Pn5Yfjw4fD39y/1HDPGkJmZidjYWGEk3cTEBE2aNIFcLjcqdeTx48dITEyEj48PzM3NK/1BghBCCKnrKh0UR0REYP78+bh48SJSUlKwY8cODB48WLh/3LhxWL16td5jevXqhf379ws/P378GG+//Tb27NkDsViMYcOG4ddff4W5ufnTXwl5KmKxGBKJBCKRCElJSdi/fz+uX7+Oli1bYsSIEZDJZAYDzpLbSubYAhDq+ZYMckUiEeLi4hATEwNHR0dMnjwZgwcPhqOjI+RyebmT/oYPH460tDTs27cPWq32mSo9pKamYtu2bYiIiEBgYCAGDhyIdu3aoWHDhrCysgLHcYiKikJiYiIePnyIwMBA2NraIioqqtzRc/5DwKlTp/D111/jwYMH8PT0LHVtarUax44dw6NHj9CqVSuEhISUCoq1Wi1SUlLw33//Yffu3SguLoZIJIK9vT2+/fZbeHt7G/UcnDlzBuvXr8fbb7+N5s2bQ6FQPPXzRkhNQ/0SIaQqVDoozs/PR0hICCZMmIChQ4ca3Kd3795YuXKl8HPJDnj06NFISUnBoUOHoFarMX78eEyZMgXr16+vbHPIU+IDKRsbG1haWuLYsWOIiopCVlYWAgICMHHiRAQFBQkjwIaqM+hOFMvIyMCjR4+Qk5MDjuNgbm6ORo0aQSaTGTx/dHQ0kpOT0axZMyE/l+M4cBxncKSYP6dMJsOZM2eQk5ODBg0aVGrSm+4+YrEY9+7dw7179+Dk5ISJEydixIgRkMvlevv6+Pjgtddew59//olly5YZTIMo2UbgyYeNo0eP4ubNmxg0aBAmTpwIGxsbvbbl5OTgxx9/RHh4uMHjqNVqJCQkYPPmzVi1ahXy8vLQoEEDIY3k4cOH8PHxET58lJe3fP78eezZswe9evVCYGAgBcWkTqF+iRBSFSodFPfp0wd9+vQpdx+FQgFnZ2eD9928eRP79+/H+fPn0bJlSwDAb7/9hr59+2LBggUGJy8VFxfrBSM5OTmVbXadUdao4NPmi7Zp0wYjRozAvn37oFKpEBISgpEjR6J///5CwMlxnMHJdiKRCIWFhbh27RqOHDmCyMhIxMTEAABcXV2xYMECNG3atFT7RSIRiouLodFooFQqhc6pZFkzxhg0Go1eGsGDBw+waNEicByHQYMGQSaT6aUsGIPfV6PRgOM4BAUFoWnTppDL5aU+BDg6OmLChAmwsrLC0qVLcfHiRZiYmJR7bN2RcgAYOXIkOnXqVKoTfvz4MaytrYVr002Z0Gq1SExMxKpVq7Bs2TLY2tpi0qRJeOWVV5Ceno5bt26hcePGRo+U85UtqIYyqYuqo18CqG8ipK55LjnFx44dg6OjI2xsbNC1a1d88803sLOzAwBERkbC2tpaeOMBgO7du0MsFuPs2bMYMmRIqePNmzcPX3755fNoaq2lW8XhWSZQeXl54e2338b48eOh1WqhVCphY2MjnIMvFVYSP5J5+PBhzJo1C4mJibC2toaLiwsKCgpw/PhxbNu2DQ0bNoSlpWWptjdp0gSenp44deoUjh8/joYNGwqjymq1Grm5uXj06BHS0tKgVquF7REREbh8+TKaN2+OKVOm6LVH99/ylBxVlcvleiPEus8pYwyWlpbo378/Tpw4gYsXL1Z4/JKTDvm0iZLnTUpKQlZWlsFANSMjA9u3b8eyZcvg7OyMt956C6NHj4aVlRUAoGvXrsLjjPkb4H+HFBST+qqq+yWA+iZC6poqD4p79+6NoUOHwtvbG/fu3cPs2bPRp08fREZGQiKRIDU1FY6OjvqNkEpha2uL1NRUg8ecNWsWZs6cKfyck5MDDw+Pqm56jccHNPn5+cjNzYWNjQ2kUmmZ6QbGHI8xBhMTE5iamlZqAQutVosrV67ggw8+QEpKCgYNGoQ+ffqgc+fOuHPnDoYPH44TJ05g8uTJsLCw0AtaGWPo0qULzpw5g6VLlyI6OhoZGRlwdnYWRoO3b9+Offv24erVq0L1B8YYiouLYWNjgxkzZsDW1laoZlEZJa/L0MRB3X04jkN6ejqio6ONPnbJ0myGFu+Ijo5GSkqKkDaimyMdExODvXv3wtzcHFOmTMHUqVONOldZqAIFqc+eR78EUN9ESF1T5UHxiBEjhP83bdoUwcHBaNiwIY4dO4Zu3bo91TEVCgXlQP4/rVaLffv2YdeuXVi4cCHs7e2fKtBhjCEtLQ0qlQp2dnYwNTUFYHzQlJSUhDfffBNJSUkYPnw4/vrrL2G01dzcHIGBgbhw4QJOnz4NBwcHmJmZCedljEEmkyEwMBDu7u44e/YsTp8+jaFDhwrB9uLFi5GTkwNbW1uhygIfGAcFBWHIkCFG5Q9X9BwATzqy3NzcMo+VlZWFXbt2ISoqqlSqhzHHLygoMDgxUa1WCwuZPH78GOnp6VCr1ZDL5cjOzkZqaioaNmyIgQMHPvU1EkKeT78EUN9ESF3z3Osy+fj4wN7eHnfv3gUAODs74+HDh3r7aDQaPH78uMx8L/IEP8q6Y8cObNiwAYmJiU99rLy8PCxbtgxz5szBpUuXSk2cA/TzXHVvKpUK+/btw6VLl9C9e3f8/PPPkMlk0Gq10Gq1sLKywuuvvw6ZTIbw8HChHFnJW9euXdGhQwckJibi2rVrUKvVkEgk8PLywrhx4/D999/j33//xY4dO7B161Zs3rwZmzdvxueffy6UInsWFhYWMDExwfXr13Ht2jWoVKpSK/dxHIfExERs3LgRZmZm6NixI0QiEQoKCio8vpmZGUQiEQ4fPoz8/Hy951Wr1eLu3bvIzs6GQqFASkoKoqOjkZmZKbRBIpHA1NQUNjY2Zf4udH9flfGsjyekNqN+iRBiyHMPipOSkpCRkQEXFxcAQFhYGLKysvRyM48cOQKO49CmTZvn3Zw6oSpWmMvNzUVsbCwuX76MhIQEABAmtmm1WmGSGB808T9zHIfr169jwYIFkEqleP3114XRaolEIqQydOjQAXZ2djh27BhSUlKESW38fmKxGLa2tmjcuDHMzMwQExOD+Ph4SCQShISE4PPPP8ekSZPQuHFjg+kRZeU6G4sfcfb390d2djZ27NiB//77D1lZWcIIrlarRWZmprC4SPPmzfHOO+9AoVBg165dAErXKdY1ZMgQKBQKXL16Ffn5+UJ6BGMM+fn5iI6OhlQqRa9eveDn54cbN24gOjpab6JhXl4eMjIySv0u+OeTvz3N9fNVKwipb6hfIoQYUumoIi8vD1FRUYiKigIAxMXFISoqCgkJCcjLy8OHH36IM2fOID4+HuHh4Rg0aBB8fX3Rq1cvAECTJk3Qu3dvTJ48GefOncOpU6cwffp0jBgxoswZvsSwZ80P5Uck+bQEPlDKyclBfHw8CgoK9AInfp/k5GTExcXBzs4OHTt2LHU8xhgaN26MwMBAYbGLwsJCg23w9/eHj48PHjx4gNjYWL1gvLw2lxzRrex1A0/SPHr27ImmTZviyJEjePfdd/H+++9jy5YtwuhxeHg4lixZAnNzc7z66qto06YNrK2tkZmZWW47AcDb2xvu7u64dOmSMGLOB7EHDx7EnTt3YGlpiZ49eyIkJASxsbGIjo6GRqOBtbU13NzccP/+fRw+fBjFxcVQqVTC4h26vzNjAls+eC/5YYeQuoD6JUJIVaj0kOOFCxfQpUsX4Wd+ksHYsWPxxx9/4OrVq1i9ejWysrLg6uqKnj174uuvv9bLu1q3bh2mT5+Obt26CUXSFy1aVAWXUz/weai6waqxygskRSIRsrOzsW7dOvzzzz/44osv0L9/fyEw5s/Dj9xKJBJhWeKSxxWLxRgwYABOnTqFhIQEqFQqg3nLPj4+CAgIwIYNG7B27Vr4+PgIpcYMVWzgPcvEMd1gsnfv3nB1dcXy5cuxa9curFmzplSRf4VCgS5duuC1115DdnY2NBoNTExM9J53QyPGdnZ2mDp1Kj777DPMmjUL169fR48ePZCbm4sff/wRsbGx+OCDDzB48GDk5eXh0KFDuHnzJrKysuDu7o7WrVvj1KlT+O6773D48GHIZDL4+fmhc+fOMDU1RZMmTaBQKPTOXdbfAh8MSyQS4duAsp5f3WPQxDxSG1C/RAipCpUOijt37lxuEHbgwIEKj2Fra0sF0Z+SSCSCn5+fkFvcvHnzUkGMbqBjbIDDj7yqVCpkZGQIi3HoPq5kEM6PWho6FmMMDRo0gImJCcLDwzF69Gih/JGuBg0aYOzYsUhNTcWRI0fg7u6OTz75BLa2tgaPXZWjm4w9WW0vNDRUWKTj+PHjuHTpklDujjEGe3t7jBs3DmZmZsjPz4ebmxsSExORmJgIsVgMtVqNxMTEUrPXAeDNN99EYWEh5s2bh4ULF2LhwoXCfa+++iqGDh0KFxcXODo6wsrKChcuXMCJEycwcOBAvPLKK0hISMC2bduwbds2vQ8mUqkUYWFhGD9+PAYMGCA8X4aeH758HmMM33//PZYvXw6xWIyWLVuiS5cuaN26Nezs7PRG+vnHPetkRkJeBOqXCCFV4bnUKSbPj1gsxtChQ/HNN99g+fLlmDx5Mtzc3AD8L4jRzTEVi8V6o4TlBTmG7iuZplAyEDY0Qsp3Tu3bt4ednR2SkpKQl5cHjUYDsVhc6jH8SlSpqan4448/cPPmTXzyySdo165dqQUn1Go1Tp8+jaCgIINBtjFK5j8DTzrEjh076qWDGGJubo4BAwbgiy++wK+//oqePXsiNjYWjx8/NngesViMmTNnokOHDtixYweys7MBAE5OTnj55Zfh5+cHkUiE7t2749q1a7h48SKKioogFovRrFkz/Pnnn5g9ezY0Gg2Sk5Nx6NAhZGVl4eTJk4iIiMDJkycxePBgrFmzRm/UXvcDjEQiQVBQEBwcHJCQkIC4uDioVCpERETgt99+g5ubG9q1a4dWrVqhTZs2aNq0KUxNTaHVap+5DjYhhBBSW1BQXMuIRCI0btwYffr0wZ49e7BixQp88cUXekv9MvZkGeP8/Hyo1WqYmZlBKpW+sFE/kUgErVYLhUKBpk2bYvfu3Th37hw8PT1LLeTB1+ft3LkzlEol5s2bhwMHDgiVLby8vIQJeowxpKamYv369ZgzZw5mzZr13K+lJIVCgW7duuGbb77BuXPncPLkSUycOBH29vYGg0g+TaFNmzalJuzopnG4u7vjq6++glqthqmpqV4N6cDAQABPPjz06dNHqJu8c+dO/PTTT9i5cye2bt2KsWPH6n2A0P17GD58OF566SXh7yQuLg4nTpzA3r17cePGDWzcuBHr16+HnZ0dXnvtNbzzzjvw9vamvGNCCCH1BgXFtYxIJIJcLscHH3yAAwcO4K+//sKECROE0WLgyehtVlYW3nrrLSQkJOD3339HUFBQpSenVbRveQtniEQiyGQydOvWDYcOHcLhw4fRrVs3vYU8+P34keMOHTrg77//xubNm/Hbb79h7dq1Bo/t4OCAFi1aGH0dVUksFsPJyQkymUwIgB0cHMqt5MBXneCvmw/ydUfMOY4zuICKISKRCI6Ojhg3bhwSEhLw/fffCyXfTp8+jdTUVAwePFjvMRzHwcnJSfjZ1dUV7du3x8yZMxEbG4sbN27g+PHj+O+//7Bq1SpIJBLMmTNHWEGPEEIIqesoKK5l+MCrQ4cOGDBgALZt24Z///0Xb775pt5IZWxsLE6cOIHs7GxhKWFjSpjpVqEoKioqdzJfZmYmDhw4YHAJVP5cPXv2xHfffYfY2FgUFBQYTM/QTetwcXHBtGnTMGzYMNy8ebNUuTGRSAQ3Nzdh9PRFE4lEsLKyQlhYGM6ePYvo6GgEBQUBMJxKwpef4x9bcj/dVem0Wi0iIyOxceNGoX5qWTnCUqkUhYWFiIyMhFQqFVbRev/993H79m34+fkhICAAIpFIr5we//fBB+ZyuRz+/v7w9/fHwIEDERgYiB9++AEPHjxAQUEBBcWEEELqDQqKaxHdiVYikQh9+/bFtm3bhCBLd9SWD7b43FljRyBtbGwQGBiI4uJiHD58GJMmTSo1GsxXv1CpVEhOTjZ4HN0JYXwQZ2ikuuRkLn5fd3d3uLu7l9vW6sKnhYSHh+P06dNo2rRpudUwytpWMuDVaDS4d+8eDh8+jDt37pR5fv6DBJ9Ks2jRInTp0gVarRaBgYE4e/YsunfvjnHjxmHkyJEICgoq9Ts0tES0TCaDtbU1zM3NDeZ+E0IIIXUZBcW1DF9JQHcBj23btmHw4MGwt7c3GMgYu7gDYwxKpRKNGzdGo0aNcOvWLVy5cqVUhQtHR0dYWFggNzcXSUlJZbaTJxaL8eDBAzx8+BCNGjWCTCYrc19DP9ck/OjqoEGD8NNPP2H79u2YNGlSmW2uqOIHj7EnS18PHz4c3bt3R0FBQblBqW7OMZ86wxjDwoUL4e7ujj///BMLFizAn3/+ieHDh8PPzw/dunWDk5NTqeMyxpCQkIBTp05hx44diI2NRYsWLZ6pFjQhhBBS21BQXIvoTqJjjKFnz55o1aoVjh49iv3792PMmDGlgpjCwkJcvHgRwcHBRlVrEIlE8PLywrBhwzBv3jysW7cOzZs319snJCQE3t7euHr1Kvbv349vv/22zCoFNjY2eO211/Dw4UM4OjrW+tFH/sNBo0aN0KJFC5w+fRp37txBkyZNhOoaz8LU1BRmZmZGT3DTzWWWSCQwNzfHp59+ilGjRmH37t3YtGkT1q5dC47joFQqhQmXuiPbYrEYKpUKxcXFkMvl6N69O8aPHw97e3sqyUYIIaTeoKC4FuK/Cnd1dcX8+fPRvXt3rF+/HqNGjSoVlGm1WkRHRyMvL6/CoJgPfqysrNC0aVMAQGxsLLRarV4KBsdx8PLywtWrV1FcXCzkMhsil8vx4YcfguO4UgtN1FaMMVhaWsLLywtRUVFCgPms16abe2xMIMqXW9PFT3Bs1KgR3n77bYwePRpnzpzB7du3cfToUeTn5+t9c8AHvQqFAiEhIejatSuaN28OFxcXCoYJIYTUKxQU1zIlA5Xg4GD4+vriwoULiImJQZMmTUoFZ4cOHcKrr74KZ2dnvRWcyjquRCKBs7MzgoODcevWLVy8eBFt2rTRy1Pu27cvdu/ebVSFCr5+bm3Hj7Dyo6u+vr5gjGHv3r0ICAh4pvJlTxOAVpSaIZfL4eTkhH79+qF379546623ylzemc/lVigURuegE0IIIXVJ7R+2q+esrKzQq1cv5OTk4JtvvhFKc/HkcjlSU1OxatUq3L9/3+gJd25ubhg6dChSU1OxadOmUve3bdsWZmZmZa5qV1fxz59UKkXPnj3BGCs12bC6A0rdiiF8cKxUKmFubg5LS0tYW1vDxsYGNjY2sLKygpWVFSwtLWFqaiqk5pQVPBNCCCF1FQXFtZxIJMIbb7wBb29v7NmzBwcPHoRGoxFyTVu3bo3AwEAcOXIEu3btQlpamvDYsoIekUgEc3NztGjRAk5OTti3bx9u3Lihd7+/vz9++eUXzJkzp9TEudqCf450bxzHlTkxsWTFBrlcDgCIjo7WmxhX3cGkbuk33TbzP5ecBMnfdFf6K1lHmRBCCKnrqNerA3x9fTFx4kQUFRXhjz/+QGZmpjCC6+npienTp8PZ2RnLli3D1q1b8fDhw1Ilt3RHBvlcVR8fH4waNQrp6ek4evSosC8/+vjKK69g0KBBwrbaRKPRQKPRCOXl+IDY2ICWn5Do4+ODixcvIjc3t8Y8ByUXR9H9v26QXF7VD0Ml2wghhJC6jHKKazn+K/KRI0di27ZtOHv2LP7880+oVCoUFhbCwsICnTt3hkwmw4IFC/Dbb79BLBbD398f2dnZZU7q4hepePXVVyGTydC2bVuD99dGjDFhlbmMjAzExsbC1tYWDRs2LHOFPl18FRA7Ozu4uLggMTHR6LJ3L0pZgXF5+xFCCCH1GQXFdYBWq4Wbmxs++eQTvPHGG1i2bBlkMhkKCgrQunVrODs7Y+DAgeA4Dr/99hsWL14MKysrxMfHIzQ0FF5eXnrH44M+qVQKLy8vTJgwodYGwGURi8VQq9XYtm0bduzYgX79+lXqOnUX0DB0HyGEEEJqF0qfqOX4qgESiQQ9evTA6NGjwRhDXl4eOnfujNDQUCgUClhbW2PQoEGYNm0abG1tERcXB7lcjtDQUHh7exucWCUWiyGXy+Hs7AwTE5NqusLng6/Xe/v2bWFJZYVCYVQKhe7ouqF9qzunmBBCCCGVRyPFtZhuiTTGGCwsLDB16lR07NgRGo0GHh4e8Pb2Fu63sbHBwIED4eXlhfT0dCgUCvj7+8PGxqbUIg11OadU95o0Gg0kEgnMzMwgl8srXKziaVauI4QQQkjNR0FxHcEHZb6+vkI6hEQi0auIwHEc7Ozs8NJLL4HjuFLVCOpbYFey9Fh9u35CCCGE/A+lT9RBUqkUUqlUr7qEbvArkUggk8mEoNnYFdTqEr7ChpWVFTQaDa5fv464uLhSqRFl3fiJdbqr/BFCCCGk9qKR4jqmvNqyxqw+Vx/wga1UKkXXrl0RHR2NEydOQCwWo1+/fggODoaVlVWFK/EVFBRApVLRiDMhhBBSB1BQXMdQQGYcxhjEYjHat2+P4uJi/PXXX9i1axeuXr2Kli1bwtvbG82bN4ePj0+pMm1arRb3799HREQEEhMT4e7uDoVCUWE+MiGEEEJqLgqKSb3FcRyUSiW6du0KMzMz7NixA2fOnMH69ethYmKCgIAABAUFQSrVf5lotVrcunULERERsLa2xoQJE2BhYQGO44yqc0wIIYSQmoeCYlJv8aO6pqam6Nq1K/z8/HD27Flcu3YNd+/exfXr13Ht2jWDj5XJZGjTpg369u2LUaNGQaFQQKvV0kgxIYQQUktRUEzqHX7hDd16wiKRCO7u7nB3d8fAgQORlJSE8+fPIykpyeAxTExM0K1bNzRq1EhY7IQfJabAmBBCCKl9KCgm9VZZwSu/kl/Jlf508fnD/L8UCBNCCCG1GwXFhBigO4rMT8rT/ZnjOAqGCSGEkDqEgmJCKqA7eY4fGeaDZAqKCSGEkLqBgmJCSihvBLi+rv5HCCGE1HW0oh0hhBBCCKn3KCgmhBBCCCH1HgXFhBBCCCGk3qOgmBBCCCGE1HsUFBNCCCGEkHqPgmJCCCGEEFLvUVBMCCGEEELqPQqKCSGEEEJIvUdBMSGEEEIIqfcoKCaEEEIIIfUeBcWEEEIIIaTeo6CYEEIIIYTUexQUE0IIIYSQeq9SQfG8efPQqlUrWFhYwNHREYMHD8bt27f19ikqKsK0adNgZ2cHc3NzDBs2DGlpaXr7JCQkoF+/fjA1NYWjoyM+/PBDaDSaZ78aQggh9Q71TYSQqlCpoPj48eOYNm0azpw5g0OHDkGtVqNnz57Iz88X9nnvvfewZ88ebNmyBcePH0dycjKGDh0q3K/VatGvXz+oVCqcPn0aq1evxqpVq/D5559X3VURQgipN6hvIoRUCfYMHj58yACw48ePM8YYy8rKYjKZjG3ZskXY5+bNmwwAi4yMZIwxtm/fPiYWi1lqaqqwzx9//MEsLS1ZcXGxUefNzs5mAFh2dvazNJ8QUsXotUlqAuqbCCG6jH1tPlNOcXZ2NgDA1tYWAHDx4kWo1Wp0795d2Mff3x8NGjRAZGQkACAyMhJNmzaFk5OTsE+vXr2Qk5ODGzduGDxPcXExcnJy9G6EEEKIIdQ3EUKexlMHxRzH4d1330X79u0RFBQEAEhNTYVcLoe1tbXevk5OTkhNTRX20X3T4e/n7zNk3rx5sLKyEm4eHh5P22xCCCF1GPVNhJCn9dRB8bRp03D9+nVs3LixKttj0KxZs5CdnS3cEhMTn/s5CSGE1D7UNxFCnpb0aR40ffp07N27FxEREXB3dxe2Ozs7Q6VSISsrS+8TeVpaGpydnYV9zp07p3c8fgYwv09JCoUCCoXiaZpKCCGknqC+iRDyLCo1UswYw/Tp07Fjxw4cOXIE3t7eeveHhoZCJpMhPDxc2Hb79m0kJCQgLCwMABAWFoZr167h4cOHwj6HDh2CpaUlAgICnuVaCCGE1EPUNxFCqkKlRoqnTZuG9evXY9euXbCwsBDyrKysrGBiYgIrKytMnDgRM2fOhK2tLSwtLfH2228jLCwMbdu2BQD07NkTAQEBGDNmDH788Uekpqbis88+w7Rp0+gTNyGEkEqjvokQUiUqU9ICgMHbypUrhX0KCwvZ1KlTmY2NDTM1NWVDhgxhKSkpeseJj49nffr0YSYmJsze3p69//77TK1WG90OKntDSM1Er01SHahvIoSUx9jXpogxxl58KP5scnJyYGVlhezsbFhaWlZ3cwgh/49em6Q+o79/QmomY1+bz1SnmBBCCCGEkLqAgmJCCCGEEFLvUVBMCCGEEELqPQqKCSGEEEJIvUdBMSGEEEIIqfcoKCaEEEIIIfUeBcWEEEIIIaTeo6CYEEIIIYTUexQUE0IIIYSQeo+CYkIIIYQQUu9RUEwIIYQQQuo9CooJIYQQQki9R0ExIYQQQgip9ygoJoQQQggh9R4FxYQQQgghpN6joJgQQgghhNR70upuwNNgjAEAcnJyqrklhBBd/GuSf40SUp9Q30RIzWRs31Qrg+Lc3FwAgIeHRzW3hBBiSG5uLqysrKq7GYS8UBkZGQCobyKkpqqobxKxWjikw3Ecbt++jYCAACQmJsLS0rK6m/RMcnJy4OHhUSeuBahb11OXrgV4/tfDGENubi5cXV0hFlN2FqlfsrKyYGNjg4SEhDrxobAuvf/VpWsB6Hoqy9i+qVaOFIvFYri5uQEALC0t68QfBFC3rgWoW9dTl64FeL7XUxeCAUKeBt/ZWllZ0ftFDVWXrgWg66kMY/omGsohhBBCCCH1HgXFhBBCCCGk3qu1QbFCocDcuXOhUCiquynPrC5dC1C3rqcuXQtQ966HkJqkrr2+6tL11KVrAeh6npdaOdGOEEIIIYSQqlRrR4oJIYQQQgipKhQUE0IIIYSQeo+CYkIIIYQQUu9RUEwIIYQQQuo9CooJIYQQQki9VyuD4t9//x1eXl5QKpVo06YNzp07V91NqtAXX3wBkUikd/P39xfuLyoqwrRp02BnZwdzc3MMGzYMaWlp1dhifRERERgwYABcXV0hEomwc+dOvfsZY/j888/h4uICExMTdO/eHTExMXr7PH78GKNHj4alpSWsra0xceJE5OXlvcCr+J+KrmfcuHGlfl+9e/fW26emXM+8efPQqlUrWFhYwNHREYMHD8bt27f19jHm7yshIQH9+vWDqakpHB0d8eGHH0Kj0bzISyGkVqO+6cWrS30T9UvV3y/VuqB406ZNmDlzJubOnYtLly4hJCQEvXr1wsOHD6u7aRUKDAxESkqKcDt58qRw33vvvYc9e/Zgy5YtOH78OJKTkzF06NBqbK2+/Px8hISE4Pfffzd4/48//ohFixZh6dKlOHv2LMzMzNCrVy8UFRUJ+4wePRo3btzAoUOHsHfvXkRERGDKlCkv6hL0VHQ9ANC7d2+939eGDRv07q8p13P8+HFMmzYNZ86cwaFDh6BWq9GzZ0/k5+cL+1T096XVatGvXz+oVCqcPn0aq1evxqpVq/D555+/8OshpDaivql61KW+ifqlGtAvsVqmdevWbNq0acLPWq2Wubq6snnz5lVjqyo2d+5cFhISYvC+rKwsJpPJ2JYtW4RtN2/eZABYZGTkC2qh8QCwHTt2CD9zHMecnZ3Z/PnzhW1ZWVlMoVCwDRs2MMYYi46OZgDY+fPnhX3+++8/JhKJ2IMHD15Y2w0peT2MMTZ27Fg2aNCgMh9Tk6/n4cOHDAA7fvw4Y8y4v699+/YxsVjMUlNThX3++OMPZmlpyYqLi1/sBRBSC1HfVP3qUt9E/VL19Eu1aqRYpVLh4sWL6N69u7BNLBaje/fuiIyMrMaWGScmJgaurq7w8fHB6NGjkZCQAAC4ePEi1Gq13nX5+/ujQYMGteK64uLikJqaqtd+KysrtGnTRmh/ZGQkrK2t0bJlS2Gf7t27QywW4+zZsy+8zcY4duwYHB0d4efnh7feegsZGRnCfTX5erKzswEAtra2AIz7+4qMjETTpk3h5OQk7NOrVy/k5OTgxo0bL7D1hNQ+1DfVTHWxb6J+6fn2S7UqKH706BG0Wq3eEwQATk5OSE1NraZWGadNmzZYtWoV9u/fjz/++ANxcXHo2LEjcnNzkZqaCrlcDmtra73H1IbrAiC0sbzfS2pqKhwdHfXul0qlsLW1rZHX2Lt3b6xZswbh4eH44YcfcPz4cfTp0wdarRZAzb0ejuPw7rvvon379ggKCgIAo/6+UlNTDf7++PsIIWWjvqlmqmt9E/VLz79fkj6Xo5JS+vTpI/w/ODgYbdq0gaenJzZv3gwTE5NqbBkxZMSIEcL/mzZtiuDgYDRs2BDHjh1Dt27dqrFl5Zs2bRquX7+ulxNICCFlob6p9qB+6fmrVSPF9vb2kEgkpWYnpqWlwdnZuZpa9XSsra3RuHFj3L17F87OzlCpVMjKytLbp7ZcF9/G8n4vzs7OpSacaDQaPH78uFZco4+PD+zt7XH37l0ANfN6pk+fjr179+Lo0aNwd3cXthvz9+Xs7Gzw98ffRwgpG/VNNVNd75uoX6p6tSoolsvlCA0NRXh4uLCN4ziEh4cjLCysGltWeXl5ebh37x5cXFwQGhoKmUymd123b99GQkJCrbgub29vODs767U/JycHZ8+eFdofFhaGrKwsXLx4UdjnyJEj4DgObdq0eeFtrqykpCRkZGTAxcUFQM26HsYYpk+fjh07duDIkSPw9vbWu9+Yv6+wsDBcu3ZN7w310KFDsLS0REBAwIu5EEJqKeqbaqa63jdRv/R8Gl6rbNy4kSkUCrZq1SoWHR3NpkyZwqytrfVmJ9ZE77//Pjt27BiLi4tjp06dYt27d2f29vbs4cOHjDHG3nzzTdagQQN25MgRduHCBRYWFsbCwsKqudX/k5ubyy5fvswuX77MALCff/6ZXb58md2/f58xxtj333/PrK2t2a5du9jVq1fZoEGDmLe3NyssLBSO0bt3b9a8eXN29uxZdvLkSdaoUSM2cuTIGnc9ubm57IMPPmCRkZEsLi6OHT58mLVo0YI1atSIFRUV1bjreeut/2vnjlEUBsIojmcLRxRRBIOIoBew9gJCwNIqWImFxdpaWXgKD+A17LS0tBUs7FKlCsRC4W2xS0Bc1m3WbJz/D6bKEOaDgfeKkHdVKhVtt1sFQZCsOI6TPY/u1/V6VafTked52u/3Wq/Xcl1X8/n86fMAWUQ2peOVsolcSj+XMleKJWm5XKrVaskYo263q91ul/aRHvJ9X41GQ8YYNZtN+b6v4/GYPD+fz5pOp6pWqyoWixoMBgqCIMUT39psNnIc526NRiNJn7++WSwWqtfryufz6vV6OhwON+8Iw1DD4VClUknlclnj8VhRFKUwzc/zxHEsz/Pkuq5yuZza7bYmk8lduP2Xeb6bw3EcrVarZM9v7tfpdFK/31ehUFCtVtNsNtPlcnnyNEB2kU3P90rZRC6ln0tvX4cHAAAArJWpb4oBAACAv0ApBgAAgPUoxQAAALAepRgAAADWoxQDAADAepRiAAAAWI9SDAAAAOtRigEAAGA9SjEAAACsRykGAACA9SjFAAAAsN4HOuERmHfeQnQAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"markdown","source":["### Modeling"],"metadata":{"id":"QaH6uvvGk7YG"}},{"cell_type":"code","source":["# Impute missing variables with column mean\n","X_nodraw = similarities_df[all_cols]\n","col_means = X_nodraw.mean()\n","X_nodraw = X_nodraw.fillna(col_means)"],"metadata":{"id":"Nb-h6LbP9q4-"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["X = X_nodraw.reset_index(drop=True)\n","y = np.array(similarities_df['treatment'])"],"metadata":{"id":"XmxIJ6qXYP0x"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from sklearn.preprocessing import StandardScaler"],"metadata":{"id":"KZPkT3ZhXZHl"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# Scale Variables\n","scaler = StandardScaler()\n","scaler.fit(X)\n","X_scaled = scaler.transform(X)"],"metadata":{"id":"XT44zjPBZ_aw"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from sklearn.model_selection import train_test_split, KFold\n","from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score"],"metadata":{"id":"0B1yP3COcTqB"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["def fit_model(mod, model_name, scale = False):\n"," kf = KFold(n_splits=5, shuffle=True, random_state=29)\n"," results = {\n"," 'accuracy': [],\n"," 'precision': [],\n"," 'recall': [],\n"," 'f1': []\n"," }\n","\n"," for train_index, test_index in kf.split(X):\n"," if scale:\n"," X_train, X_test = X_scaled[train_index], X_scaled[test_index]\n"," y_train, y_test = y[train_index], y[test_index]\n"," else:\n"," X_train, X_test = X.iloc[train_index], X.iloc[test_index]\n"," y_train, y_test = y[train_index], y[test_index]\n","\n"," mod.fit(X_train, y_train)\n"," y_pred = mod.predict(X_test)\n","\n"," results['accuracy'].append(accuracy_score(y_test, y_pred))\n"," results['precision'].append(precision_score(y_test, y_pred, pos_label='Aphantasia'))\n"," results['recall'].append(recall_score(y_test, y_pred, pos_label='Aphantasia'))\n"," results['f1'].append(f1_score(y_test, y_pred, pos_label='Aphantasia'))\n","\n"," for metric, res in results.items():\n"," results[metric] = round(np.mean(res)* 100,2)\n"," df = pd.json_normalize(results)\n"," df.index = [model_name]\n"," return df"],"metadata":{"id":"RsC3Ww2KiB_Y"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from sklearn.ensemble import RandomForestClassifier\n","forest_model = RandomForestClassifier(random_state = 29)\n","forest_res = fit_model(forest_model, 'Random Forest',scale = False)"],"metadata":{"id":"6oMMn1jFgyky"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from sklearn.linear_model import LogisticRegression\n","# Logistic Regression Model\n","log_model = LogisticRegression(penalty ='elasticnet', solver='saga', l1_ratio=0.5, max_iter=10000)\n","log_res = fit_model(log_model, 'Logistic Regression', scale = True)"],"metadata":{"id":"QA_lKgSfZyRu"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from sklearn.svm import SVC\n","# SVM Model\n","svm_model = SVC(kernel='rbf')\n","svm_res = fit_model(svm_model,'Support Vector Machine', scale = True)"],"metadata":{"id":"Soxxf7TPjBaF"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from sklearn.tree import DecisionTreeClassifier, plot_tree\n","# Decision Tree\n","tree_model = DecisionTreeClassifier(max_depth=2)\n","tree_res = fit_model(tree_model, 'Decision Tree', scale = False)"],"metadata":{"id":"6jmZg8Zhiaym"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["#### Results\n","The decision tree performed the best with the highest F1 score (71.13) and accuracy of 63.48%.\n","\n","However, overall the models didn't do too well at predicting aphantasia from the similarity scores. The ViT CLIP model didn't do well at getting the right features as we saw with the outliers that had higher similarity scores than expected. There weren't any big differences between the 2 groups seen in the 3D scatter plot as well.\n","\n","Performance could be improved by incorporating the demographic data."],"metadata":{"id":"pGFbJxPhl-RR"}},{"cell_type":"code","source":["pd.concat([forest_res, log_res, svm_res, tree_res])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":174},"id":"8CPvCDOleAa4","executionInfo":{"status":"ok","timestamp":1714832816627,"user_tz":240,"elapsed":8,"user":{"displayName":"Jon Campbell Jr","userId":"09087198626790021717"}},"outputId":"527c97d4-fbce-4d27-ae3b-dd137a4dea91"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" accuracy precision recall f1\n","Random Forest 60.87 64.66 68.38 65.60\n","Logistic Regression 61.74 65.88 70.94 66.14\n","Support Vector Machine 60.87 62.02 81.63 69.24\n","Decision Tree 63.48 63.52 82.91 71.13"],"text/html":["\n","
\n","
\n","\n","
\n"," \n","
\n","
\n","
accuracy
\n","
precision
\n","
recall
\n","
f1
\n","
\n"," \n"," \n","
\n","
Random Forest
\n","
60.87
\n","
64.66
\n","
68.38
\n","
65.60
\n","
\n","
\n","
Logistic Regression
\n","
61.74
\n","
65.88
\n","
70.94
\n","
66.14
\n","
\n","
\n","
Support Vector Machine
\n","
60.87
\n","
62.02
\n","
81.63
\n","
69.24
\n","
\n","
\n","
Decision Tree
\n","
63.48
\n","
63.52
\n","
82.91
\n","
71.13
\n","
\n"," \n","
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"pd\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"accuracy\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.2303657992645924,\n \"min\": 60.87,\n \"max\": 63.48,\n \"num_unique_values\": 3,\n \"samples\": [\n 60.87,\n 61.74,\n 63.48\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"precision\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.6451139778142996,\n \"min\": 62.02,\n \"max\": 65.88,\n \"num_unique_values\": 4,\n \"samples\": [\n 65.88,\n 63.52,\n 64.66\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"recall\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7.373558616208775,\n \"min\": 68.38,\n \"max\": 82.91,\n \"num_unique_values\": 4,\n \"samples\": [\n 70.94,\n 82.91,\n 68.38\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"f1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.6173189208297347,\n \"min\": 65.6,\n \"max\": 71.13,\n \"num_unique_values\": 4,\n \"samples\": [\n 66.14,\n 71.13,\n 65.6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":31}]},{"cell_type":"markdown","source":["### ANOVA\n","\n"],"metadata":{"id":"eXY8VurBnobr"}},{"cell_type":"code","source":["import statsmodels.api as sm\n","from statsmodels.formula.api import ols"],"metadata":{"id":"9aGiYePGjf8u"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["onlysim_df = similarities_df[['treatment', 'kitchen_mem',\t'kitchen_percep',\t'bedroom_mem',\n"," 'bedroom_percep',\t'livingroom_mem',\t'livingroom_percep']]"],"metadata":{"id":"Zf7p5qCD591s"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["melted_df = pd.melt(onlysim_df, id_vars='treatment', var_name = 'feature', value_name = 'Similarity_score')\n","melted_df[['room', 'type']] = melted_df['feature'].str.split('_', expand=True)\n","melted_df.drop(['feature'], axis = 1, inplace = True)"],"metadata":{"id":"s6diptZ_57X7"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["formula = 'Similarity_score ~ C(treatment) + C(room) + C(type) + C(treatment):C(room) + C(treatment):C(type) + C(room):C(type)'\n","model = ols(formula, data=melted_df).fit()\n","anova_results = sm.stats.anova_lm(model, typ=2)"],"metadata":{"id":"h-Fw5SabnBTm"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["#### Results\n","The results from the ANOVA show significant effects for all main effects. This does not match the results of the original paper's ANOVA when they looked at the number of objects drawn. They found no significance in the main effect for treatment. The significance in the interaction effect between treatment and type (memory/perception) was an important finding in the paper and this mathces. my results.\n","\n","This analysis was done to see if the patterns found in the paper could be found using a pretrained image transformer model. A limitation of this is that the model was trained on a broad range of images. A better approach would be to fine tune a model specifically on drawings.\n","\n","The paper looked more in depth into particular parts of the drawings. They used crowdsourcing to precisely measure characteristics of the drawings:\n","\n","* Quantified the amount of text used to label objects in drawings\n","* Quantified size and location accuracy of objects drawn\n","* Counted number of correctly drawn objects and incorrectly drawn objects"],"metadata":{"id":"Lw3r7f1borQA"}},{"cell_type":"code","source":["print(round(anova_results,3))"],"metadata":{"id":"ArlyORNPm6wn","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1714832817859,"user_tz":240,"elapsed":8,"user":{"displayName":"Jon Campbell Jr","userId":"09087198626790021717"}},"outputId":"53db7bf2-c948-4e1f-e8df-fa19e883a418"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":[" sum_sq df F PR(>F)\n","C(treatment) 0.024 1.0 9.646 0.002\n","C(room) 0.595 2.0 120.066 0.000\n","C(type) 0.364 1.0 147.184 0.000\n","C(treatment):C(room) 0.007 2.0 1.443 0.237\n","C(treatment):C(type) 0.019 1.0 7.650 0.006\n","C(room):C(type) 0.040 2.0 8.010 0.000\n","Residual 1.634 660.0 NaN NaN\n"]}]}]}
\ No newline at end of file