greek_legal_ner / convert_to_hf_dataset.py
joelniklaus's picture
changed notation scheme to IOB
715e3e7
raw
history blame
3.98 kB
import os
from glob import glob
from pathlib import Path
from typing import List
import pandas as pd
from spacy.lang.el import Greek
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
base_path = Path("DATASETS/ENTITY RECOGNITION")
tokenizer = Greek().tokenizer
# A and D are different government gazettes
# A is the general one, publishing standard legislation, and D is meant for legislation on urban planning and such things
def process_document(ann_file: str, text_file: Path, metadata: dict, tokenizer) -> List[dict]:
"""Processes one document (.ann file and .txt file) and returns a list of annotated sentences"""
# read the ann file into a df
ann_df = pd.read_csv(ann_file, sep="\t", header=None, names=["id", "entity_with_span", "entity_text"])
sentences = [sent for sent in text_file.read_text().split("\n") if sent] # remove empty sentences
# split into individual columns
ann_df[["entity", "start", "end"]] = ann_df["entity_with_span"].str.split(" ", expand=True)
ann_df.start = ann_df.start.astype(int)
ann_df.end = ann_df.end.astype(int)
not_found_entities = 0
annotated_sentences = []
current_start_index = 0
for sentence in sentences:
ann_sent = {**metadata}
doc = tokenizer(sentence)
doc_start_index = current_start_index
doc_end_index = current_start_index + len(sentence)
current_start_index = doc_end_index + 1
relevant_annotations = ann_df[(ann_df.start >= doc_start_index) & (ann_df.end <= doc_end_index)]
for _, row in relevant_annotations.iterrows():
sent_start_index = row["start"] - doc_start_index
sent_end_index = row["end"] - doc_start_index
char_span = doc.char_span(sent_start_index, sent_end_index, label=row["entity"], alignment_mode="expand")
# ent_span = Span(doc, char_span.start, char_span.end, row["entity"])
if char_span:
doc.set_ents([char_span])
else:
not_found_entities += 1
print(f"Could not find entity `{row['entity_text']}` in sentence `{sentence}`")
ann_sent["words"] = [str(tok) for tok in doc]
ann_sent["ner"] = [tok.ent_iob_ + "-" + tok.ent_type_ if tok.ent_type_ else "O" for tok in doc]
annotated_sentences.append(ann_sent)
print(f"Did not find entities in {not_found_entities} cases")
return annotated_sentences
def read_to_df(split):
"""Reads the different documents and saves metadata"""
ann_files = glob(str(base_path / split / "ANN" / "*/*/*.ann"))
sentences = []
for ann_file in ann_files:
path = Path(ann_file)
year = path.parent.stem
file_name = path.stem
_, gazette, gazette_number, _, date = tuple(file_name.split(' '))
text_file = base_path / split / "TXT" / f"{gazette}/{year}/{file_name}.txt"
metadata = {
"date": date,
"gazette": gazette,
# "gazette_number": gazette_number,
}
sentences.extend(process_document(ann_file, text_file, metadata, tokenizer))
return pd.DataFrame(sentences)
splits = ["TRAIN", "VALIDATION", "TEST"]
train = read_to_df("TRAIN")
validation = read_to_df("VALIDATION")
test = read_to_df("TEST")
df = pd.concat([train, validation, test])
print(f"The final tagset (in IOB notation) is the following: `{list(df.ner.explode().unique())}`")
# save splits
def save_splits_to_jsonl(config_name):
# save to jsonl files for huggingface
if config_name: os.makedirs(config_name, exist_ok=True)
train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)
save_splits_to_jsonl("")