File size: 7,714 Bytes
abdacc9 46ede22 abdacc9 46ede22 abdacc9 46ede22 abdacc9 46ede22 abdacc9 46ede22 abdacc9 46ede22 abdacc9 46ede22 abdacc9 50b3695 46ede22 abdacc9 50b3695 46ede22 abdacc9 b937e98 abdacc9 5f180ea abdacc9 46ede22 abdacc9 e7e762d e880b8a e7e762d abdacc9 89c5abc abdacc9 6f63c28 abdacc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
annotations_creators:
- other
language_creators:
- found
language:
- bg
- cs
- da
- de
- el
- en
- es
- et
- fi
- fr
- ga
- hr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sk
- sl
- sv
license:
- cc-by-4.0
multilinguality:
- multilingual
paperswithcode_id: null
pretty_name: "LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding"
size_categories:
- 10K<n<100K
source_datasets:
- extended
task_categories:
- text-classification
- token-classification
task_ids:
- multi-class-classification
- multi-label-classification
- topic-classification
- text-classification-other-judgement-prediction
- named-entity-recognition
- named entity recognition and classification (NERC)
---
# Dataset Card for LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Joel Niklaus](mailto:[email protected])
### Dataset Summary
The dataset consists of 11 diverse multilingual legal NLU datasets. 6 datasets have one single configuration and 5 datasets have two or three configurations. This leads to a total of 18 tasks (8 single-label text classification tasks, 5 multi-label text classification tasks and 5 token-classification tasks).
Use the dataset like this:
```python
from datasets import load_dataset
dataset = load_dataset("joelito/lextreme", "swiss_judgment_prediction")
```
### Supported Tasks and Leaderboards
The dataset supports the tasks of text classification and token classification.
In detail, we support the folliwing tasks and configurations:
| task | task type | configurations | link |
|:---------------------------|--------------------------:|--------------------------------:|-------------------------------------------------------------------------------------------------------:|
| Brazilian Court Decisions | Judgment Prediction | (judgment, unanimity) | [joelito/brazilian_court_decisions](https://huggingface.co/datasets/joelito/brazilian_court_decisions) |
| Swiss Judgment Prediction | Judgment Prediction | default | [joelito/swiss_judgment_prediction](https://huggingface.co/datasets/swiss_judgment_prediction) |
| German Argument Mining | Argument Mining | default | [joelito/german_argument_mining](https://huggingface.co/datasets/joelito/german_argument_mining) |
| Greek Legal Code | Topic Classification | (volume, chapter, subject) | [greek_legal_code](https://huggingface.co/datasets/greek_legal_code) |
| Online Terms of Service | Unfairness Classification | (unfairness level, claus topic) | [online_terms_of_service](https://huggingface.co/datasets/joelito/online_terms_of_service) |
| Covid 19 Emergency Event | Event Classification | default | [covid19_emergency_event](https://huggingface.co/datasets/joelito/covid19_emergency_event) |
| MultiEURLEX | Topic Classification | (level 1, level 2, level 3) | [multi_eurlex](https://huggingface.co/datasets/multi_eurlex) |
| LeNER BR | Named Entity Recognition | default | [lener_br](https://huggingface.co/datasets/lener_br) |
| LegalNERo | Named Entity Recognition | default | [legalnero](https://huggingface.co/datasets/joelito/legalnero) |
| Greek Legal NER | Named Entity Recognition | default | [greek_legal_ner](https://huggingface.co/datasets/joelito/greek_legal_ner) |
| MAPA | Named Entity Recognition | (coarse, fine) | [mapa](https://huggingface.co/datasets/joelito/mapa) |
### Languages
The following languages are supported: bg , cs , da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv
## Dataset Structure
### Data Instances
The file format is jsonl and three data splits are present for each configuration (train, validation and test).
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
How can I contribute a dataset to lextreme?
Please follow the following steps:
1. Make sure your dataset is available on the huggingface hub and has a train, validation and test split.
2. Create a pull request to the lextreme repository by adding the following to the lextreme.py file:
- Create a dict _{YOUR_DATASET_NAME} (similar to _BRAZILIAN_COURT_DECISIONS_JUDGMENT) containing all the necessary information about your dataset (task_type, input_col, label_col, etc.)
- Add your dataset to the BUILDER_CONFIGS list: `LextremeConfig(name="{your_dataset_name}", **_{YOUR_DATASET_NAME})`
- Test that it works correctly by loading your subset with `load_dataset("lextreme", "{your_dataset_name}")` and inspecting a few examples.
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@misc{niklaus2023lextreme,
title={LEXTREME: A Multi-Lingual and Multi-Task Benchmark for the Legal Domain},
author={Joel Niklaus and Veton Matoshi and Pooja Rani and Andrea Galassi and Matthias Stürmer and Ilias Chalkidis},
year={2023},
eprint={2301.13126},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@JoelNiklaus](https://github.com/joelniklaus) for adding this dataset.
|