File size: 4,433 Bytes
07cdb7d
 
19805c8
844f205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04cbbba
 
 
 
 
 
9e619be
 
07cdb7d
c1d996c
e03d87e
c1d996c
 
 
fea7a74
c1d996c
6b94c59
 
c1d996c
 
 
9e619be
 
e589e85
c1d996c
 
 
9e619be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1d996c
9e619be
 
c1d996c
9e619be
 
 
c1d996c
 
9e619be
 
8bc3407
 
 
c1d996c
9e619be
 
 
 
c1d996c
9e619be
c1d996c
32d9013
c1d996c
 
 
9e619be
 
c1d996c
 
 
9e619be
c1d996c
 
 
9e619be
 
c1d996c
92a76a6
 
9e619be
 
 
 
92a76a6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: other
configs:
  - config_name: SAT-4
  - config_name: SAT-6
  - config_name: NASC-TG2
  - config_name: WHU-RS19
  - config_name: RSSCN7
  - config_name: RS_C11
  - config_name: SIRI-WHU
  - config_name: EuroSAT
  - config_name: NWPU-RESISC45
  - config_name: PatternNet
  - config_name: RSD46-WHU
  - config_name: GID
  - config_name: CLRS
  - config_name: Optimal-31
  - config_name: Airbus-Wind-Turbines-Patches
  - config_name: USTC_SmokeRS
  - config_name: Canadian_Cropland
  - config_name: Ships-In-Satellite-Imagery
  - config_name: Satellite-Images-of-Hurricane-Damage
  - config_name: Brazilian_Coffee_Scenes
  - config_name: Brazilian_Cerrado-Savanna_Scenes
  - config_name: Million-AID
  - config_name: UC_Merced_LandUse_MultiLabel
  - config_name: MLRSNet
  - config_name: MultiScene
  - config_name: RSI-CB256
  - config_name: AID_MultiLabel
task_categories:
- image-classification
- zero-shot-image-classification
pretty_name: SATellite ImageNet
size_categories:
- 100K<n<1M
language:
- en
---

# Dataset Card for SATIN

## Dataset Description

- **Homepage:** [https://satinbenchmark.github.io](https://satinbenchmark.github.io)
- **Repository:** 
- **Paper:** [SATIN: A Multi-Task Metadataset for Classifying Satellite Imagery using Vision-Language Models](https://arxiv.org/pdf/2304.11619.pdf)
- **Leaderboard:** [SATIN Leaderboard](https://satinbenchmark.github.io/leaderboard.md)

### Dataset Summary

SATIN (SATellite ImageNet) is a metadataset containing 27 constituent satellite and aerial image datasets spanning 6 distinct tasks: Land Cover, Land Use, 
Hierarchical Land Use, Complex Scenes, Rare Scenes, and False Colour Scenes. The imagery is globally distributed, comprised of resolutions spanning 5 orders 
of magnitude, multiple fields of view sizes, and over 250 distinct class labels. Presented at ICCV '23 TNGCV Workshop.

## Dataset Structure

The SATIN benchmark is comprised of the following datasets:
#### Task 1: Land Cover
- SAT-4
- SAT-6
- NASC-TG2
#### Task 2: Land Use
- WHU-RS19
- RSSCN7
- RS_C11
- SIRI-WHU
- EuroSAT
- NWPU-RESISC45
- PatternNet
- RSD46-WHU
- GID
- CLRS
- Optimal-31
#### Task 3: Hierarchical Land Use
- Million-AID
- RSI-CB256
#### Task 4: Complex Scenes
- UC_Merced_LandUse_MultiLabel
- MLRSNet
- MultiScene
- AID_MultiLabel
#### Task 5: Rare Scenes
- Airbus-Wind-Turbines-Patches
- USTC_SmokeRS
- Canadian_Cropland
- Ships-In-Satellite-Imagery
- Satellite-Images-of-Hurricane-Damage
#### Task 6: False Colour Scenes
- Brazilian_Coffee_Scenes
- Brazilian_Cerrado-Savanna_Scenes

For ease of use and to avoid having to download the entire benchmark for each use, in this dataset repository, each of the 27 datasets is included as a separate 
'config'.

### Example Usage
```python
from datasets import load_dataset


hf_dataset = load_dataset('jonathan-roberts1/SATIN', DATASET_NAME, split='train') # for DATASET_NAME use one of the configs listed above (e.g., EuroSAT)
features = hf_dataset.features
class_labels = features['label'].names 
#class_labels = features['label'].feature.names # for the Complex Scenes datasets
#class_labels_1 = features['label_1'].names # for the Hierarchical Land Use datasets, the label field is replaced with label_1, label_2, ...

random_index = 5
example = hf_dataset[random_index]
image, label = example['image'], example['label']
```

### Data Splits

For each config, there is just the single, default 'train' split.

### Source Data

More information regarding the source data can be found in our paper. Additionally, each of the constituent datasets have been uploaded to HuggingFace datasets.
They can be accessed at: huggingface.co/datasets/jonathan-roberts1/DATASET_NAME.

### Dataset Curators

This dataset was curated by Jonathan Roberts, Kai Han, and Samuel Albanie

### Licensing Information

As SATIN is comprised of existing datasets with differing licenses, there is not a single license for SATIN. All of the datasets in SATIN can be used 
for research purposes; usage information of specific constituent datasets can be found in the Appendix of our paper.

### Citation Information
```
@article{roberts2023satin,
  title        = {SATIN: A Multi-Task Metadataset for Classifying Satellite Imagery using Vision-Language Models},
  author       = {Jonathan Roberts, Kai Han, and Samuel Albanie},
  year         = {2023},
  eprint       = {2304.11619},
  archivePrefix= {arXiv},
  primaryClass = {cs.CV}
}
```