File size: 4,433 Bytes
07cdb7d 19805c8 844f205 04cbbba 9e619be 07cdb7d c1d996c e03d87e c1d996c fea7a74 c1d996c 6b94c59 c1d996c 9e619be e589e85 c1d996c 9e619be c1d996c 9e619be c1d996c 9e619be c1d996c 9e619be 8bc3407 c1d996c 9e619be c1d996c 9e619be c1d996c 32d9013 c1d996c 9e619be c1d996c 9e619be c1d996c 9e619be c1d996c 92a76a6 9e619be 92a76a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
license: other
configs:
- config_name: SAT-4
- config_name: SAT-6
- config_name: NASC-TG2
- config_name: WHU-RS19
- config_name: RSSCN7
- config_name: RS_C11
- config_name: SIRI-WHU
- config_name: EuroSAT
- config_name: NWPU-RESISC45
- config_name: PatternNet
- config_name: RSD46-WHU
- config_name: GID
- config_name: CLRS
- config_name: Optimal-31
- config_name: Airbus-Wind-Turbines-Patches
- config_name: USTC_SmokeRS
- config_name: Canadian_Cropland
- config_name: Ships-In-Satellite-Imagery
- config_name: Satellite-Images-of-Hurricane-Damage
- config_name: Brazilian_Coffee_Scenes
- config_name: Brazilian_Cerrado-Savanna_Scenes
- config_name: Million-AID
- config_name: UC_Merced_LandUse_MultiLabel
- config_name: MLRSNet
- config_name: MultiScene
- config_name: RSI-CB256
- config_name: AID_MultiLabel
task_categories:
- image-classification
- zero-shot-image-classification
pretty_name: SATellite ImageNet
size_categories:
- 100K<n<1M
language:
- en
---
# Dataset Card for SATIN
## Dataset Description
- **Homepage:** [https://satinbenchmark.github.io](https://satinbenchmark.github.io)
- **Repository:**
- **Paper:** [SATIN: A Multi-Task Metadataset for Classifying Satellite Imagery using Vision-Language Models](https://arxiv.org/pdf/2304.11619.pdf)
- **Leaderboard:** [SATIN Leaderboard](https://satinbenchmark.github.io/leaderboard.md)
### Dataset Summary
SATIN (SATellite ImageNet) is a metadataset containing 27 constituent satellite and aerial image datasets spanning 6 distinct tasks: Land Cover, Land Use,
Hierarchical Land Use, Complex Scenes, Rare Scenes, and False Colour Scenes. The imagery is globally distributed, comprised of resolutions spanning 5 orders
of magnitude, multiple fields of view sizes, and over 250 distinct class labels. Presented at ICCV '23 TNGCV Workshop.
## Dataset Structure
The SATIN benchmark is comprised of the following datasets:
#### Task 1: Land Cover
- SAT-4
- SAT-6
- NASC-TG2
#### Task 2: Land Use
- WHU-RS19
- RSSCN7
- RS_C11
- SIRI-WHU
- EuroSAT
- NWPU-RESISC45
- PatternNet
- RSD46-WHU
- GID
- CLRS
- Optimal-31
#### Task 3: Hierarchical Land Use
- Million-AID
- RSI-CB256
#### Task 4: Complex Scenes
- UC_Merced_LandUse_MultiLabel
- MLRSNet
- MultiScene
- AID_MultiLabel
#### Task 5: Rare Scenes
- Airbus-Wind-Turbines-Patches
- USTC_SmokeRS
- Canadian_Cropland
- Ships-In-Satellite-Imagery
- Satellite-Images-of-Hurricane-Damage
#### Task 6: False Colour Scenes
- Brazilian_Coffee_Scenes
- Brazilian_Cerrado-Savanna_Scenes
For ease of use and to avoid having to download the entire benchmark for each use, in this dataset repository, each of the 27 datasets is included as a separate
'config'.
### Example Usage
```python
from datasets import load_dataset
hf_dataset = load_dataset('jonathan-roberts1/SATIN', DATASET_NAME, split='train') # for DATASET_NAME use one of the configs listed above (e.g., EuroSAT)
features = hf_dataset.features
class_labels = features['label'].names
#class_labels = features['label'].feature.names # for the Complex Scenes datasets
#class_labels_1 = features['label_1'].names # for the Hierarchical Land Use datasets, the label field is replaced with label_1, label_2, ...
random_index = 5
example = hf_dataset[random_index]
image, label = example['image'], example['label']
```
### Data Splits
For each config, there is just the single, default 'train' split.
### Source Data
More information regarding the source data can be found in our paper. Additionally, each of the constituent datasets have been uploaded to HuggingFace datasets.
They can be accessed at: huggingface.co/datasets/jonathan-roberts1/DATASET_NAME.
### Dataset Curators
This dataset was curated by Jonathan Roberts, Kai Han, and Samuel Albanie
### Licensing Information
As SATIN is comprised of existing datasets with differing licenses, there is not a single license for SATIN. All of the datasets in SATIN can be used
for research purposes; usage information of specific constituent datasets can be found in the Appendix of our paper.
### Citation Information
```
@article{roberts2023satin,
title = {SATIN: A Multi-Task Metadataset for Classifying Satellite Imagery using Vision-Language Models},
author = {Jonathan Roberts, Kai Han, and Samuel Albanie},
year = {2023},
eprint = {2304.11619},
archivePrefix= {arXiv},
primaryClass = {cs.CV}
}
``` |