Update exebench.py
Browse files- exebench.py +40 -25
exebench.py
CHANGED
@@ -20,7 +20,22 @@ from pathlib import Path
|
|
20 |
|
21 |
|
22 |
_CITATION = """\
|
23 |
-
@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
"""
|
26 |
|
@@ -126,36 +141,36 @@ class ExeBench(datasets.GeneratorBasedBuilder):
|
|
126 |
def _split_generators(self, dl_manager):
|
127 |
"""Returns SplitGenerators."""
|
128 |
urls_to_download = {
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
"test_synth": f"{_URL}test_synth.tar.gz",
|
138 |
"test_real": f"{_URL}test_real.tar.gz",
|
139 |
}
|
140 |
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
141 |
|
142 |
return [
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
datasets.SplitGenerator(name='test_synth',
|
160 |
gen_kwargs={"files": downloaded_files["test_synth"]}),
|
161 |
datasets.SplitGenerator(name='test_real',
|
|
|
20 |
|
21 |
|
22 |
_CITATION = """\
|
23 |
+
@inproceedings{10.1145/3520312.3534867,
|
24 |
+
author = {Armengol-Estap\'{e}, Jordi and Woodruff, Jackson and Brauckmann, Alexander and Magalh\~{a}es, Jos\'{e} Wesley de Souza and O'Boyle, Michael F. P.},
|
25 |
+
title = {ExeBench: An ML-Scale Dataset of Executable C Functions},
|
26 |
+
year = {2022},
|
27 |
+
isbn = {9781450392730},
|
28 |
+
publisher = {Association for Computing Machinery},
|
29 |
+
address = {New York, NY, USA},
|
30 |
+
url = {https://doi.org/10.1145/3520312.3534867},
|
31 |
+
doi = {10.1145/3520312.3534867},
|
32 |
+
abstract = {Machine-learning promises to transform compilation and software engineering, yet is frequently limited by the scope of available datasets. In particular, there is a lack of runnable, real-world datasets required for a range of tasks ranging from neural program synthesis to machine learning-guided program optimization. We introduce a new dataset, ExeBench, which attempts to address this. It tackles two key issues with real-world code: references to external types and functions and scalable generation of IO examples. ExeBench is the first publicly available dataset that pairs real-world C code taken from GitHub with IO examples that allow these programs to be run. We develop a toolchain that scrapes GitHub, analyzes the code, and generates runnable snippets of code. We analyze our benchmark suite using several metrics, and show it is representative of real-world code. ExeBench contains 4.5M compilable and 700k executable C functions. This scale of executable, real functions will enable the next generation of machine learning-based programming tasks.},
|
33 |
+
booktitle = {Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming},
|
34 |
+
pages = {50–59},
|
35 |
+
numpages = {10},
|
36 |
+
keywords = {Code Dataset, Program Synthesis, Mining Software Repositories, C, Machine Learning for Code, Compilers},
|
37 |
+
location = {San Diego, CA, USA},
|
38 |
+
series = {MAPS 2022}
|
39 |
}
|
40 |
"""
|
41 |
|
|
|
141 |
def _split_generators(self, dl_manager):
|
142 |
"""Returns SplitGenerators."""
|
143 |
urls_to_download = {
|
144 |
+
"train_not_compilable": f"{_URL}train_not_compilable.tar.gz",
|
145 |
+
"train_synth_compilable": f"{_URL}train_synth_compilable.tar.gz",
|
146 |
+
"train_real_compilable": f"{_URL}train_real_compilable.tar.gz",
|
147 |
+
"train_synth_simple_io": f"{_URL}train_synth_simple_io.tar.gz",
|
148 |
+
"train_real_simple_io": f"{_URL}train_real_simple_io.tar.gz",
|
149 |
+
"train_synth_rich_io": f"{_URL}train_synth_rich_io.tar.gz",
|
150 |
+
"valid_synth": f"{_URL}valid_synth.tar.gz",
|
151 |
+
"valid_real": f"{_URL}valid_real.tar.gz",
|
152 |
"test_synth": f"{_URL}test_synth.tar.gz",
|
153 |
"test_real": f"{_URL}test_real.tar.gz",
|
154 |
}
|
155 |
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
156 |
|
157 |
return [
|
158 |
+
datasets.SplitGenerator(name='train_not_compilable',
|
159 |
+
gen_kwargs={"files": downloaded_files["train_not_compilable"]}),
|
160 |
+
datasets.SplitGenerator(name='train_synth_compilable',
|
161 |
+
gen_kwargs={"files": downloaded_files["train_synth_compilable"]}),
|
162 |
+
datasets.SplitGenerator(name='train_real_compilable',
|
163 |
+
gen_kwargs={"files": downloaded_files["train_real_compilable"]}),
|
164 |
+
datasets.SplitGenerator(name='train_synth_simple_io',
|
165 |
+
gen_kwargs={"files": downloaded_files["train_synth_simple_io"]}),
|
166 |
+
datasets.SplitGenerator(name='train_real_simple_io',
|
167 |
+
gen_kwargs={"files": downloaded_files["train_real_simple_io"]}),
|
168 |
+
datasets.SplitGenerator(name='train_synth_rich_io',
|
169 |
+
gen_kwargs={"files": downloaded_files["train_synth_rich_io"]}),
|
170 |
+
datasets.SplitGenerator(name='valid_synth',
|
171 |
+
gen_kwargs={"files": downloaded_files["valid_synth"]}),
|
172 |
+
datasets.SplitGenerator(name='valid_real',
|
173 |
+
gen_kwargs={"files": downloaded_files["valid_real"]}),
|
174 |
datasets.SplitGenerator(name='test_synth',
|
175 |
gen_kwargs={"files": downloaded_files["test_synth"]}),
|
176 |
datasets.SplitGenerator(name='test_real',
|