File size: 12,623 Bytes
bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 77d023a f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 bd86c7c bf50634 f57ed44 bf50634 f57ed44 bd86c7c f57ed44 bf50634 bd86c7c bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 f57ed44 bf50634 5467f9a bd86c7c 5467f9a f57ed44 2d80c91 5467f9a bd86c7c 5467f9a f57ed44 5467f9a f57ed44 5467f9a 2d80c91 5467f9a f57ed44 5467f9a f57ed44 5467f9a f57ed44 5467f9a bf50634 5467f9a 2d80c91 f57ed44 5467f9a f57ed44 5467f9a 2d80c91 5467f9a 2d80c91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DUDE dataset loader"""
import os
from pathlib import Path
import time
import copy
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
from io import BytesIO
tqdm.pandas()
from joblib import Parallel, delayed
import pdf2image
import PyPDF2
from PIL import Image as PIL_Image
from datasets import load_dataset_builder, load_dataset, logging
logger = logging.get_logger(__name__)
MAX_PAGES = 50
MAX_PDF_SIZE = 100000000 # almost 100MB
MIN_WIDTH, MIN_HEIGHT = 150, 150
def load_json(json_path):
return json.load(open(json_path, "r"))
def save_json(json_path, data):
with open(json_path, "w") as f:
json.dump(data, f)
def get_images_pdf2image(document_filepath):
info = pdf2image.pdfinfo_from_path(document_filepath, userpw=None, poppler_path=None)
maxPages = info["Pages"]
maxPages = min(maxPages, maxPages)
# logger.info(f"{document_filepath} has {str(maxPages)} pages")
images = []
for page in range(1, maxPages + 1, 10):
images.extend(
pdf2image.convert_from_path(
document_filepath, first_page=page, last_page=min(page + 10 - 1, maxPages)
)
)
return images
def pdf_to_images(document_filepath, converter="PyPDF2"):
def images_to_pagenames(images, document_filepath, page_image_dir):
page_image_names = []
for page_idx, page_image in enumerate(images):
page_image_name = document_filepath.replace("PDF", "images").replace(
".pdf", f"_{page_idx}.jpg"
)
page_image_names.append(page_image_name.replace(page_image_dir, "")) # without dir
if not os.path.exists(page_image_name):
page_image.convert("RGB").save(page_image_name)
return page_image_names
example = {}
example["num_pages"] = 0
example["page_image_names"] = []
images = []
page_image_dir = "/".join(document_filepath.split("/")[:-1]).replace("PDF", "images")
if not os.path.exists(page_image_dir):
os.makedirs(page_image_dir)
# if len(document_filepath) > MAX_PDF_SIZE:
# logger.warning(f"too large document {len(example['document'])}")
# return example
reached_page_limit = False
if converter == "PyPDF2":
try:
reader = PyPDF2.PdfReader(document_filepath)
except Exception as e:
logger.warning(f"read_pdf {e}")
return example
for p, page in enumerate(reader.pages):
if reached_page_limit:
break
try:
for image in page.images:
if len(images) == MAX_PAGES:
reached_page_limit = True
break
im = PIL_Image.open(BytesIO(image.data))
if im.width < MIN_WIDTH and im.height < MIN_HEIGHT:
continue
images.append(im)
except Exception as e:
logger.warning(f"get_images {e}")
elif converter == "pdf2image":
images = get_images_pdf2image(document_filepath)
example["num_pages"] = len(images)
if len(images) == 0:
return example
example["page_image_names"] = images_to_pagenames(images, document_filepath, page_image_dir)
return example
def pdf_to_images_block(document_paths_blocks, converter):
new_doc_metadata = {}
for document_filepath in document_paths_blocks:
docId = document_filepath.split("/")[-1].replace(".pdf", "")
new_doc_metadata[docId] = pdf_to_images(document_filepath, converter=converter)
return new_doc_metadata
def parse_textract_bbox(box):
# 0.47840896, 0.12897822, 0.5341576 , 0.14347914 # x,w,y,h
return np.array([box["Left"], box["Width"], box["Top"], box["Height"]])
def parse_azure_box(box, page_width, page_height):
# Box in Azure are in format X top left, Y top left, X top right, Y top right, X bottom right, Y bottom right, X bottom left, Y bottom left
# [14.1592, 3.8494, 28.668, 3.8494, 28.668, 8.0487, 13.9844, 7.8738]
left = min(box[0], box[6])
right = max(box[2], box[4])
top = min(box[1], box[3])
bottom = max(box[5], box[7])
width = right - left
height = bottom - top
# Normalize
left = left / page_width
top = top / page_height
width = width / page_width
height = height / page_height
return [left, width, top, height]
def get_ocr_information(ocr_path, num_pages):
ocr_info = load_json(ocr_path)
ocr_pages = ocr_info[0]["DocumentMetadata"]["Pages"]
if num_pages != ocr_pages:
raise AssertionError("Pages from images and OCR not matching, should go for pdf2image")
page_ocr_tokens = [[] for page_ix in range(num_pages)]
page_ocr_boxes = [[] for page_ix in range(num_pages)]
for ocr_block in ocr_info:
for ocr_extraction in ocr_block["Blocks"]:
if ocr_extraction["BlockType"] == "WORD":
text = ocr_extraction["Text"].lower()
bounding_box = parse_textract_bbox(
ocr_extraction["Geometry"]["BoundingBox"]
).tolist()
page = ocr_extraction["Page"] - 1
page_ocr_tokens[page].append(text)
page_ocr_boxes[page].append(bounding_box)
"""
for page in range(num_pages):
page_ocr_boxes[page] = np.array(page_ocr_boxes[page])
"""
return page_ocr_tokens, page_ocr_boxes
def create_header(split, version, has_answer):
header = {
"creation_time": time.time(),
"version": version,
"dataset_type": split,
"has_answer": has_answer,
}
return header
def get_document_info(documents_metadata, docId):
doc_metadata = documents_metadata[docId]
num_pages = doc_metadata["num_pages"]
page_image_names = doc_metadata["page_image_names"]
return num_pages, page_image_names
def format_answers(answers_list):
answers_list = list(set([answer.lower() for answer in answers_list]))
return answers_list
def create_imdb_record_from_json(
record, documents_metadata, documents_ocr_info, split, include_answers
):
docId = record["docId"].split("_")[0]
# document_filepath = documents_dict[docId]
try:
num_pages, page_image_names = get_document_info(documents_metadata, docId)
document_ocr_info = documents_ocr_info[docId]
except Exception as e:
print(
"Missing: ",
e,
docId,
)
return {}
if include_answers:
answers = format_answers(record["answers"])
else:
answers = None
imdb_record = {
"question_id": record["questionId"],
"question": record["question"],
"docId": docId,
"image_name": page_image_names,
"num_pages": num_pages,
"ocr_tokens": document_ocr_info["ocr_tokens"],
"ocr_normalized_boxes": document_ocr_info["ocr_boxes"],
"set_name": split,
"answers": answers,
"answer_page": None,
"extra": {
# 'question_type': record['qtype'],
# 'industry': record['industry'],
# 'category': record['category'],
"answer_type": record["answer_type"],
},
}
return imdb_record
def create_imdb_from_json(
data, documents_metadata, documents_ocr_info, split, version, include_answers=True
):
imdb_header = create_header(split, version, include_answers)
imdb_records = []
for record in tqdm(data):
imdb_record = create_imdb_record_from_json(
record, documents_metadata, documents_ocr_info, split, include_answers
)
if imdb_record:
imdb_records.append(imdb_record)
imdb = [imdb_header] + imdb_records
return imdb
if __name__ == "__main__":
dataset = load_dataset(
"../DUDE_loader/DUDE_loader.py",
"DUDE",
data_dir="/home/jordy/Downloads/DUDE_train-val-test_binaries",
)
splits = dataset.keys()
for split in splits:
split_indices = []
OCR_paths = []
document_paths = []
for i, x in enumerate(dataset[split]):
if x["data_split"] != split: #redundant check
continue
if x["document"] not in document_paths:
document_paths.append(x["document"])
OCR_paths.append(x["OCR"])
split_indices.append(i)
# document_paths = document_paths[:30]
# OCR_paths = OCR_paths[:30]
# 1. PDF to image dir and collect document metadata (num_pages, page_image_names)
documents_metadata_filename = f"{split}-documents_metadata.json"
if os.path.exists(documents_metadata_filename):
print(f"Loading from disk: {documents_metadata_filename}")
documents_metadata = load_json(documents_metadata_filename)
else:
documents_metadata = {}
num_jobs = 6
block_size = int(len(document_paths) / num_jobs) + 1
print(f"{block_size} * {num_jobs} = {block_size*num_jobs} ({len(document_paths)})")
document_blocks = [
document_paths[block_size * i : block_size * i + block_size]
for i in range(num_jobs)
]
print(
"chunksize",
len(set([docId for doc_block in document_blocks for docId in doc_block])),
)
parallel_results = Parallel(n_jobs=num_jobs)(
delayed(pdf_to_images_block)(document_blocks[i], "pdf2image")
for i in range(num_jobs)
)
for block_result in parallel_results:
for docId, metadata in tqdm(block_result.items()):
if docId not in documents_metadata:
documents_metadata[docId] = metadata
save_json(documents_metadata_filename, documents_metadata)
# 2. Process OCR to obtain doc_ocr_info
documents_ocr_filename = f"{split}-documents_ocr.json"
if os.path.exists(documents_ocr_filename):
print(f"Loading from disk: {documents_ocr_filename}")
documents_ocr_info = load_json(documents_ocr_filename)
else:
documents_ocr_info = {}
no_ocr = []
error_ocr = []
for i, document_filepath in enumerate(document_paths):
docId = document_filepath.split("/")[-1].replace(".pdf", "")
try:
ocr_tokens, ocr_boxes = get_ocr_information(
OCR_paths[i], documents_metadata[docId]["num_pages"]
)
documents_ocr_info[docId] = {"ocr_tokens": ocr_tokens, "ocr_boxes": ocr_boxes}
except AssertionError as e:
print(f"image2pages issue: {e}")
error_ocr.append(docId)
except IndexError as e:
print(f"pages issue: {e}")
error_ocr.append(docId)
except FileNotFoundError:
print(f"FileNotFoundError issue: {e}")
no_ocr.append(docId)
except KeyError:
print(f"Keyerror issue: {e}")
error_ocr.append(docId)
save_json(documents_ocr_filename, documents_ocr_info)
imdb_filename = f"{split}_imdb.npy"
if os.path.exists(imdb_filename):
print(f"Loading from disk: {imdb_filename}")
imdb = np.load(imdb_filename)
else:
imdb = create_imdb_from_json(
dataset[split], # .select(split_indices),
documents_metadata=documents_metadata,
documents_ocr_info=documents_ocr_info,
split=split,
version="0.1",
include_answers=True,
)
np.save(imdb_filename, imdb)
|