File size: 1,709 Bytes
e8f9d4f
 
b940079
 
 
 
 
 
 
e9b63fe
 
 
 
 
 
 
 
 
 
 
 
 
 
5d29da4
e9b63fe
 
 
 
 
 
5d29da4
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
license: cc-by-4.0
task_categories:
- question-answering
language:
- en
pretty_name: DUDE
size_categories:
- 10K<n<100K
---


## Loading the dataset with a specific configuration

There are 3 different OCR versions to choose from with their original format or standardized DUE format, as well as the option to load the documents as filepaths or as binaries (PDF).
To load a specific configuration, pass a config from one of the following:

```python
#{bin_}{Amazon,Azure,Tesseract}_{original,due}
['Amazon_due', 'Amazon_original', 'Azure_due', 'Azure_original', 'Tesseract_due', 'Tesseract_original', 
'bin_Amazon_due', 'bin_Amazon_original', 'bin_Azure_due', 'bin_Azure_original', 'bin_Tesseract_due', 'bin_Tesseract_original']
```

Loading the dataset:
```python
from datasets import load_dataset

ds = load_dataset("jordyvl/DUDE_loader", 'Amazon_original')
```

This dataset repository contains helper functions to convert the dataset to ImDB (image database) format. 
We advise to clone the repository and run it according to your preferences (OCR version, lowercasing, ...).
When running the above data loading script, you should be able to find the extracted binaries under the [HF_CACHE](https://huggingface.co/docs/datasets/cache):  
`HF_CACHE/datasets/downloads/extracted/<hash>/DUDE_train-val-test_binaries`, which can be reused for the `data_dir` argument.

For example: 

```bash
python3 DUDE_imdb_loader.py \
--data_dir ~/.cache/huggingface/datasets/downloads/extracted/7adde0ed7b0150b7f6b32e52bcad452991fde0f3407c8a87e74b1cb475edaa5b/DUDE_train-val-test_binaries/
```

For baselines, we recommend having a look at the [MP-DocVQA repository](https://github.com/rubenpt91/MP-DocVQA-Framework)