File size: 13,933 Bytes
bf50634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd86c7c
bf50634
bd86c7c
 
 
bf50634
 
 
 
 
bd86c7c
bf50634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd86c7c
 
bf50634
bd86c7c
bf50634
bd86c7c
bf50634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d023a
 
bd86c7c
bf50634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd86c7c
 
bf50634
 
 
 
 
 
 
 
 
 
 
 
 
 
bd86c7c
 
 
 
bf50634
 
 
 
 
 
 
 
 
bd86c7c
bf50634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd86c7c
bf50634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5467f9a
 
77d023a
bf50634
bd86c7c
5467f9a
 
 
 
 
 
 
 
bd86c7c
5467f9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf50634
5467f9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd86c7c
5467f9a
 
bd86c7c
5467f9a
 
bf50634
5467f9a
bf50634
77d023a
5467f9a
bf50634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d023a
bd86c7c
bf50634
 
 
 
 
 
 
 
 
 
5467f9a
 
bf50634
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DUDE dataset loader"""

import os
from pathlib import Path
import time
import copy
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
from io import BytesIO

tqdm.pandas()
from joblib import Parallel, delayed

# import pdf2image
import PyPDF2

from datasets import load_dataset_builder, load_dataset
from PIL import Image as PIL_Image


MAX_PAGES = 50
MAX_PDF_SIZE = 100000000  # almost 100MB
MIN_WIDTH, MIN_HEIGHT = 150, 150


def load_json(json_path):
    return json.load(open(json_path, "r"))


def save_json(json_path, data):
    with open(json_path, "w") as f:
        json.dump(data, f)


# 0. PDF to images

# 1. OCR metadata


def pdf_to_images(document_filepath):
    def images_to_pagenames(images, document_filepath, page_image_dir):
        "/home/jordy/Downloads/DUDE_train-val-test_binaries/PDF/val/001d6f557c342ef5a67cd38a29da9e83.pdf"

        page_image_names = []
        for page_idx, page_image in enumerate(images):
            page_image_name = document_filepath.replace("PDF", "images").replace(
                ".pdf", f"_{page_idx}.jpg"
            )

            # page_image_names.append(page_image_name.replace(page_images_dir, "")) #without dir

            if not os.path.exists(page_image_name):
                page_image.save(page_image_name)
        return page_image_names

    example = {}
    example["document"] = document_filepath
    example["pages"] = 0
    example["page_image_names"] = []
    images = []

    page_image_dir = "/".join(example["document"].split("/")[:-1]).replace("PDF", "images")
    if not os.path.exists(page_image_dir):
        os.makedirs(page_image_dir)

    # if len(example["document"]) > MAX_PDF_SIZE:
    #     logger.warning(f"too large document {len(example['document'])}")
    #     return example
    try:
        reader = PyPDF2.PdfReader(example["document"])
    except Exception as e:
        logger.warning(f"read_pdf {e}")
        return example

    reached_page_limit = False
    page_iterator = reader.pages

    for p, page in enumerate(page_iterator):
        if reached_page_limit:
            break
        for image in page.images:
            # try:
            # except Exception as e:
            #     logger.warning(f"get_images {e}")
            if len(images) == MAX_PAGES:
                reached_page_limit = True
                break

            im = PIL_Image.open(BytesIO(image.data))
            if im.width < MIN_WIDTH and im.height < MIN_HEIGHT:
                continue
            images.append(im)
    example["pages"] = len(images)
    if len(images) == 0:
        return example

    example["page_image_names"] = images_to_pagenames(images, example["document"], page_image_dir)

    return example


def pdf_to_images_block(document_paths_blocks):
    new_doc_metadata = {}
    for document_filepath in document_paths_blocks:
        docId = document_filepath.split("/")[-1].replace(".pdf", "")
        new_doc_metadata[docId] = pdf_to_images(document_filepath)
    return new_doc_metadata


"""
def get_document_metadata(docs_metadata, docId, document_filepath):

    if docId in docs_metadata and docs_metadata[docId]["num_pages"] != -1:
        num_pages = docs_metadata[docId]["num_pages"]
        page_image_names = docs_metadata[docId]["page_image_names"]

    else:
        try:
            images = pdf2image.convert_from_path(document_filepath)
        except:
            print(docId)
            return -1, -1
        num_pages = len(images)
        page_image_dir = ("/").join(
            document_filepath.replace(documents_dir, page_images_dir).split("/")[:-1]
        )
        if not os.path.exists(page_image_dir):
            os.makedirs(page_image_dir)

        page_image_names = []
        for page_idx, page_image in enumerate(images):
            page_image_name = document_filepath.replace(documents_dir, page_images_dir).replace(
                ".pdf", f"_{page_idx}.jpg"
            )
            page_image_names.append(page_image_name.replace(page_images_dir, ""))

            if not os.path.exists(page_image_name):
                page_image.save(page_image_name)

    return num_pages, page_image_names


def get_document_metadata_block(docs_metadata, documents_path_dict, documents_blocks):
    new_doc_metadata = {}
    for docId in documents_blocks:
        document_filepath = documents_path_dict[docId]
        num_pages, page_image_names = get_document_metadata(
            docs_metadata, docId, document_filepath
        )
        new_doc_metadata[docId] = {"num_pages": num_pages, "page_image_names": page_image_names}

    return new_doc_metadata
"""


def parse_textract_bbox(box):
    # 0.47840896, 0.12897822, 0.5341576 , 0.14347914 # x,w,y,h
    return np.array([box["Left"], box["Width"], box["Top"], box["Height"]])


def parse_azure_box(box, page_width, page_height):
    # Box in Azure are in format X top left, Y top left, X top right, Y top right, X bottom right, Y bottom right, X bottom left, Y bottom left
    # [14.1592, 3.8494, 28.668, 3.8494, 28.668, 8.0487, 13.9844, 7.8738]
    left = min(box[0], box[6])
    right = max(box[2], box[4])
    top = min(box[1], box[3])
    bottom = max(box[5], box[7])
    width = right - left
    height = bottom - top

    # Normalize
    left = left / page_width
    top = top / page_height
    width = width / page_width
    height = height / page_height

    return [left, width, top, height]


def get_ocr_information(ocr_path, num_pages):
    ocr_info = load_json(ocr_path)
    #num_pages, _ = get_document_metadata(documents_metadata, docId, documents[docId])

    page_ocr_tokens = [[] for page_ix in range(num_pages)]
    page_ocr_boxes = [[] for page_ix in range(num_pages)]
    for ocr_block in ocr_info:
        for ocr_extraction in ocr_block["Blocks"]:
            if ocr_extraction["BlockType"] == "WORD":
                text = ocr_extraction["Text"].lower()
                bounding_box = parse_textract_bbox(ocr_extraction["Geometry"]["BoundingBox"])
                page = ocr_extraction["Page"] - 1

                page_ocr_tokens[page].append(text)
                page_ocr_boxes[page].append(bounding_box)

    for page in range(num_pages):
        page_ocr_boxes[page] = np.array(page_ocr_boxes[page])

    page_ocr_boxes = page_ocr_boxes
    return page_ocr_tokens, page_ocr_boxes


def create_header(split, version, has_answer):
    header = {
        "creation_time": time.time(),
        "version": version,
        "dataset_type": split,
        "has_answer": has_answer,
    }

    return header


def get_document_info(documents_metadata, docId):
    doc_metadata = documents_metadata[docId]
    num_pages = doc_metadata["num_pages"]
    page_image_names = doc_metadata["page_image_names"]
    return num_pages, page_image_names


def format_answers(answers_list):
    answers_list = list(set([answer.lower() for answer in answers_list]))
    return answers_list


def create_imdb_record_from_json(
    record, documents_metadata, documents_ocr_information, split, include_answers
):

    docId = record["docId"]
    # document_filepath = documents_dict[docId]
    num_pages, page_image_names = get_document_info(documents_metadata, docId)
    document_ocr_info = documents_ocr_information[docId]

    if include_answers:
        answers = format_answers(record["answers"])
    else:
        answers = None

    imdb_record = {
        "question_id": record["questionId"],
        "question": record["question"],
        "docId": docId,
        "image_name": page_image_names,
        "num_pages": num_pages,
        "ocr_tokens": document_ocr_info["ocr_tokens"],
        "ocr_normalized_boxes": document_ocr_info["ocr_boxes"],
        "set_name": split,
        "answers": answers,
        "answer_page": None,
        "extra": {
            # 'question_type': record['qtype'],
            # 'industry': record['industry'],
            # 'category': record['category'],
            "answer_type": record["answer_type"],
        },
    }

    return imdb_record


def create_imdb_from_json(
    data, documents_metadata, documents_ocr_information, split, version, include_answers=True
):
    imdb_header = create_header(split, version, include_answers)

    imdb_records = []
    for record in tqdm(data):
        imdb_records.append(
            create_imdb_record_from_json(
                record, documents_metadata, documents_ocr_information, split, include_answers
            )
        )

    imdb = [imdb_header] + imdb_records

    return imdb


if __name__ == "__main__":
    dataset = load_dataset(
        "../DUDE_loader/DUDE_loader.py",
        "DUDE",
        data_dir="/home/jordy/Downloads/DUDE_train-val-test_binaries",
    )
    splits = datasets.keys()

    for split in splits:
        if split != "val":
            continue

        split_indices = []
        OCR_paths = []
        document_paths = []
        for i, x in enumerate(dataset):
            if x["data_split"] != split:
                continue
            if x["document"] not in document_paths:
                document_paths.append(x["document"])
                OCR_paths.append(x["OCR"])
                split_indices.append(i)

        document_paths = document_paths[:30]
        OCR_paths = OCR_paths[:30]

        # 1. PDF to image dir and collect document metadata (num_pages, page_image_names)
        documents_metadata_filename = f"{split}-documents_metadata.json"
        if os.path.exists(documents_metadata_filename):
            documents_metadata = load_json(documents_metadata_filename)
        else:
            documents_metadata = {}
            num_jobs = 6
            block_size = int(len(document_paths) / num_jobs) + 1
            print(f"{block_size} * {num_jobs} = {block_size*num_jobs} ({len(document_paths)})")
            documents_blocks = [
                document_paths[block_size * i : block_size * i + block_size] for i in range(num_jobs)
            ]
            print(
                "chunksize",
                len(set([docId for doc_block in documents_blocks for docId in doc_block])),
            )
            parallel_results = Parallel(n_jobs=num_jobs)(
                delayed(get_document_metadata_block)(documents_metadata, documents, document_paths[i])
                for i in range(num_jobs)
            )

            for block_result in parallel_results:
                for docId, metadata in tqdm(block_result.items()):
                    if docId not in documents_metadata:
                        documents_metadata[docId] = metadata

            save_json(documents_metadata_filename, documents_metadata)

        # 2. Process OCR to obtain doc_ocr_info
        documents_ocr_filename = f"{split}-documents_ocr.json"

        if os.path.exists(documents_ocr_filename):
            documents_ocr_info = load_json(documents_ocr_filename)
        else:
            documents_ocr_info = {}
            no_ocr = []
            error_ocr = []

            for i, document_filepath in enumerate(document_paths):
                docId = document_filepath.split("/")[-1].replace(".pdf", "")
            try:
                ocr_tokens, ocr_boxes = get_ocr_information(OCR_paths[i], documents_metadata[docId]["num_pages"])
                doc_ocr_info[docId] = {"ocr_tokens": ocr_tokens, "ocr_boxes": ocr_boxes}
            except FileNotFoundError:
                no_ocr.append(docId)
            except KeyError:
                error_ocr.append(docId)

            save_json(documents_ocr_filename, documents_ocr_info)

        imdb = create_imdb_from_json(
            dataset.select(split_indices),
            documents_metadata=documents_metadata,
            documents_ocr_information=doc_ocr_info,
            split=split,
            version="0.1",
            include_answers=True,
        )
        np.save(f"{split}_imdb.npy", imdb)

    import pdb; pdb.set_trace()  # breakpoint 930f4f6a //

    # page_image_dir = '/'.join(dataset['val']['document'][0].split("/")[:-1]).replace('PDF', 'images')
    # if not os.path.exists(page_image_dir):
    #     os.makedirs(page_image_dir)
    # dataset.info.features

    """
    Describe all steps that need to happen after loading HF DUDE dataset
    Change functions 
    

    page_images_dir


    
    2. Process OCR to obtain doc_ocr_info 
    """
    # update dataset with
    # for split in SPLITS

    # documents_metadata
    # doc_ocr_info

    # dict to unique docs
    # documents_metadata[docId] = {"num_pages": num_pages, "page_image_names": image_names}
    # doc_ocr_info[docId] = {"ocr_tokens": ocr_tokens, "ocr_boxes": ocr_boxes}

    """
    train_imdb = create_imdb_from_json(
        train_data,
        documents_metadata=documents_metadata,
        documents_ocr_information=doc_ocr_info,
        split="train",
        version="0.1",
        include_answers=True,
    )


    np.save("Imdb/train_imdb.npy", train_imdb)

    document_paths = []
    num_jobs = 6
    block_size = int(len(document_ids) / num_jobs) + 1
    print(f"{block_size} * {num_jobs} = {block_size*num_jobs} ({len(document_ids)})")
    parallel_results = Parallel(n_jobs=num_jobs)(
        delayed(get_document_metadata_block)(documents_metadata, documents, documents_blocks[i])
        for i in range(num_jobs)
    )
    """