DUDE_loader / DUDE_imdb_loader.py
jordyvl's picture
fix binary memory leakage
52ed403
raw
history blame
13.9 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DUDE dataset loader"""
import os
from pathlib import Path
import time
import copy
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
from io import BytesIO
tqdm.pandas()
from joblib import Parallel, delayed
import pdf2image
import PyPDF2
from PIL import Image as PIL_Image
from datasets import load_dataset_builder, load_dataset, logging
logger = logging.get_logger(__name__)
MAX_PAGES = 50
MAX_PDF_SIZE = 100000000 # almost 100MB
MIN_WIDTH, MIN_HEIGHT = 150, 150
def load_json(json_path):
return json.load(open(json_path, "r"))
def save_json(json_path, data):
with open(json_path, "w") as f:
json.dump(data, f)
def get_images_pdf2image(document_filepath):
info = pdf2image.pdfinfo_from_path(document_filepath, userpw=None, poppler_path=None)
maxPages = info["Pages"]
maxPages = min(maxPages, maxPages)
# logger.info(f"{document_filepath} has {str(maxPages)} pages")
images = []
for page in range(1, maxPages + 1, 10):
images.extend(
pdf2image.convert_from_path(
document_filepath, first_page=page, last_page=min(page + 10 - 1, maxPages)
)
)
return images
def pdf_to_images(document_filepath, converter="PyPDF2"):
def images_to_pagenames(images, document_filepath, page_image_dir):
page_image_names = []
for page_idx, page_image in enumerate(images):
page_image_name = document_filepath.replace("PDF", "images").replace(
".pdf", f"_{page_idx}.jpg"
)
page_image_names.append(page_image_name.replace(page_image_dir, "")) # without dir
if not os.path.exists(page_image_name):
page_image.convert("RGB").save(page_image_name)
return page_image_names
example = {}
example["num_pages"] = 0
example["page_image_names"] = []
images = []
page_image_dir = "/".join(document_filepath.split("/")[:-1]).replace("PDF", "images")
if not os.path.exists(page_image_dir):
os.makedirs(page_image_dir)
# if len(document_filepath) > MAX_PDF_SIZE:
# logger.warning(f"too large document {len(example['document'])}")
# return example
reached_page_limit = False
if converter == "PyPDF2":
try:
reader = PyPDF2.PdfReader(document_filepath)
except Exception as e:
logger.warning(f"read_pdf {e}")
return example
for p, page in enumerate(reader.pages):
if reached_page_limit:
break
try:
for image in page.images:
if len(images) == MAX_PAGES:
reached_page_limit = True
break
im = PIL_Image.open(BytesIO(image.data))
if im.width < MIN_WIDTH and im.height < MIN_HEIGHT:
continue
images.append(im)
except Exception as e:
logger.warning(f"get_images {e}")
elif converter == "pdf2image":
images = get_images_pdf2image(document_filepath)
example["num_pages"] = len(images)
if len(images) == 0:
return example
example["page_image_names"] = images_to_pagenames(images, document_filepath, page_image_dir)
return example
def pdf_to_images_block(document_paths_blocks, converter):
new_doc_metadata = {}
for document_filepath in document_paths_blocks:
docId = document_filepath.split("/")[-1].replace(".pdf", "")
new_doc_metadata[docId] = pdf_to_images(document_filepath, converter=converter)
return new_doc_metadata
def parse_textract_bbox(box):
# 0.47840896, 0.12897822, 0.5341576 , 0.14347914 # x,w,y,h
return np.array([box["Left"], box["Width"], box["Top"], box["Height"]])
def parse_azure_box(box, page_width, page_height):
# Box in Azure are in format X top left, Y top left, X top right, Y top right, X bottom right, Y bottom right, X bottom left, Y bottom left
# [14.1592, 3.8494, 28.668, 3.8494, 28.668, 8.0487, 13.9844, 7.8738]
left = min(box[0], box[6])
right = max(box[2], box[4])
top = min(box[1], box[3])
bottom = max(box[5], box[7])
width = right - left
height = bottom - top
# Normalize
left = left / page_width
top = top / page_height
width = width / page_width
height = height / page_height
return [left, width, top, height]
def get_ocr_information(ocr_path, num_pages):
ocr_info = load_json(ocr_path)
ocr_pages = ocr_info[0]["DocumentMetadata"]["Pages"]
if num_pages != ocr_pages:
raise AssertionError("Pages from images and OCR not matching, should go for pdf2image")
page_ocr_tokens = [[] for page_ix in range(num_pages)]
page_ocr_boxes = [[] for page_ix in range(num_pages)]
for ocr_block in ocr_info:
for ocr_extraction in ocr_block["Blocks"]:
if ocr_extraction["BlockType"] == "WORD":
text = ocr_extraction["Text"].lower()
bounding_box = parse_textract_bbox(
ocr_extraction["Geometry"]["BoundingBox"]
).tolist()
page = ocr_extraction["Page"] - 1
page_ocr_tokens[page].append(text)
page_ocr_boxes[page].append(bounding_box)
"""
for page in range(num_pages):
page_ocr_boxes[page] = np.array(page_ocr_boxes[page])
"""
return page_ocr_tokens, page_ocr_boxes
def create_header(split, version, has_answer):
header = {
"creation_time": time.time(),
"version": version,
"dataset_type": split,
"has_answer": has_answer,
}
return header
def get_document_info(documents_metadata, docId):
doc_metadata = documents_metadata[docId]
num_pages = doc_metadata["num_pages"]
page_image_names = doc_metadata["page_image_names"]
return num_pages, page_image_names
def format_answers(answers_list):
answers_list = list(set([answer.lower() for answer in answers_list]))
return answers_list
def create_imdb_record_from_json(
record, documents_metadata, documents_ocr_info, split, include_answers
):
docId = record["docId"].split("_")[0]
# document_filepath = documents_dict[docId]
try:
num_pages, page_image_names = get_document_info(documents_metadata, docId)
document_ocr_info = documents_ocr_info[docId]
except Exception as e:
print(
"Missing: ",
e,
docId,
)
return {}
if include_answers:
answers = format_answers(record["answers"])
else:
answers = None
imdb_record = {
"question_id": record["questionId"],
"question": record["question"],
"docId": docId,
"image_name": page_image_names,
"num_pages": num_pages,
"ocr_tokens": document_ocr_info["ocr_tokens"],
"ocr_normalized_boxes": document_ocr_info["ocr_boxes"],
"set_name": split,
"answers": answers,
"answer_page": None,
"extra": {
# 'question_type': record['qtype'],
# 'industry': record['industry'],
# 'category': record['category'],
"answer_type": record["answer_type"],
},
}
return imdb_record
def create_imdb_from_json(
data, documents_metadata, documents_ocr_info, split, version, include_answers=True
):
imdb_header = create_header(split, version, include_answers)
imdb_records = []
for record in tqdm(data):
imdb_record = create_imdb_record_from_json(
record, documents_metadata, documents_ocr_info, split, include_answers
)
if imdb_record:
imdb_records.append(imdb_record)
imdb = [imdb_header] + imdb_records
return imdb
if __name__ == "__main__":
dataset = load_dataset(
"../DUDE_loader/DUDE_loader.py",
"DUDE",
data_dir="/home/jordy/Downloads/DUDE_train-val-test_binaries",
)
splits = dataset.keys()
for split in splits:
if split != "val":
continue
split_indices = []
OCR_paths = []
document_paths = []
for i, x in enumerate(dataset[split]):
if x["data_split"] != split:
continue
if x["document"] not in document_paths:
document_paths.append(x["document"])
OCR_paths.append(x["OCR"])
split_indices.append(i)
# document_paths = document_paths[:30]
# OCR_paths = OCR_paths[:30]
# 1. PDF to image dir and collect document metadata (num_pages, page_image_names)
documents_metadata_filename = f"{split}-documents_metadata.json"
if os.path.exists(documents_metadata_filename):
print(f"Loading from disk: {documents_metadata_filename}")
documents_metadata = load_json(documents_metadata_filename)
else:
documents_metadata = {}
num_jobs = 1
block_size = int(len(document_paths) / num_jobs) + 1
print(f"{block_size} * {num_jobs} = {block_size*num_jobs} ({len(document_paths)})")
document_blocks = [
document_paths[block_size * i : block_size * i + block_size]
for i in range(num_jobs)
]
print(
"chunksize",
len(set([docId for doc_block in document_blocks for docId in doc_block])),
)
parallel_results = Parallel(n_jobs=num_jobs)(
delayed(pdf_to_images_block)(document_blocks[i], "pdf2image")
for i in range(num_jobs)
)
for block_result in parallel_results:
for docId, metadata in tqdm(block_result.items()):
if docId not in documents_metadata:
documents_metadata[docId] = metadata
save_json(documents_metadata_filename, documents_metadata)
# 2. Process OCR to obtain doc_ocr_info
documents_ocr_filename = f"{split}-documents_ocr.json"
if os.path.exists(documents_ocr_filename) and False:
print(f"Loading from disk: {documents_ocr_filename}")
documents_ocr_info = load_json(documents_ocr_filename)
else:
documents_ocr_info = {}
no_ocr = []
error_ocr = []
for i, document_filepath in enumerate(document_paths):
docId = document_filepath.split("/")[-1].replace(".pdf", "")
try:
ocr_tokens, ocr_boxes = get_ocr_information(
OCR_paths[i], documents_metadata[docId]["num_pages"]
)
documents_ocr_info[docId] = {"ocr_tokens": ocr_tokens, "ocr_boxes": ocr_boxes}
except AssertionError as e:
print(f"image2pages issue: {e}")
error_ocr.append(docId)
except IndexError as e:
print(f"pages issue: {e}")
error_ocr.append(docId)
except FileNotFoundError:
print(f"FileNotFoundError issue: {e}")
no_ocr.append(docId)
except KeyError:
print(f"Keyerror issue: {e}")
error_ocr.append(docId)
save_json(documents_ocr_filename, documents_ocr_info)
imdb = create_imdb_from_json(
dataset[split], # .select(split_indices),
documents_metadata=documents_metadata,
documents_ocr_info=documents_ocr_info,
split=split,
version="0.1",
include_answers=True,
)
np.save(f"{split}_imdb.npy", imdb) # dump to lerna
import pdb
pdb.set_trace() # breakpoint 930f4f6a //
# page_image_dir = '/'.join(dataset['val']['document'][0].split("/")[:-1]).replace('PDF', 'images')
# if not os.path.exists(page_image_dir):
# os.makedirs(page_image_dir)
# dataset.info.features
"""
Describe all steps that need to happen after loading HF DUDE dataset
Change functions
page_images_dir
2. Process OCR to obtain doc_ocr_info
"""
# update dataset with
# for split in SPLITS
# documents_metadata
# doc_ocr_info
# dict to unique docs
# documents_metadata[docId] = {"num_pages": num_pages, "page_image_names": image_names}
# doc_ocr_info[docId] = {"ocr_tokens": ocr_tokens, "ocr_boxes": ocr_boxes}
"""
train_imdb = create_imdb_from_json(
train_data,
documents_metadata=documents_metadata,
documents_ocr_info=doc_ocr_info,
split="train",
version="0.1",
include_answers=True,
)
np.save("Imdb/train_imdb.npy", train_imdb)
document_paths = []
num_jobs = 6
block_size = int(len(document_ids) / num_jobs) + 1
print(f"{block_size} * {num_jobs} = {block_size*num_jobs} ({len(document_ids)})")
parallel_results = Parallel(n_jobs=num_jobs)(
delayed(get_document_metadata_block)(documents_metadata, documents, documents_blocks[i])
for i in range(num_jobs)
)
"""