File size: 4,531 Bytes
84bbf26
 
 
 
 
416121a
 
 
 
fd94284
 
e2ed8dc
 
416121a
 
 
 
 
 
e2ed8dc
 
416121a
 
 
 
 
 
 
 
e2ed8dc
416121a
e2ed8dc
 
1ee335b
 
 
 
 
416121a
511f595
6c526b6
54aa9f4
49cdab9
 
 
 
 
 
 
 
 
8f2af2d
8b94bdb
1e41d70
6c526b6
cac250e
8b94bdb
 
23b397d
 
8b94bdb
 
 
 
 
6c526b6
 
511f595
6c526b6
c94bbeb
511f595
 
ccdc4b5
8f2af2d
ccdc4b5
 
ecf6f3c
 
544a414
274b9c2
544a414
1466815
 
 
 
 
 
 
ecf6f3c
 
 
 
 
 
 
 
 
 
1e41d70
 
 
 
 
 
 
 
 
 
 
 
1466815
 
 
 
 
 
 
 
 
 
 
1e41d70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
task_categories:
- audio-classification
language:
- en
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: scream_type
    dtype: string
  - name: song_name
    dtype: string
  - name: band_name
    dtype: string
  - name: album_name
    dtype: string
  - name: release_year
    dtype: int64
  - name: video_id
    dtype: string
  - name: timestamp_start
    dtype: float64
  - name: timestamp_end
    dtype: float64
  - name: sample_rate
    dtype: int64
  splits:
  - name: train
    num_bytes: 114577942.825
    num_examples: 1575
  download_size: 119156239
  dataset_size: 114577942.825
license: mit
tags:
- music
size_categories:
- 1K<n<10K
---
# Dataset card for Scream Detection in Heavy Metal Music
This dataset contains the processed dataset used in the paper "Scream Detection in Heavy Metal Music" (Kalbag & Lerch, 2022) from the Georgia Institute of Technology.

This dataset contains annotations of 57 songs, distributed over 34 bands and 47 albums. The vocal events are labelled into 5 classes:

Clean (or sung vocal)
Low Fry Scream
Mid Fry Scream
High Fry Scream
Layered Vocals
The label "Layered Vocals" has been applied to cases where there are examples of two or more classes present simultaneously.

**Paper:** [Scream Detection in Heavy Metal Music](https://arxiv.org/pdf/2205.05580.pdf)

Kalbag, V., & Lerch, A. (2022). Scream detection in heavy metal music. arXiv preprint arXiv:2205.05580.

### How to use
Load the dataset from huggingface in your notebook:
```python
!pip install datasets[audio]

import datasets

dataset = datasets.load_dataset("jpdiazpardo/scream_detection_heavy_metal")
```

### Data Fields

* `audio`: the trimmed audio file from the song.
* `scream_type`: the target variable for classification i.e. layered, lowfry, highfry, midfry, clean.
* `song_name`: the name of the song.
* `band_name`: the name of the artist performing the song.
* `album_name`: the name of the album where the song was released.
* `release_year`: the release year of the song.
* `video_id`: the YouTube video id.
* `timestamp_start`: the start time of the snippet from the full audio.
* `tiemstamp_end`: the end time of the snippet from the full audio.
* `sample_rate`: the sampling rate of the audio.

### Youtube playlist
[Scream Detection Dataset](https://www.youtube.com/playlist?list=PLnkRJFUtBDzWOEnVOiWTVxGOWD70LDwtC)

### Source Data

#### Initial Data Collection and Normalization
The data was collected from the YouTube playlist above and trimmed using the timestamps provided in the dataset.

The audio files were passed through the [Spleeter](https://joss.theoj.org/papers/10.21105/joss.02154) (Hennequin et al., 2020) source separation algorithm to separate the vocals from the other components.

### Licensing Information

MIT License

Copyright (c) 2022 Vedant Kalbag

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

### Citation Information

```
@article{
  title={Scream Detection in Heavy Metal Music},
  author={Vedant Kalbag and Alexabder Lerch},
  journal={ArXiv},
  year={2022},
  volume={abs/2205.05580}
}

@article{Hennequin2020,
         doi = {10.21105/joss.02154},
         url = {https://doi.org/10.21105/joss.02154},
         year = {2020}, publisher = {The Open Journal},
         volume = {5}, number = {50}, pages = {2154},
         author = {Romain Hennequin and Anis Khlif and Felix Voituret and Manuel Moussallam},
         title = {Spleeter: a fast and efficient music source separation tool with pre-trained models},
         journal = {Journal of Open Source Software}

}
```