File size: 14,318 Bytes
fffb732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d00771
fffb732
 
 
 
376b926
fffb732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376b926
 
 
 
 
 
 
771b1c1
 
376b926
fffb732
 
 
 
 
 
 
 
376b926
 
 
 
 
 
771b1c1
 
376b926
771b1c1
376b926
fffb732
376b926
 
fffb732
 
 
3d00771
 
 
 
 
fffb732
376b926
771b1c1
 
376b926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fffb732
376b926
 
 
fffb732
 
 
 
 
 
 
 
 
 
 
376b926
 
 
 
 
 
 
 
3d00771
 
 
 
 
 
 
 
 
 
771b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fffb732
 
 
 
 
376b926
771b1c1
fffb732
 
 
 
 
 
 
376b926
771b1c1
fffb732
 
 
 
 
 
 
376b926
771b1c1
fffb732
 
 
 
 
 
 
 
 
 
 
 
376b926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fffb732
376b926
 
 
 
93893c5
376b926
 
 
 
 
 
3d00771
 
 
 
 
 
 
 
 
 
fffb732
3d00771
 
fffb732
376b926
 
 
 
93893c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fffb732
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
lesion dataset - ISIC 2018 Task 2
"""


import numpy as np
import os
from PIL import Image

import datasets

from datasets import Sequence, Value
from urllib.parse import urlparse


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset has been modified for project use case.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URL = "https://storage.googleapis.com/lesion-dataset/"
_URLS = {
    "full": "https://storage.googleapis.com/lesion-dataset/dataset-images.zip",
    "globules": "https://storage.googleapis.com/lesion-dataset/dataset-globules.zip",
    "milia_like_cyst": "https://storage.googleapis.com/lesion-dataset/dataset-milia_like_cyst.zip",
    "negative_network": "https://storage.googleapis.com/lesion-dataset/dataset-negative_network.zip",
    "pigment_network": "https://storage.googleapis.com/lesion-dataset/dataset-pigment_network.zip",
    "streaks": "https://storage.googleapis.com/lesion-dataset/dataset-streaks.zip",
    "task1": "https://storage.googleapis.com/lesion-dataset/dataset-task1.zip",
}


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class LesionDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name='full', version=VERSION, description="This will return the full dataset with all classes"),
        datasets.BuilderConfig(name="globules", version=VERSION, description="This will return the dataset with only globules class"),
        datasets.BuilderConfig(name="milia_like_cyst", version=VERSION, description="This will return the dataset with only milia_like_cyst class"),
        datasets.BuilderConfig(name="negative_network", version=VERSION, description="This will return the dataset with only negative_network class"),
        datasets.BuilderConfig(name="pigment_network", version=VERSION, description="This will return the dataset with only pigment_network class"),
        datasets.BuilderConfig(name="streaks", version=VERSION, description="This will return the dataset with only streaks class"),
        datasets.BuilderConfig(name="task1", version=VERSION, description="This will return the dataset for task1"),
    ]
    DEFAULT_CONFIG_NAME = "task1"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if self.config.name == "full":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "label0": datasets.Image(),
                    "label1": datasets.Image(),
                    "label2": datasets.Image(),
                    "label3": datasets.Image(),
                    "label4": datasets.Image(),
                }
            )

        elif self.config.name in ['globules', 'milia_like_cyst', 'negative_network', 'pigment_network', 'streaks', 'task1']:
            features = datasets.Features(
                {
                    "image": datasets.Image(),
                    "label": datasets.Image(),
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )


    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        url = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(url)
        # Parse the URL
        parsed_url = urlparse(url)
        # Get the base name
        base_name_with_extension = os.path.basename(parsed_url.path)
        # Remove the extension
        base_name = os.path.splitext(base_name_with_extension)[0]

        # Label to ID mapping
        self.label2id = {
            'globules': 0,
            'milia_like_cyst': 1,
            'negative_network': 2,
            'pigment_network': 3,
            'streaks': 4
        }

        # Task 2
        if self.config.name in ['full', 'globules', 'milia_like_cyst', 'negative_network', 'pigment_network', 'streaks']:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1-2_Training_Input"),
                        "labelpath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task2_Training_GroundTruth_v3"),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1-2_Validation_Input"),
                        "labelpath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task2_Validation_GroundTruth"),
                        "split": "validation",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1-2_Test_Input"),
                        "labelpath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task2_Test_GroundTruth"),
                        "split": "test"
                    },
                ),
            ]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1-2_Training_Input"),
                    "labelpath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1_Training_GroundTruth"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1-2_Validation_Input"),
                    "labelpath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1_Validation_GroundTruth"),
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1-2_Test_Input"),
                    "labelpath": os.path.join(data_dir, f"{base_name}/ISIC2018_Task1_Test_GroundTruth"),
                    "split": "test"
                },
            ),
        ]



    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, labelpath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.

        # if the configuration is full, return all the labels
        if self.config.name == "full":
            # Loop through every file in the filepath directory
            for filename in os.listdir(filepath):
                # Check if the file is an image
                if filename.endswith('.jpg') or filename.endswith('.jpeg'):
                    # Get the base name of the image file (without the extension) (e.g. ISIC_0000000)
                    base_name = os.path.splitext(filename)[0]

                    yield_result = {"image": os.path.join(filepath, filename)}
                    for k, v in self.label2id.items():
                        label_filename = f'{base_name}_attribute_{k}.png'
                        label_file_path = os.path.join(labelpath, label_filename)

                        # if attribute label does not exist, create a black mask for it
                        if not os.path.exists(label_file_path):
                            # Load the corresponding image to get its size
                            img = Image.open(yield_result['image'])
                            width, height = img.size

                            # Create a black image of the same size
                            black_img = Image.fromarray(np.zeros((height, width), dtype=np.uint8))

                            # Save the black image
                            black_img.save(label_file_path)

                        yield_result[f"label{v}"] = label_file_path

                    yield base_name, yield_result

        elif self.config.name in ['globules', 'milia_like_cyst', 'negative_network', 'pigment_network', 'streaks']:
            for filename in os.listdir(filepath):
                if filename.endswith('.jpg') or filename.endswith('.jpeg'):
                    base_name = os.path.splitext(filename)[0]

                    yield_result = {"image": os.path.join(filepath, filename)}
                    label_filename = f'{base_name}_attribute_{self.config.name}.png'
                    label_file_path = os.path.join(labelpath, label_filename)

                    # if attribute label does not exist, create a black mask for it
                    if not os.path.exists(label_file_path):
                        # Load the corresponding image to get its size
                        img = Image.open(yield_result['image'])
                        width, height = img.size

                        # Create a black image of the same size
                        black_img = Image.fromarray(np.zeros((height, width), dtype=np.uint8))

                        # Save the black image
                        black_img.save(label_file_path)

                    yield_result["label"] = label_file_path

                    yield base_name, yield_result

        elif self.config.name == "task1":
            for filename in os.listdir(filepath):
                if filename.endswith('.jpg') or filename.endswith('.jpeg'):
                    base_name = os.path.splitext(filename)[0]

                    yield_result = {"image": os.path.join(filepath, filename)}
                    label_filename = f'{base_name}_segmentation.png'
                    label_file_path = os.path.join(labelpath, label_filename)

                    # if attribute label does not exist, create a black mask for it
                    if not os.path.exists(label_file_path):
                        # Load the corresponding image to get its size
                        img = Image.open(yield_result['image'])
                        width, height = img.size

                        # Create a black image of the same size
                        black_img = Image.fromarray(np.zeros((height, width), dtype=np.uint8))

                        # Save the black image
                        black_img.save(label_file_path)

                    yield_result["label"] = label_file_path

                    yield base_name, yield_result



# datasets-cli test /Users/jon/code/school/t8/DeepLearning/proj/lesion-dataset.py --save_info --all_configs