docstring
stringlengths
52
499
function
stringlengths
67
35.2k
__index_level_0__
int64
52.6k
1.16M
Return a random Pauli on number of qubits. Args: num_qubits (int): the number of qubits seed (int): Optional. To set a random seed. Returns: Pauli: the random pauli
def random(cls, num_qubits, seed=None): if seed is not None: np.random.seed(seed) z = np.random.randint(2, size=num_qubits).astype(np.bool) x = np.random.randint(2, size=num_qubits).astype(np.bool) return cls(z, x)
159,530
Generate single qubit pauli at index with pauli_label with length num_qubits. Args: num_qubits (int): the length of pauli index (int): the qubit index to insert the single qubii pauli_label (str): pauli Returns: Pauli: single qubit pauli
def pauli_single(cls, num_qubits, index, pauli_label): tmp = Pauli.from_label(pauli_label) z = np.zeros(num_qubits, dtype=np.bool) x = np.zeros(num_qubits, dtype=np.bool) z[index] = tmp.z[0] x[index] = tmp.x[0] return cls(z, x)
159,531
Apply an arbitrary 1-qubit unitary matrix. Args: gate (matrix_like): a single qubit gate matrix qubit (int): the qubit to apply gate to
def _add_unitary_single(self, gate, qubit): # Compute einsum index string for 1-qubit matrix multiplication indexes = einsum_vecmul_index([qubit], self._number_of_qubits) # Convert to complex rank-2 tensor gate_tensor = np.array(gate, dtype=complex) # Apply matrix multiplication self._statevector = np.einsum(indexes, gate_tensor, self._statevector, dtype=complex, casting='no')
159,534
Apply a two-qubit unitary matrix. Args: gate (matrix_like): a the two-qubit gate matrix qubit0 (int): gate qubit-0 qubit1 (int): gate qubit-1
def _add_unitary_two(self, gate, qubit0, qubit1): # Compute einsum index string for 1-qubit matrix multiplication indexes = einsum_vecmul_index([qubit0, qubit1], self._number_of_qubits) # Convert to complex rank-4 tensor gate_tensor = np.reshape(np.array(gate, dtype=complex), 4 * [2]) # Apply matrix multiplication self._statevector = np.einsum(indexes, gate_tensor, self._statevector, dtype=complex, casting='no')
159,535
Simulate the outcome of measurement of a qubit. Args: qubit (int): the qubit to measure Return: tuple: pair (outcome, probability) where outcome is '0' or '1' and probability is the probability of the returned outcome.
def _get_measure_outcome(self, qubit): # Axis for numpy.sum to compute probabilities axis = list(range(self._number_of_qubits)) axis.remove(self._number_of_qubits - 1 - qubit) probabilities = np.sum(np.abs(self._statevector) ** 2, axis=tuple(axis)) # Compute einsum index string for 1-qubit matrix multiplication random_number = self._local_random.rand() if random_number < probabilities[0]: return '0', probabilities[0] # Else outcome was '1' return '1', probabilities[1]
159,536
Generate memory samples from current statevector. Args: measure_params (list): List of (qubit, cmembit) values for measure instructions to sample. num_samples (int): The number of memory samples to generate. Returns: list: A list of memory values in hex format.
def _add_sample_measure(self, measure_params, num_samples): # Get unique qubits that are actually measured measured_qubits = list({qubit for qubit, cmembit in measure_params}) num_measured = len(measured_qubits) # Axis for numpy.sum to compute probabilities axis = list(range(self._number_of_qubits)) for qubit in reversed(measured_qubits): # Remove from largest qubit to smallest so list position is correct # with respect to position from end of the list axis.remove(self._number_of_qubits - 1 - qubit) probabilities = np.reshape(np.sum(np.abs(self._statevector) ** 2, axis=tuple(axis)), 2 ** num_measured) # Generate samples on measured qubits samples = self._local_random.choice(range(2 ** num_measured), num_samples, p=probabilities) # Convert to bit-strings memory = [] for sample in samples: classical_memory = self._classical_memory for count, (qubit, cmembit) in enumerate(sorted(measure_params)): qubit_outcome = int((sample & (1 << count)) >> count) membit = 1 << cmembit classical_memory = (classical_memory & (~membit)) | (qubit_outcome << cmembit) value = bin(classical_memory)[2:] memory.append(hex(int(value, 2))) return memory
159,537
Apply a measure instruction to a qubit. Args: qubit (int): qubit is the qubit measured. cmembit (int): is the classical memory bit to store outcome in. cregbit (int, optional): is the classical register bit to store outcome in.
def _add_qasm_measure(self, qubit, cmembit, cregbit=None): # get measure outcome outcome, probability = self._get_measure_outcome(qubit) # update classical state membit = 1 << cmembit self._classical_memory = (self._classical_memory & (~membit)) | (int(outcome) << cmembit) if cregbit is not None: regbit = 1 << cregbit self._classical_register = \ (self._classical_register & (~regbit)) | (int(outcome) << cregbit) # update quantum state if outcome == '0': update_diag = [[1 / np.sqrt(probability), 0], [0, 0]] else: update_diag = [[0, 0], [0, 1 / np.sqrt(probability)]] # update classical state self._add_unitary_single(update_diag, qubit)
159,538
Apply a reset instruction to a qubit. Args: qubit (int): the qubit being rest This is done by doing a simulating a measurement outcome and projecting onto the outcome state while renormalizing.
def _add_qasm_reset(self, qubit): # get measure outcome outcome, probability = self._get_measure_outcome(qubit) # update quantum state if outcome == '0': update = [[1 / np.sqrt(probability), 0], [0, 0]] self._add_unitary_single(update, qubit) else: update = [[0, 1 / np.sqrt(probability)], [0, 0]] self._add_unitary_single(update, qubit)
159,539
Determine if measure sampling is allowed for an experiment Args: experiment (QobjExperiment): a qobj experiment.
def _validate_measure_sampling(self, experiment): # If shots=1 we should disable measure sampling. # This is also required for statevector simulator to return the # correct final statevector without silently dropping final measurements. if self._shots <= 1: self._sample_measure = False return # Check for config flag if hasattr(experiment.config, 'allows_measure_sampling'): self._sample_measure = experiment.config.allows_measure_sampling # If flag isn't found do a simple test to see if a circuit contains # no reset instructions, and no gates instructions after # the first measure. else: measure_flag = False for instruction in experiment.instructions: # If circuit contains reset operations we cannot sample if instruction.name == "reset": self._sample_measure = False return # If circuit contains a measure option then we can # sample only if all following operations are measures if measure_flag: # If we find a non-measure instruction # we cannot do measure sampling if instruction.name not in ["measure", "barrier", "id", "u0"]: self._sample_measure = False return elif instruction.name == "measure": measure_flag = True # If we made it to the end of the circuit without returning # measure sampling is allowed self._sample_measure = True
159,544
Run experiments in qobj Args: job_id (str): unique id for the job. qobj (Qobj): job description Returns: Result: Result object
def _run_job(self, job_id, qobj): self._validate(qobj) result_list = [] self._shots = qobj.config.shots self._memory = getattr(qobj.config, 'memory', False) self._qobj_config = qobj.config start = time.time() for experiment in qobj.experiments: result_list.append(self.run_experiment(experiment)) end = time.time() result = {'backend_name': self.name(), 'backend_version': self._configuration.backend_version, 'qobj_id': qobj.qobj_id, 'job_id': job_id, 'results': result_list, 'status': 'COMPLETED', 'success': True, 'time_taken': (end - start), 'header': qobj.header.as_dict()} return Result.from_dict(result)
159,546
Apply an arbitrary 1-qubit unitary matrix. Args: gate (matrix_like): a single qubit gate matrix qubit (int): the qubit to apply gate to
def _add_unitary_single(self, gate, qubit): # Convert to complex rank-2 tensor gate_tensor = np.array(gate, dtype=complex) # Compute einsum index string for 1-qubit matrix multiplication indexes = einsum_matmul_index([qubit], self._number_of_qubits) # Apply matrix multiplication self._unitary = np.einsum(indexes, gate_tensor, self._unitary, dtype=complex, casting='no')
159,550
Apply a two-qubit unitary matrix. Args: gate (matrix_like): a the two-qubit gate matrix qubit0 (int): gate qubit-0 qubit1 (int): gate qubit-1
def _add_unitary_two(self, gate, qubit0, qubit1): # Convert to complex rank-4 tensor gate_tensor = np.reshape(np.array(gate, dtype=complex), 4 * [2]) # Compute einsum index string for 2-qubit matrix multiplication indexes = einsum_matmul_index([qubit0, qubit1], self._number_of_qubits) # Apply matrix multiplication self._unitary = np.einsum(indexes, gate_tensor, self._unitary, dtype=complex, casting='no')
159,551
Run experiments in qobj. Args: job_id (str): unique id for the job. qobj (Qobj): job description Returns: Result: Result object
def _run_job(self, job_id, qobj): self._validate(qobj) result_list = [] start = time.time() for experiment in qobj.experiments: result_list.append(self.run_experiment(experiment)) end = time.time() result = {'backend_name': self.name(), 'backend_version': self._configuration.backend_version, 'qobj_id': qobj.qobj_id, 'job_id': job_id, 'results': result_list, 'status': 'COMPLETED', 'success': True, 'time_taken': (end - start), 'header': qobj.header.as_dict()} return Result.from_dict(result)
159,556
Decorator for expanding an operation across a whole register or register subset. Args: n_bits (int): the number of register bit arguments the decorated function takes func (function): used for decorators with keyword args broadcastable (list(bool)): list of bool for which register args can be broadcast from 1 bit to the max size of the rest of the args. Defaults to all True if not specified. Return: type: partial function object
def _op_expand(n_bits, func=None, broadcastable=None): if func is None: return functools.partial(_op_expand, n_bits, broadcastable=broadcastable) @functools.wraps(func) def wrapper(self, *args): params = args[0:-n_bits] if len(args) > n_bits else tuple() rargs = args[-n_bits:] if broadcastable is None: blist = [True] * len(rargs) else: blist = broadcastable if not all([_is_bit(arg) for arg in rargs]): rarg_size = [1] * n_bits for iarg, arg in enumerate(rargs): if isinstance(arg, Register): rarg_size[iarg] = len(arg) elif isinstance(arg, list) and all([_is_bit(bit) for bit in arg]): rarg_size[iarg] = len(arg) elif _is_bit(arg): rarg_size[iarg] = 1 else: raise QiskitError('operation arguments must be qubits/cbits') broadcast_size = max(rarg_size) expanded_rargs = [] for arg, broadcast in zip(rargs, blist): if isinstance(arg, Register): arg = [(arg, i) for i in range(len(arg))] elif isinstance(arg, tuple): arg = [arg] # now we should have a list of qubits if isinstance(arg, list) and len(arg) == 1 and broadcast: arg = arg * broadcast_size if len(arg) != broadcast_size: raise QiskitError('register size error') expanded_rargs.append(arg) rargs = expanded_rargs if all([isinstance(arg, list) for arg in rargs]): if all(rargs): instructions = InstructionSet() for irargs in zip(*rargs): instructions.add(func(self, *params, *irargs), [i for i in irargs if isinstance(i[0], QuantumRegister)], [i for i in irargs if isinstance(i[0], ClassicalRegister)]) return instructions else: raise QiskitError('empty control or target argument') return func(self, *params, *rargs) return wrapper
159,562
Pick a layout by assigning n circuit qubits to device qubits 0, .., n-1. Args: dag (DAGCircuit): DAG to find layout for. Raises: TranspilerError: if dag wider than self.coupling_map
def run(self, dag): num_dag_qubits = sum([qreg.size for qreg in dag.qregs.values()]) if num_dag_qubits > self.coupling_map.size(): raise TranspilerError('Number of qubits greater than device.') self.property_set['layout'] = Layout.generate_trivial_layout(*dag.qregs.values())
159,565
Create an interval = (begin, end)) Args: begin: begin time of this interval end: end time of this interval Raises: PulseError: when invalid time or duration is specified
def __init__(self, begin: int, end: int): if begin < 0: raise PulseError("Cannot create Interval with negative begin time") if end < 0: raise PulseError("Cannot create Interval with negative end time") self._begin = begin self._end = end
159,566
Check if self has overlap with `interval`. Args: interval: interval to be examined Returns: bool: True if self has overlap with `interval` otherwise False
def has_overlap(self, interval: 'Interval') -> bool: if self.begin < interval.end and interval.begin < self.end: return True return False
159,567
Return a new interval shifted by `time` from self Args: time: time to be shifted Returns: Interval: interval shifted by `time`
def shift(self, time: int) -> 'Interval': return Interval(self._begin + time, self._end + time)
159,568
Two intervals are the same if they have the same begin and end. Args: other (Interval): other Interval Returns: bool: are self and other equal.
def __eq__(self, other): if self._begin == other._begin and self._end == other._end: return True return False
159,569
Return a new Timeslot shifted by `time`. Args: time: time to be shifted
def shift(self, time: int) -> 'Timeslot': return Timeslot(self.interval.shift(time), self.channel)
159,571
Two time-slots are the same if they have the same interval and channel. Args: other (Timeslot): other Timeslot
def __eq__(self, other) -> bool: if self.interval == other.interval and self.channel == other.channel: return True return False
159,572
Create a new time-slot collection. Args: *timeslots: list of time slots Raises: PulseError: when overlapped time slots are specified
def __init__(self, *timeslots: List[Timeslot]): self._table = defaultdict(list) for slot in timeslots: for interval in self._table[slot.channel]: if slot.interval.has_overlap(interval): raise PulseError("Cannot create TimeslotCollection from overlapped timeslots") self._table[slot.channel].append(slot.interval) self._timeslots = tuple(timeslots)
159,573
Return earliest start time in this collection. Args: *channels: Channels over which to obtain start_time.
def ch_start_time(self, *channels: List[Channel]) -> int: intervals = list(itertools.chain(*(self._table[chan] for chan in channels if chan in self._table))) if intervals: return min((interval.begin for interval in intervals)) return 0
159,574
Return maximum time of timeslots over all channels. Args: *channels: Channels over which to obtain stop time.
def ch_stop_time(self, *channels: List[Channel]) -> int: intervals = list(itertools.chain(*(self._table[chan] for chan in channels if chan in self._table))) if intervals: return max((interval.end for interval in intervals)) return 0
159,575
Return if self is mergeable with `timeslots`. Args: timeslots: TimeslotCollection to be checked
def is_mergeable_with(self, timeslots: 'TimeslotCollection') -> bool: for slot in timeslots.timeslots: for interval in self._table[slot.channel]: if slot.interval.has_overlap(interval): return False return True
159,576
Return a new TimeslotCollection merged with a specified `timeslots` Args: timeslots: TimeslotCollection to be merged
def merged(self, timeslots: 'TimeslotCollection') -> 'TimeslotCollection': slots = [Timeslot(slot.interval, slot.channel) for slot in self.timeslots] slots.extend([Timeslot(slot.interval, slot.channel) for slot in timeslots.timeslots]) return TimeslotCollection(*slots)
159,577
Return a new TimeslotCollection shifted by `time`. Args: time: time to be shifted by
def shift(self, time: int) -> 'TimeslotCollection': slots = [Timeslot(slot.interval.shift(time), slot.channel) for slot in self.timeslots] return TimeslotCollection(*slots)
159,578
Two time-slot collections are the same if they have the same time-slots. Args: other (TimeslotCollection): other TimeslotCollection
def __eq__(self, other) -> bool: if self.timeslots == other.timeslots: return True return False
159,579
create new persistent value command. Args: value (complex): Complex value to apply, bounded by an absolute value of 1. The allowable precision is device specific. Raises: PulseError: when input value exceed 1.
def __init__(self, value): super().__init__(duration=0) if abs(value) > 1: raise PulseError("Absolute value of PV amplitude exceeds 1.") self._value = complex(value)
159,583
Create a paulivec representation. Graphical representation of the input array. Args: rho (array): State vector or density matrix. figsize (tuple): Figure size in pixels. slider (bool): activate slider show_legend (bool): show legend of graph content
def iplot_state_paulivec(rho, figsize=None, slider=False, show_legend=False): # HTML html_template = Template() # JavaScript javascript_template = Template() rho = _validate_input_state(rho) # set default figure size if none given if figsize is None: figsize = (7, 5) options = {'width': figsize[0], 'height': figsize[1], 'slider': int(slider), 'show_legend': int(show_legend)} # Process data and execute div_number = str(time.time()) div_number = re.sub('[.]', '', div_number) data_to_plot = [] rho_data = process_data(rho) data_to_plot.append(dict( data=rho_data )) html = html_template.substitute({ 'divNumber': div_number }) javascript = javascript_template.substitute({ 'divNumber': div_number, 'executions': data_to_plot, 'options': options }) display(HTML(html + javascript))
159,596
Plot the quantum state. Args: quantum_state (ndarray): statevector or density matrix representation of a quantum state. method (str): Plotting method to use. figsize (tuple): Figure size in pixels. Raises: VisualizationError: if the input is not a statevector or density matrix, or if the state is not an multi-qubit quantum state.
def iplot_state(quantum_state, method='city', figsize=None): warnings.warn("iplot_state is deprecated, and will be removed in \ the 0.9 release. Use the iplot_state_ * functions \ instead.", DeprecationWarning) rho = _validate_input_state(quantum_state) if method == "city": iplot_state_city(rho, figsize=figsize) elif method == "paulivec": iplot_state_paulivec(rho, figsize=figsize) elif method == "qsphere": iplot_state_qsphere(rho, figsize=figsize) elif method == "bloch": iplot_bloch_multivector(rho, figsize=figsize) elif method == "hinton": iplot_state_hinton(rho, figsize=figsize) else: raise VisualizationError('Invalid plot state method.')
159,597
Chooses a Noise Adaptive Layout Args: backend_prop (BackendProperties): backend properties object Raises: TranspilerError: if invalid options
def __init__(self, backend_prop): super().__init__() self.backend_prop = backend_prop self.swap_graph = nx.DiGraph() self.cx_errors = {} self.readout_errors = {} self.available_hw_qubits = [] self.gate_list = [] self.gate_cost = {} self.swap_paths = {} self.swap_costs = {} self.prog_graph = nx.Graph() self.qarg_to_id = {} self.pending_program_edges = [] self.prog2hw = {}
159,601
Return the matrix power of the operator. Args: n (int): the power to raise the matrix to. Returns: BaseOperator: the n-times composed operator. Raises: QiskitError: if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
def power(self, n): if not isinstance(n, int): raise QiskitError("Can only take integer powers of Operator.") if self.input_dims() != self.output_dims(): raise QiskitError("Can only power with input_dims = output_dims.") # Override base class power so we can implement more efficiently # using Numpy.matrix_power return Operator( np.linalg.matrix_power(self.data, n), self.input_dims(), self.output_dims())
159,617
Return the operator self + other. Args: other (Operator): an operator object. Returns: Operator: the operator self + other. Raises: QiskitError: if other is not an operator, or has incompatible dimensions.
def add(self, other): if not isinstance(other, Operator): other = Operator(other) if self.dim != other.dim: raise QiskitError("other operator has different dimensions.") return Operator(self.data + other.data, self.input_dims(), self.output_dims())
159,618
Return the operator self + other. Args: other (complex): a complex number. Returns: Operator: the operator other * self. Raises: QiskitError: if other is not a valid complex number.
def multiply(self, other): if not isinstance(other, Number): raise QiskitError("other is not a number") return Operator(other * self.data, self.input_dims(), self.output_dims())
159,619
Evolve a quantum state by the operator. Args: state (QuantumState): The input statevector or density matrix. qargs (list): a list of QuantumState subsystem positions to apply the operator on. Returns: QuantumState: the output quantum state. Raises: QiskitError: if the operator dimension does not match the specified QuantumState subsystem dimensions.
def _evolve(self, state, qargs=None): state = self._format_state(state) if qargs is None: if state.shape[0] != self._input_dim: raise QiskitError( "Operator input dimension is not equal to state dimension." ) if state.ndim == 1: # Return evolved statevector return np.dot(self.data, state) # Return evolved density matrix return np.dot( np.dot(self.data, state), np.transpose(np.conj(self.data))) # Subsystem evolution return self._evolve_subsystem(state, qargs)
159,621
Evolve a quantum state by the operator. Args: state (QuantumState): The input statevector or density matrix. qargs (list): a list of QuantumState subsystem positions to apply the operator on. Returns: QuantumState: the output quantum state. Raises: QiskitError: if the operator dimension does not match the specified QuantumState subsystem dimensions.
def _evolve_subsystem(self, state, qargs): mat = np.reshape(self.data, self._shape) # Hack to assume state is a N-qubit state until a proper class for states # is in place state_size = len(state) state_dims = self._automatic_dims(None, state_size) if self.input_dims() != len(qargs) * (2,): raise QiskitError( "Operator input dimensions are not compatible with state subsystem dimensions." ) if state.ndim == 1: # Return evolved statevector tensor = np.reshape(state, state_dims) indices = [len(state_dims) - 1 - qubit for qubit in qargs] tensor = self._einsum_matmul(tensor, mat, indices) return np.reshape(tensor, state_size) # Return evolved density matrix tensor = np.reshape(state, 2 * state_dims) indices = [len(state_dims) - 1 - qubit for qubit in qargs] right_shift = len(state_dims) # Left multiply by operator tensor = self._einsum_matmul(tensor, mat, indices) # Right multiply by adjoint operator # We implement the transpose by doing left multiplication instead of right # in the _einsum_matmul function tensor = self._einsum_matmul( tensor, np.conj(mat), indices, shift=right_shift) return np.reshape(tensor, [state_size, state_size])
159,622
Maps a DAGCircuit onto a `coupling_map` using swap gates. Args: coupling_map (CouplingMap): Directed graph represented a coupling map. initial_layout (Layout): initial layout of qubits in mapping trials (int): the number of attempts the randomized algorithm makes. seed (int): initial seed.
def __init__(self, coupling_map, initial_layout=None, trials=20, seed=None): super().__init__() self.coupling_map = coupling_map self.initial_layout = initial_layout self.trials = trials self.seed = seed self.requires.append(BarrierBeforeFinalMeasurements())
159,626
Convert nested list of shape (..., 2) to complex numpy array with shape (...) Args: complex_list (list): List to convert. Returns: np.ndarray: Complex numpy aray Raises: QiskitError: If inner most array of input nested list is not of length 2.
def _list_to_complex_array(complex_list): arr = np.asarray(complex_list, dtype=np.complex_) if not arr.shape[-1] == 2: raise QiskitError('Inner most nested list is not of length 2.') return arr[..., 0] + 1j*arr[..., 1]
159,636
Format an experiment result memory object for measurement level 0. Args: memory (list): Memory from experiment with `meas_level==1`. `avg` or `single` will be inferred from shape of result memory. Returns: np.ndarray: Measurement level 0 complex numpy array Raises: QiskitError: If the returned numpy array does not have 2 (avg) or 3 (single) indicies.
def format_level_0_memory(memory): formatted_memory = _list_to_complex_array(memory) # infer meas_return from shape of returned data. if not 2 <= len(formatted_memory.shape) <= 3: raise QiskitError('Level zero memory is not of correct shape.') return formatted_memory
159,637
Format an experiment result memory object for measurement level 1. Args: memory (list): Memory from experiment with `meas_level==1`. `avg` or `single` will be inferred from shape of result memory. Returns: np.ndarray: Measurement level 1 complex numpy array Raises: QiskitError: If the returned numpy array does not have 1 (avg) or 2 (single) indicies.
def format_level_1_memory(memory): formatted_memory = _list_to_complex_array(memory) # infer meas_return from shape of returned data. if not 1 <= len(formatted_memory.shape) <= 2: raise QiskitError('Level one memory is not of correct shape.') return formatted_memory
159,638
Format an experiment result memory object for measurement level 2. Args: memory (list): Memory from experiment with `meas_level==2` and `memory==True`. header (dict): the experiment header dictionary containing useful information for postprocessing. Returns: list[str]: List of bitstrings
def format_level_2_memory(memory, header=None): memory_list = [] for shot_memory in memory: memory_list.append(format_counts_memory(shot_memory, header)) return memory_list
159,639
Format a single experiment result coming from backend to present to the Qiskit user. Args: counts (dict): counts histogram of multiple shots header (dict): the experiment header dictionary containing useful information for postprocessing. Returns: dict: a formatted counts
def format_counts(counts, header=None): counts_dict = {} for key, val in counts.items(): key = format_counts_memory(key, header) counts_dict[key] = val return counts_dict
159,640
Format statevector coming from the backend to present to the Qiskit user. Args: vec (list): a list of [re, im] complex numbers. decimals (int): the number of decimals in the statevector. If None, no rounding is done. Returns: list[complex]: a list of python complex numbers.
def format_statevector(vec, decimals=None): num_basis = len(vec) vec_complex = np.zeros(num_basis, dtype=complex) for i in range(num_basis): vec_complex[i] = vec[i][0] + 1j * vec[i][1] if decimals: vec_complex = np.around(vec_complex, decimals=decimals) return vec_complex
159,641
Format unitary coming from the backend to present to the Qiskit user. Args: mat (list[list]): a list of list of [re, im] complex numbers decimals (int): the number of decimals in the statevector. If None, no rounding is done. Returns: list[list[complex]]: a matrix of complex numbers
def format_unitary(mat, decimals=None): num_basis = len(mat) mat_complex = np.zeros((num_basis, num_basis), dtype=complex) for i, vec in enumerate(mat): mat_complex[i] = format_statevector(vec, decimals) return mat_complex
159,642
Decorator to ensure that a submit has been performed before calling the method. Args: func (callable): test function to be decorated. Returns: callable: the decorated function.
def requires_submit(func): @functools.wraps(func) def _wrapper(self, *args, **kwargs): if self._future is None: raise JobError("Job not submitted yet!. You have to .submit() first!") return func(self, *args, **kwargs) return _wrapper
159,644
Whether `lo_freq` is within the `LoRange`. Args: lo_freq: LO frequency to be checked Returns: bool: True if lo_freq is included in this range, otherwise False
def includes(self, lo_freq: float) -> bool: if self._lb <= lo_freq <= self._ub: return True return False
159,649
Two LO ranges are the same if they are of the same type, and have the same frequency range Args: other (LoRange): other LoRange Returns: bool: are self and other equal.
def __eq__(self, other): if (type(self) is type(other) and self._ub == other._ub and self._lb == other._lb): return True return False
159,650
Create new drive (d) channel. Args: index (int): index of the channel lo_freq (float): default frequency of LO (local oscillator) lo_freq_range (tuple): feasible range of LO frequency
def __init__(self, index: int, lo_freq: float = None, lo_freq_range: Tuple[float, float] = (0, float("inf"))): super().__init__(index, lo_freq, lo_freq_range)
159,652
Create a bloch sphere representation. Graphical representation of the input array, using as much bloch spheres as qubit are required. Args: rho (array): State vector or density matrix figsize (tuple): Figure size in pixels.
def iplot_bloch_multivector(rho, figsize=None): # HTML html_template = Template() # JavaScript javascript_template = Template() rho = _validate_input_state(rho) if figsize is None: options = {} else: options = {'width': figsize[0], 'height': figsize[1]} # Process data and execute num = int(np.log2(len(rho))) bloch_data = [] for i in range(num): pauli_singles = [Pauli.pauli_single(num, i, 'X'), Pauli.pauli_single(num, i, 'Y'), Pauli.pauli_single(num, i, 'Z')] bloch_state = list(map(lambda x: np.real(np.trace(np.dot(x.to_matrix(), rho))), pauli_singles)) bloch_data.append(bloch_state) div_number = str(time.time()) div_number = re.sub('[.]', '', div_number) html = html_template.substitute({ 'divNumber': div_number }) javascript = javascript_template.substitute({ 'data': bloch_data, 'divNumber': div_number, 'options': options }) display(HTML(html + javascript))
159,653
Create new converter. Args: qobj_model (PulseQobjExperimentConfig): qobj model for experiment config. default_qubit_los (list): List of default qubit lo frequencies. default_meas_los (list): List of default meas lo frequencies. run_config (dict): experimental configuration.
def __init__(self, qobj_model, default_qubit_los, default_meas_los, **run_config): self.qobj_model = qobj_model self.default_qubit_los = default_qubit_los self.default_meas_los = default_meas_los self.run_config = run_config
159,655
Return PulseQobjExperimentConfig Args: user_lo_config (LoConfig): A dictionary of LOs to format. Returns: PulseQobjExperimentConfig: qobj.
def __call__(self, user_lo_config): lo_config = {} q_los = self.get_qubit_los(user_lo_config) if q_los: lo_config['qubit_lo_freq'] = q_los m_los = self.get_meas_los(user_lo_config) if m_los: lo_config['meas_lo_freq'] = m_los return self.qobj_model(**lo_config)
159,656
Embed default qubit LO frequencies from backend and format them to list object. If configured lo frequency is the same as default, this method returns `None`. Args: user_lo_config (LoConfig): A dictionary of LOs to format. Returns: list: A list of qubit LOs. Raises: PulseError: when LO frequencies are missing.
def get_qubit_los(self, user_lo_config): try: _q_los = self.default_qubit_los.copy() except KeyError: raise PulseError('Qubit default frequencies not exist.') for channel, lo_freq in user_lo_config.qubit_lo_dict().items(): _q_los[channel.index] = lo_freq if _q_los == self.default_qubit_los: return None return _q_los
159,657
Embed default meas LO frequencies from backend and format them to list object. If configured lo frequency is the same as default, this method returns `None`. Args: user_lo_config (LoConfig): A dictionary of LOs to format. Returns: list: A list of meas LOs. Raises: PulseError: when LO frequencies are missing.
def get_meas_los(self, user_lo_config): try: _m_los = self.default_meas_los.copy() except KeyError: raise PulseError('Default measurement frequencies not exist.') for channel, lo_freq in user_lo_config.meas_lo_dict().items(): _m_los[channel.index] = lo_freq if _m_los == self.default_meas_los: return None return _m_los
159,658
Expand all op nodes to the given basis. Args: dag(DAGCircuit): input dag Raises: QiskitError: if unable to unroll given the basis due to undefined decomposition rules (such as a bad basis) or excessive recursion. Returns: DAGCircuit: output unrolled dag
def run(self, dag): # Walk through the DAG and expand each non-basis node for node in dag.op_nodes(): basic_insts = ['measure', 'reset', 'barrier', 'snapshot'] if node.name in basic_insts: # TODO: this is legacy behavior.Basis_insts should be removed that these # instructions should be part of the device-reported basis. Currently, no # backend reports "measure", for example. continue if node.name in self.basis: # If already a base, ignore. continue # TODO: allow choosing other possible decompositions rule = node.op.definition if not rule: raise QiskitError("Cannot unroll the circuit to the given basis, %s. " "No rule to expand instruction %s." % (str(self.basis), node.op.name)) # hacky way to build a dag on the same register as the rule is defined # TODO: need anonymous rules to address wires by index decomposition = DAGCircuit() decomposition.add_qreg(rule[0][1][0][0]) for inst in rule: decomposition.apply_operation_back(*inst) unrolled_dag = self.run(decomposition) # recursively unroll ops dag.substitute_node_with_dag(node, unrolled_dag) return dag
159,659
Create a Q sphere representation. Graphical representation of the input array, using a Q sphere for each eigenvalue. Args: rho (array): State vector or density matrix. figsize (tuple): Figure size in pixels.
def iplot_state_qsphere(rho, figsize=None): # HTML html_template = Template() # JavaScript javascript_template = Template() rho = _validate_input_state(rho) if figsize is None: options = {} else: options = {'width': figsize[0], 'height': figsize[1]} qspheres_data = [] # Process data and execute num = int(np.log2(len(rho))) # get the eigenvectors and eigenvalues weig, stateall = linalg.eigh(rho) for _ in range(2**num): # start with the max probmix = weig.max() prob_location = weig.argmax() if probmix > 0.001: # print("The " + str(k) + "th eigenvalue = " + str(probmix)) # get the max eigenvalue state = stateall[:, prob_location] loc = np.absolute(state).argmax() # get the element location closes to lowest bin representation. for j in range(2**num): test = np.absolute(np.absolute(state[j]) - np.absolute(state[loc])) if test < 0.001: loc = j break # remove the global phase angles = (np.angle(state[loc]) + 2 * np.pi) % (2 * np.pi) angleset = np.exp(-1j*angles) state = angleset*state state.flatten() spherepoints = [] for i in range(2**num): # get x,y,z points element = bin(i)[2:].zfill(num) weight = element.count("1") number_of_divisions = n_choose_k(num, weight) weight_order = bit_string_index(element) angle = weight_order * 2 * np.pi / number_of_divisions zvalue = -2 * weight / num + 1 xvalue = np.sqrt(1 - zvalue**2) * np.cos(angle) yvalue = np.sqrt(1 - zvalue**2) * np.sin(angle) # get prob and angle - prob will be shade and angle color prob = np.real(np.dot(state[i], state[i].conj())) angles = (np.angle(state[i]) + 2 * np.pi) % (2 * np.pi) qpoint = { 'x': xvalue, 'y': yvalue, 'z': zvalue, 'prob': prob, 'phase': angles } spherepoints.append(qpoint) # Associate all points to one sphere sphere = { 'points': spherepoints, 'eigenvalue': probmix } # Add sphere to the spheres array qspheres_data.append(sphere) weig[prob_location] = 0 div_number = str(time.time()) div_number = re.sub('[.]', '', div_number) html = html_template.substitute({ 'divNumber': div_number }) javascript = javascript_template.substitute({ 'data': qspheres_data, 'divNumber': div_number, 'options': options }) display(HTML(html + javascript))
159,660
Return the number of combinations for n choose k. Args: n (int): the total number of options . k (int): The number of elements. Returns: int: returns the binomial coefficient
def n_choose_k(n, k): if n == 0: return 0 return reduce(lambda x, y: x * y[0] / y[1], zip(range(n - k + 1, n + 1), range(1, k + 1)), 1)
159,661
Return the lex index of a combination.. Args: n (int): the total number of options . k (int): The number of elements. lst (list): list Returns: int: returns int index for lex order Raises: VisualizationError: if length of list is not equal to k
def lex_index(n, k, lst): if len(lst) != k: raise VisualizationError("list should have length k") comb = list(map(lambda x: n - 1 - x, lst)) dualm = sum([n_choose_k(comb[k - 1 - i], i + 1) for i in range(k)]) return int(dualm)
159,663
Plot a hinton diagram for the quanum state. Args: rho (ndarray): Numpy array for state vector or density matrix. title (str): a string that represents the plot title figsize (tuple): Figure size in inches. Returns: matplotlib.Figure: The matplotlib.Figure of the visualization Raises: ImportError: Requires matplotlib.
def plot_state_hinton(rho, title='', figsize=None): if not HAS_MATPLOTLIB: raise ImportError('Must have Matplotlib installed.') rho = _validate_input_state(rho) if figsize is None: figsize = (8, 5) num = int(np.log2(len(rho))) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize) max_weight = 2 ** np.ceil(np.log(np.abs(rho).max()) / np.log(2)) datareal = np.real(rho) dataimag = np.imag(rho) column_names = [bin(i)[2:].zfill(num) for i in range(2**num)] row_names = [bin(i)[2:].zfill(num) for i in range(2**num)] lx = len(datareal[0]) # Work out matrix dimensions ly = len(datareal[:, 0]) # Real ax1.patch.set_facecolor('gray') ax1.set_aspect('equal', 'box') ax1.xaxis.set_major_locator(plt.NullLocator()) ax1.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(datareal): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax1.add_patch(rect) ax1.set_xticks(np.arange(0, lx+0.5, 1)) ax1.set_yticks(np.arange(0, ly+0.5, 1)) ax1.set_yticklabels(row_names, fontsize=14) ax1.set_xticklabels(column_names, fontsize=14, rotation=90) ax1.autoscale_view() ax1.invert_yaxis() ax1.set_title('Real[rho]', fontsize=14) # Imaginary ax2.patch.set_facecolor('gray') ax2.set_aspect('equal', 'box') ax2.xaxis.set_major_locator(plt.NullLocator()) ax2.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(dataimag): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax2.add_patch(rect) if np.any(dataimag != 0): ax2.set_xticks(np.arange(0, lx+0.5, 1)) ax2.set_yticks(np.arange(0, ly+0.5, 1)) ax2.set_yticklabels(row_names, fontsize=14) ax2.set_xticklabels(column_names, fontsize=14, rotation=90) ax2.autoscale_view() ax2.invert_yaxis() ax2.set_title('Imag[rho]', fontsize=14) if title: fig.suptitle(title, fontsize=16) plt.tight_layout() plt.close(fig) return fig
159,664
Plot the Bloch sphere. Plot a sphere, axes, the Bloch vector, and its projections onto each axis. Args: rho (ndarray): Numpy array for state vector or density matrix. title (str): a string that represents the plot title figsize (tuple): Has no effect, here for compatibility only. Returns: Figure: A matplotlib figure instance if `ax = None`. Raises: ImportError: Requires matplotlib.
def plot_bloch_multivector(rho, title='', figsize=None): if not HAS_MATPLOTLIB: raise ImportError('Must have Matplotlib installed.') rho = _validate_input_state(rho) num = int(np.log2(len(rho))) width, height = plt.figaspect(1/num) fig = plt.figure(figsize=(width, height)) for i in range(num): ax = fig.add_subplot(1, num, i + 1, projection='3d') pauli_singles = [ Pauli.pauli_single(num, i, 'X'), Pauli.pauli_single(num, i, 'Y'), Pauli.pauli_single(num, i, 'Z') ] bloch_state = list( map(lambda x: np.real(np.trace(np.dot(x.to_matrix(), rho))), pauli_singles)) plot_bloch_vector(bloch_state, "qubit " + str(i), ax=ax, figsize=figsize) fig.suptitle(title, fontsize=16) plt.close(fig) return fig
159,666
Plot the qsphere representation of a quantum state. Args: rho (ndarray): State vector or density matrix representation. of quantum state. figsize (tuple): Figure size in inches. Returns: Figure: A matplotlib figure instance. Raises: ImportError: Requires matplotlib.
def plot_state_qsphere(rho, figsize=None): if not HAS_MATPLOTLIB: raise ImportError('Must have Matplotlib installed.') rho = _validate_input_state(rho) if figsize is None: figsize = (7, 7) num = int(np.log2(len(rho))) # get the eigenvectors and eigenvalues we, stateall = linalg.eigh(rho) for _ in range(2**num): # start with the max probmix = we.max() prob_location = we.argmax() if probmix > 0.001: # get the max eigenvalue state = stateall[:, prob_location] loc = np.absolute(state).argmax() # get the element location closes to lowest bin representation. for j in range(2**num): test = np.absolute(np.absolute(state[j]) - np.absolute(state[loc])) if test < 0.001: loc = j break # remove the global phase angles = (np.angle(state[loc]) + 2 * np.pi) % (2 * np.pi) angleset = np.exp(-1j*angles) # print(state) # print(angles) state = angleset*state # print(state) state.flatten() # start the plotting fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111, projection='3d') ax.axes.set_xlim3d(-1.0, 1.0) ax.axes.set_ylim3d(-1.0, 1.0) ax.axes.set_zlim3d(-1.0, 1.0) ax.set_aspect("equal") ax.axes.grid(False) # Plot semi-transparent sphere u = np.linspace(0, 2 * np.pi, 25) v = np.linspace(0, np.pi, 25) x = np.outer(np.cos(u), np.sin(v)) y = np.outer(np.sin(u), np.sin(v)) z = np.outer(np.ones(np.size(u)), np.cos(v)) ax.plot_surface(x, y, z, rstride=1, cstride=1, color='k', alpha=0.05, linewidth=0) # wireframe # Get rid of the panes ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) # Get rid of the spines ax.w_xaxis.line.set_color((1.0, 1.0, 1.0, 0.0)) ax.w_yaxis.line.set_color((1.0, 1.0, 1.0, 0.0)) ax.w_zaxis.line.set_color((1.0, 1.0, 1.0, 0.0)) # Get rid of the ticks ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) d = num for i in range(2**num): # get x,y,z points element = bin(i)[2:].zfill(num) weight = element.count("1") zvalue = -2 * weight / d + 1 number_of_divisions = n_choose_k(d, weight) weight_order = bit_string_index(element) # if weight_order >= number_of_divisions / 2: # com_key = compliment(element) # weight_order_temp = bit_string_index(com_key) # weight_order = np.floor( # number_of_divisions / 2) + weight_order_temp + 1 angle = weight_order * 2 * np.pi / number_of_divisions xvalue = np.sqrt(1 - zvalue**2) * np.cos(angle) yvalue = np.sqrt(1 - zvalue**2) * np.sin(angle) ax.plot([xvalue], [yvalue], [zvalue], markerfacecolor=(.5, .5, .5), markeredgecolor=(.5, .5, .5), marker='o', markersize=10, alpha=1) # get prob and angle - prob will be shade and angle color prob = np.real(np.dot(state[i], state[i].conj())) colorstate = phase_to_color_wheel(state[i]) a = Arrow3D([0, xvalue], [0, yvalue], [0, zvalue], mutation_scale=20, alpha=prob, arrowstyle="-", color=colorstate, lw=10) ax.add_artist(a) # add weight lines for weight in range(d + 1): theta = np.linspace(-2 * np.pi, 2 * np.pi, 100) z = -2 * weight / d + 1 r = np.sqrt(1 - z**2) x = r * np.cos(theta) y = r * np.sin(theta) ax.plot(x, y, z, color=(.5, .5, .5)) # add center point ax.plot([0], [0], [0], markerfacecolor=(.5, .5, .5), markeredgecolor=(.5, .5, .5), marker='o', markersize=10, alpha=1) we[prob_location] = 0 else: break plt.tight_layout() plt.close(fig) return fig
159,671
Monitor a single IBMQ backend. Args: backend (IBMQBackend): Backend to monitor. Raises: QiskitError: Input is not a IBMQ backend.
def backend_monitor(backend): if not isinstance(backend, IBMQBackend): raise QiskitError('Input variable is not of type IBMQBackend.') config = backend.configuration().to_dict() status = backend.status().to_dict() config_dict = {**status, **config} if not config['simulator']: props = backend.properties().to_dict() print(backend.name()) print('='*len(backend.name())) print('Configuration') print('-'*13) offset = ' ' upper_list = ['n_qubits', 'operational', 'status_msg', 'pending_jobs', 'basis_gates', 'local', 'simulator'] lower_list = list(set(config_dict.keys()).difference(upper_list)) # Remove gates because they are in a different tab lower_list.remove('gates') for item in upper_list+lower_list: print(offset+item+':', config_dict[item]) # Stop here if simulator if config['simulator']: return print() qubit_header = 'Qubits [Name / Freq / T1 / T2 / U1 err / U2 err / U3 err / Readout err]' print(qubit_header) print('-'*len(qubit_header)) sep = ' / ' for qub in range(len(props['qubits'])): name = 'Q%s' % qub qubit_data = props['qubits'][qub] gate_data = props['gates'][3*qub:3*qub+3] t1_info = qubit_data[0] t2_info = qubit_data[1] freq_info = qubit_data[2] readout_info = qubit_data[3] freq = str(round(freq_info['value'], 5))+' '+freq_info['unit'] T1 = str(round(t1_info['value'], # pylint: disable=invalid-name 5))+' ' + t1_info['unit'] T2 = str(round(t2_info['value'], # pylint: disable=invalid-name 5))+' ' + t2_info['unit'] # pylint: disable=invalid-name U1 = str(round(gate_data[0]['parameters'][0]['value'], 5)) # pylint: disable=invalid-name U2 = str(round(gate_data[1]['parameters'][0]['value'], 5)) # pylint: disable=invalid-name U3 = str(round(gate_data[2]['parameters'][0]['value'], 5)) readout_error = str(round(readout_info['value'], 5)) qstr = sep.join([name, freq, T1, T2, U1, U2, U3, readout_error]) print(offset+qstr) print() multi_qubit_gates = props['gates'][3*config['n_qubits']:] multi_header = 'Multi-Qubit Gates [Name / Type / Gate Error]' print(multi_header) print('-'*len(multi_header)) for gate in multi_qubit_gates: name = gate['name'] ttype = gate['gate'] error = str(round(gate['parameters'][0]['value'], 5)) mstr = sep.join([name, ttype, error]) print(offset+mstr)
159,677
Check if DAG nodes are considered equivalent, e.g. as a node_match for nx.is_isomorphic. Args: node1 (DAGNode): A node to compare. node2 (DAGNode): The other node to compare. Return: Bool: If node1 == node2
def semantic_eq(node1, node2): # For barriers, qarg order is not significant so compare as sets if 'barrier' == node1.name == node2.name: return set(node1.qargs) == set(node2.qargs) return node1.data_dict == node2.data_dict
159,682
Generates constant-sampled `SamplePulse`. Applies `left` sampling strategy to generate discrete pulse from continuous function. Args: duration: Duration of pulse. Must be greater than zero. amp: Complex pulse amplitude. name: Name of pulse.
def constant(duration: int, amp: complex, name: str = None) -> SamplePulse: return _sampled_constant_pulse(duration, amp, name=name)
159,683
Generates zero-sampled `SamplePulse`. Args: duration: Duration of pulse. Must be greater than zero. name: Name of pulse.
def zero(duration: int, name: str = None) -> SamplePulse: return _sampled_zero_pulse(duration, name=name)
159,684
Generates square wave `SamplePulse`. Applies `left` sampling strategy to generate discrete pulse from continuous function. Args: duration: Duration of pulse. Must be greater than zero. amp: Pulse amplitude. Wave range is [-amp, amp]. period: Pulse period, units of dt. If `None` defaults to single cycle. phase: Pulse phase. name: Name of pulse.
def square(duration: int, amp: complex, period: float = None, phase: float = 0, name: str = None) -> SamplePulse: if period is None: period = duration return _sampled_square_pulse(duration, amp, period, phase=phase, name=name)
159,685
Generates sawtooth wave `SamplePulse`. Args: duration: Duration of pulse. Must be greater than zero. amp: Pulse amplitude. Wave range is [-amp, amp]. period: Pulse period, units of dt. If `None` defaults to single cycle. phase: Pulse phase. name: Name of pulse.
def sawtooth(duration: int, amp: complex, period: float = None, phase: float = 0, name: str = None) -> SamplePulse: if period is None: period = duration return _sampled_sawtooth_pulse(duration, amp, period, phase=phase, name=name)
159,686
Generates triangle wave `SamplePulse`. Applies `left` sampling strategy to generate discrete pulse from continuous function. Args: duration: Duration of pulse. Must be greater than zero. amp: Pulse amplitude. Wave range is [-amp, amp]. period: Pulse period, units of dt. If `None` defaults to single cycle. phase: Pulse phase. name: Name of pulse.
def triangle(duration: int, amp: complex, period: float = None, phase: float = 0, name: str = None) -> SamplePulse: if period is None: period = duration return _sampled_triangle_pulse(duration, amp, period, phase=phase, name=name)
159,687
Generates cosine wave `SamplePulse`. Applies `left` sampling strategy to generate discrete pulse from continuous function. Args: duration: Duration of pulse. Must be greater than zero. amp: Pulse amplitude. freq: Pulse frequency, units of 1/dt. If `None` defaults to single cycle. phase: Pulse phase. name: Name of pulse.
def cos(duration: int, amp: complex, freq: float = None, phase: float = 0, name: str = None) -> SamplePulse: if freq is None: freq = 1/duration return _sampled_cos_pulse(duration, amp, freq, phase=phase, name=name)
159,688
Generates sine wave `SamplePulse`. Args: duration: Duration of pulse. Must be greater than zero. amp: Pulse amplitude. freq: Pulse frequency, units of 1/dt. If `None` defaults to single cycle. phase: Pulse phase. name: Name of pulse.
def sin(duration: int, amp: complex, freq: float = None, phase: float = 0, name: str = None) -> SamplePulse: if freq is None: freq = 1/duration return _sampled_sin_pulse(duration, amp, freq, phase=phase, name=name)
159,689
r"""Generates unnormalized gaussian derivative `SamplePulse`. Applies `left` sampling strategy to generate discrete pulse from continuous function. Args: duration: Duration of pulse. Must be greater than zero. amp: Pulse amplitude at `center`. sigma: Width (standard deviation) of pulse. name: Name of pulse.
def gaussian_deriv(duration: int, amp: complex, sigma: float, name: str = None) -> SamplePulse: r center = duration/2 return _sampled_gaussian_deriv_pulse(duration, amp, center, sigma, name=name)
159,691
Return an instance of a backend from its class. Args: backend_cls (class): Backend class. Returns: BaseBackend: a backend instance. Raises: QiskitError: if the backend could not be instantiated.
def _get_backend_instance(self, backend_cls): # Verify that the backend can be instantiated. try: backend_instance = backend_cls(provider=self) except Exception as err: raise QiskitError('Backend %s could not be instantiated: %s' % (backend_cls, err)) return backend_instance
159,705
Add a qubit or bit to the circuit. Args: wire (tuple): (Register,int) containing a register instance and index This adds a pair of in and out nodes connected by an edge. Raises: DAGCircuitError: if trying to add duplicate wire
def _add_wire(self, wire): if wire not in self.wires: self.wires.append(wire) self._max_node_id += 1 input_map_wire = self.input_map[wire] = self._max_node_id self._max_node_id += 1 output_map_wire = self._max_node_id wire_name = "%s[%s]" % (wire[0].name, wire[1]) inp_node = DAGNode(data_dict={'type': 'in', 'name': wire_name, 'wire': wire}, nid=input_map_wire) outp_node = DAGNode(data_dict={'type': 'out', 'name': wire_name, 'wire': wire}, nid=output_map_wire) self._id_to_node[input_map_wire] = inp_node self._id_to_node[output_map_wire] = outp_node self.input_map[wire] = inp_node self.output_map[wire] = outp_node self._multi_graph.add_node(inp_node) self._multi_graph.add_node(outp_node) self._multi_graph.add_edge(inp_node, outp_node) self._multi_graph.adj[inp_node][outp_node][0]["name"] \ = "%s[%s]" % (wire[0].name, wire[1]) self._multi_graph.adj[inp_node][outp_node][0]["wire"] \ = wire else: raise DAGCircuitError("duplicate wire %s" % (wire,))
159,713
Verify that the condition is valid. Args: name (string): used for error reporting condition (tuple or None): a condition tuple (ClassicalRegister,int) Raises: DAGCircuitError: if conditioning on an invalid register
def _check_condition(self, name, condition): # Verify creg exists if condition is not None and condition[0].name not in self.cregs: raise DAGCircuitError("invalid creg in condition for %s" % name)
159,714
Check the values of a list of (qu)bit arguments. For each element of args, check that amap contains it. Args: args (list): (register,idx) tuples amap (dict): a dictionary keyed on (register,idx) tuples Raises: DAGCircuitError: if a qubit is not contained in amap
def _check_bits(self, args, amap): # Check for each wire for wire in args: if wire not in amap: raise DAGCircuitError("(qu)bit %s[%d] not found" % (wire[0].name, wire[1]))
159,715
Return a list of bits in the given condition. Args: cond (tuple or None): optional condition (ClassicalRegister, int) Returns: list[(ClassicalRegister, idx)]: list of bits
def _bits_in_condition(self, cond): all_bits = [] if cond is not None: all_bits.extend([(cond[0], j) for j in range(self.cregs[cond[0].name].size)]) return all_bits
159,716
Add a new operation node to the graph and assign properties. Args: op (Instruction): the operation associated with the DAG node qargs (list): list of quantum wires to attach to. cargs (list): list of classical wires to attach to. condition (tuple or None): optional condition (ClassicalRegister, int)
def _add_op_node(self, op, qargs, cargs, condition=None): node_properties = { "type": "op", "op": op, "name": op.name, "qargs": qargs, "cargs": cargs, "condition": condition } # Add a new operation node to the graph self._max_node_id += 1 new_node = DAGNode(data_dict=node_properties, nid=self._max_node_id) self._multi_graph.add_node(new_node) self._id_to_node[self._max_node_id] = new_node
159,717
Check that the wiremap is consistent. Check that the wiremap refers to valid wires and that those wires have consistent types. Args: wire_map (dict): map from (register,idx) in keymap to (register,idx) in valmap keymap (dict): a map whose keys are wire_map keys valmap (dict): a map whose keys are wire_map values Raises: DAGCircuitError: if wire_map not valid
def _check_wiremap_validity(self, wire_map, keymap, valmap): for k, v in wire_map.items(): kname = "%s[%d]" % (k[0].name, k[1]) vname = "%s[%d]" % (v[0].name, v[1]) if k not in keymap: raise DAGCircuitError("invalid wire mapping key %s" % kname) if v not in valmap: raise DAGCircuitError("invalid wire mapping value %s" % vname) if type(k) is not type(v): raise DAGCircuitError("inconsistent wire_map at (%s,%s)" % (kname, vname))
159,720
Use the wire_map dict to change the condition tuple's creg name. Args: wire_map (dict): a map from wires to wires condition (tuple): (ClassicalRegister,int) Returns: tuple(ClassicalRegister,int): new condition
def _map_condition(self, wire_map, condition): if condition is None: new_condition = None else: # Map the register name, using fact that registers must not be # fragmented by the wire_map (this must have been checked # elsewhere) bit0 = (condition[0], 0) new_condition = (wire_map.get(bit0, bit0)[0], condition[1]) return new_condition
159,721
Check that a list of wires is compatible with a node to be replaced. - no duplicate names - correct length for operation Raise an exception otherwise. Args: wires (list[register, index]): gives an order for (qu)bits in the input circuit that is replacing the node. node (DAGNode): a node in the dag Raises: DAGCircuitError: if check doesn't pass.
def _check_wires_list(self, wires, node): if len(set(wires)) != len(wires): raise DAGCircuitError("duplicate wires") wire_tot = len(node.qargs) + len(node.cargs) if node.condition is not None: wire_tot += node.condition[0].size if len(wires) != wire_tot: raise DAGCircuitError("expected %d wires, got %d" % (wire_tot, len(wires)))
159,725
Return predecessor and successor dictionaries. Args: node (DAGNode): reference to multi_graph node Returns: tuple(dict): tuple(predecessor_map, successor_map) These map from wire (Register, int) to predecessor (successor) nodes of n.
def _make_pred_succ_maps(self, node): pred_map = {e[2]['wire']: e[0] for e in self._multi_graph.in_edges(nbunch=node, data=True)} succ_map = {e[2]['wire']: e[1] for e in self._multi_graph.out_edges(nbunch=node, data=True)} return pred_map, succ_map
159,726
Replace one node with dag. Args: node (DAGNode): node to substitute input_dag (DAGCircuit): circuit that will substitute the node wires (list[(Register, index)]): gives an order for (qu)bits in the input circuit. This order gets matched to the node wires by qargs first, then cargs, then conditions. Raises: DAGCircuitError: if met with unexpected predecessor/successors
def substitute_node_with_dag(self, node, input_dag, wires=None): if isinstance(node, int): warnings.warn('Calling substitute_node_with_dag() with a node id is deprecated,' ' use a DAGNode instead', DeprecationWarning, 2) node = self._id_to_node[node] condition = node.condition # the dag must be ammended if used in a # conditional context. delete the op nodes and replay # them with the condition. if condition: input_dag.add_creg(condition[0]) to_replay = [] for sorted_node in input_dag.topological_nodes(): if sorted_node.type == "op": sorted_node.op.control = condition to_replay.append(sorted_node) for input_node in input_dag.op_nodes(): input_dag.remove_op_node(input_node) for replay_node in to_replay: input_dag.apply_operation_back(replay_node.op, replay_node.qargs, replay_node.cargs, condition=condition) if wires is None: qwires = [w for w in input_dag.wires if isinstance(w[0], QuantumRegister)] cwires = [w for w in input_dag.wires if isinstance(w[0], ClassicalRegister)] wires = qwires + cwires self._check_wires_list(wires, node) # Create a proxy wire_map to identify fragments and duplicates # and determine what registers need to be added to self proxy_map = {w: QuantumRegister(1, 'proxy') for w in wires} add_qregs = self._check_edgemap_registers(proxy_map, input_dag.qregs, {}, False) for qreg in add_qregs: self.add_qreg(qreg) add_cregs = self._check_edgemap_registers(proxy_map, input_dag.cregs, {}, False) for creg in add_cregs: self.add_creg(creg) # Replace the node by iterating through the input_circuit. # Constructing and checking the validity of the wire_map. # If a gate is conditioned, we expect the replacement subcircuit # to depend on those control bits as well. if node.type != "op": raise DAGCircuitError("expected node type \"op\", got %s" % node.type) condition_bit_list = self._bits_in_condition(node.condition) wire_map = {k: v for k, v in zip(wires, [i for s in [node.qargs, node.cargs, condition_bit_list] for i in s])} self._check_wiremap_validity(wire_map, wires, self.input_map) pred_map, succ_map = self._make_pred_succ_maps(node) full_pred_map, full_succ_map = self._full_pred_succ_maps(pred_map, succ_map, input_dag, wire_map) # Now that we know the connections, delete node self._multi_graph.remove_node(node) # Iterate over nodes of input_circuit for sorted_node in input_dag.topological_op_nodes(): # Insert a new node condition = self._map_condition(wire_map, sorted_node.condition) m_qargs = list(map(lambda x: wire_map.get(x, x), sorted_node.qargs)) m_cargs = list(map(lambda x: wire_map.get(x, x), sorted_node.cargs)) self._add_op_node(sorted_node.op, m_qargs, m_cargs, condition) # Add edges from predecessor nodes to new node # and update predecessor nodes that change all_cbits = self._bits_in_condition(condition) all_cbits.extend(m_cargs) al = [m_qargs, all_cbits] for q in itertools.chain(*al): self._multi_graph.add_edge(full_pred_map[q], self._id_to_node[self._max_node_id], name="%s[%s]" % (q[0].name, q[1]), wire=q) full_pred_map[q] = self._id_to_node[self._max_node_id] # Connect all predecessors and successors, and remove # residual edges between input and output nodes for w in full_pred_map: self._multi_graph.add_edge(full_pred_map[w], full_succ_map[w], name="%s[%s]" % (w[0].name, w[1]), wire=w) o_pred = list(self._multi_graph.predecessors(self.output_map[w])) if len(o_pred) > 1: if len(o_pred) != 2: raise DAGCircuitError("expected 2 predecessors here") p = [x for x in o_pred if x != full_pred_map[w]] if len(p) != 1: raise DAGCircuitError("expected 1 predecessor to pass filter") self._multi_graph.remove_edge(p[0], self.output_map[w])
159,730
Get the list of "op" nodes in the dag. Args: op (Type): Instruction subclass op nodes to return. if op=None, return all op nodes. Returns: list[DAGNode]: the list of node ids containing the given op.
def op_nodes(self, op=None): nodes = [] for node in self._multi_graph.nodes(): if node.type == "op": if op is None or isinstance(node.op, op): nodes.append(node) return nodes
159,733
Iterator for nodes that affect a given wire Args: wire (tuple(Register, index)): the wire to be looked at. only_ops (bool): True if only the ops nodes are wanted otherwise all nodes are returned. Yield: DAGNode: the successive ops on the given wire Raises: DAGCircuitError: if the given wire doesn't exist in the DAG
def nodes_on_wire(self, wire, only_ops=False): current_node = self.input_map.get(wire, None) if not current_node: raise DAGCircuitError('The given wire %s is not present in the circuit' % str(wire)) more_nodes = True while more_nodes: more_nodes = False # allow user to just get ops on the wire - not the input/output nodes if current_node.type == 'op' or not only_ops: yield current_node # find the adjacent node that takes the wire being looked at as input for node, edges in self._multi_graph.adj[current_node].items(): if any(wire == edge['wire'] for edge in edges.values()): current_node = node more_nodes = True break
159,755
Sets list of Instructions that depend on Parameter. Args: parameter (Parameter): the parameter to set instr_params (list): List of (Instruction, int) tuples. Int is the parameter index at which the parameter appears in the instruction.
def __setitem__(self, parameter, instr_params): for instruction, param_index in instr_params: assert isinstance(instruction, Instruction) assert isinstance(param_index, int) self._table[parameter] = instr_params
159,758
Generate a TomographyBasis object. See TomographyBasis for further details.abs Args: prep_fun (callable) optional: the function which adds preparation gates to a circuit. meas_fun (callable) optional: the function which adds measurement gates to a circuit. Returns: TomographyBasis: A tomography basis.
def tomography_basis(basis, prep_fun=None, meas_fun=None): ret = TomographyBasis(basis) ret.prep_fun = prep_fun ret.meas_fun = meas_fun return ret
159,759
Return a results dict for a state or process tomography experiment. Args: results (Result): Results from execution of a process tomography circuits on a backend. name (string): The name of the circuit being reconstructed. tomoset (tomography_set): the dict of tomography configurations. Returns: list: A list of dicts for the outcome of each process tomography measurement circuit.
def tomography_data(results, name, tomoset): labels = tomography_circuit_names(tomoset, name) circuits = tomoset['circuits'] data = [] prep = None for j, _ in enumerate(labels): counts = marginal_counts(results.get_counts(labels[j]), tomoset['qubits']) shots = sum(counts.values()) meas = circuits[j]['meas'] prep = circuits[j].get('prep', None) meas_qubits = sorted(meas.keys()) if prep: prep_qubits = sorted(prep.keys()) circuit = {} for c in counts.keys(): circuit[c] = {} circuit[c]['meas'] = [(meas[meas_qubits[k]], int(c[-1 - k])) for k in range(len(meas_qubits))] if prep: circuit[c]['prep'] = [prep[prep_qubits[k]] for k in range(len(prep_qubits))] data.append({'counts': counts, 'shots': shots, 'circuit': circuit}) ret = {'data': data, 'meas_basis': tomoset['meas_basis']} if prep: ret['prep_basis'] = tomoset['prep_basis'] return ret
159,766
Reconstruct a matrix through linear inversion. Args: freqs (list[float]): list of observed frequences. ops (list[np.array]): list of corresponding projectors. weights (list[float] or array_like): weights to be used for weighted fitting. trace (float or None): trace of returned operator. Returns: numpy.array: A numpy array of the reconstructed operator.
def __tomo_linear_inv(freqs, ops, weights=None, trace=None): # get weights matrix if weights is not None: W = np.array(weights) if W.ndim == 1: W = np.diag(W) # Get basis S matrix S = np.array([vectorize(m).conj() for m in ops]).reshape(len(ops), ops[0].size) if weights is not None: S = np.dot(W, S) # W.S # get frequencies vec v = np.array(freqs) # |f> if weights is not None: v = np.dot(W, freqs) # W.|f> Sdg = S.T.conj() # S^*.W^* inv = np.linalg.pinv(np.dot(Sdg, S)) # (S^*.W^*.W.S)^-1 # linear inversion of freqs ret = devectorize(np.dot(inv, np.dot(Sdg, v))) # renormalize to input trace value if trace is not None: ret = trace * ret / np.trace(ret) return ret
159,771
Returns the nearest positive semidefinite operator to an operator. This method is based on reference [1]. It constrains positivity by setting negative eigenvalues to zero and rescaling the positive eigenvalues. Args: rho (array_like): the input operator. epsilon(float or None): threshold (>=0) for truncating small eigenvalues values to zero. Returns: numpy.array: A positive semidefinite numpy array.
def __wizard(rho, epsilon=None): if epsilon is None: epsilon = 0. # default value dim = len(rho) rho_wizard = np.zeros([dim, dim]) v, w = np.linalg.eigh(rho) # v eigenvecrors v[0] < v[1] <... for j in range(dim): if v[j] < epsilon: tmp = v[j] v[j] = 0. # redistribute loop x = 0. for k in range(j + 1, dim): x += tmp / (dim - (j + 1)) v[k] = v[k] + tmp / (dim - (j + 1)) for j in range(dim): rho_wizard = rho_wizard + v[j] * outer(w[:, j]) return rho_wizard
159,772
Get the value of the Wigner function from measurement results. Args: q_result (Result): Results from execution of a state tomography circuits on a backend. meas_qubits (list[int]): a list of the qubit indexes measured. labels (list[str]): a list of names of the circuits shots (int): number of shots Returns: list: The values of the Wigner function at measured points in phase space
def wigner_data(q_result, meas_qubits, labels, shots=None): num = len(meas_qubits) dim = 2**num p = [0.5 + 0.5 * np.sqrt(3), 0.5 - 0.5 * np.sqrt(3)] parity = 1 for i in range(num): parity = np.kron(parity, p) w = [0] * len(labels) wpt = 0 counts = [marginal_counts(q_result.get_counts(circ), meas_qubits) for circ in labels] for entry in counts: x = [0] * dim for i in range(dim): if bin(i)[2:].zfill(num) in entry: x[i] = float(entry[bin(i)[2:].zfill(num)]) if shots is None: shots = np.sum(x) for i in range(dim): w[wpt] = w[wpt] + (x[i] / shots) * parity[i] wpt += 1 return w
159,774
Add state preparation gates to a circuit. Args: circuit (QuantumCircuit): circuit to add a preparation to. qreg (tuple(QuantumRegister,int)): quantum register to apply preparation to. op (tuple(str, int)): the basis label and index for the preparation op.
def prep_gate(self, circuit, qreg, op): if self.prep_fun is None: pass else: self.prep_fun(circuit, qreg, op)
159,775
Add measurement gates to a circuit. Args: circuit (QuantumCircuit): circuit to add measurement to. qreg (tuple(QuantumRegister,int)): quantum register being measured. op (str): the basis label for the measurement.
def meas_gate(self, circuit, qreg, op): if self.meas_fun is None: pass else: self.meas_fun(circuit, qreg, op)
159,776
A text-based job status checker Args: job (BaseJob): The job to check. interval (int): The interval at which to check. _interval_set (bool): Was interval time set by user? quiet (bool): If True, do not print status messages. output (file): The file like object to write status messages to. By default this is sys.stdout.
def _text_checker(job, interval, _interval_set=False, quiet=False, output=sys.stdout): status = job.status() msg = status.value prev_msg = msg msg_len = len(msg) if not quiet: print('\r%s: %s' % ('Job Status', msg), end='', file=output) while status.name not in ['DONE', 'CANCELLED', 'ERROR']: time.sleep(interval) status = job.status() msg = status.value if status.name == 'QUEUED': msg += ' (%s)' % job.queue_position() if not _interval_set: interval = max(job.queue_position(), 2) else: if not _interval_set: interval = 2 # Adjust length of message so there are no artifacts if len(msg) < msg_len: msg += ' ' * (msg_len - len(msg)) elif len(msg) > msg_len: msg_len = len(msg) if msg != prev_msg and not quiet: print('\r%s: %s' % ('Job Status', msg), end='', file=output) prev_msg = msg if not quiet: print('', file=output)
159,779
Compute Euler angles for a single-qubit gate. Find angles (theta, phi, lambda) such that unitary_matrix = phase * Rz(phi) * Ry(theta) * Rz(lambda) Args: unitary_matrix (ndarray): 2x2 unitary matrix Returns: tuple: (theta, phi, lambda) Euler angles of SU(2) Raises: QiskitError: if unitary_matrix not 2x2, or failure
def euler_angles_1q(unitary_matrix): if unitary_matrix.shape != (2, 2): raise QiskitError("euler_angles_1q: expected 2x2 matrix") phase = la.det(unitary_matrix)**(-1.0/2.0) U = phase * unitary_matrix # U in SU(2) # OpenQASM SU(2) parameterization: # U[0, 0] = exp(-i(phi+lambda)/2) * cos(theta/2) # U[0, 1] = -exp(-i(phi-lambda)/2) * sin(theta/2) # U[1, 0] = exp(i(phi-lambda)/2) * sin(theta/2) # U[1, 1] = exp(i(phi+lambda)/2) * cos(theta/2) # Find theta if abs(U[0, 0]) > _CUTOFF_PRECISION: theta = 2 * math.acos(abs(U[0, 0])) else: theta = 2 * math.asin(abs(U[1, 0])) # Find phi and lambda phase11 = 0.0 phase10 = 0.0 if abs(math.cos(theta/2.0)) > _CUTOFF_PRECISION: phase11 = U[1, 1] / math.cos(theta/2.0) if abs(math.sin(theta/2.0)) > _CUTOFF_PRECISION: phase10 = U[1, 0] / math.sin(theta/2.0) phiplambda = 2 * math.atan2(np.imag(phase11), np.real(phase11)) phimlambda = 2 * math.atan2(np.imag(phase10), np.real(phase10)) phi = 0.0 if abs(U[0, 0]) > _CUTOFF_PRECISION and abs(U[1, 0]) > _CUTOFF_PRECISION: phi = (phiplambda + phimlambda) / 2.0 lamb = (phiplambda - phimlambda) / 2.0 else: if abs(U[0, 0]) < _CUTOFF_PRECISION: lamb = -phimlambda else: lamb = phiplambda # Check the solution Rzphi = np.array([[np.exp(-1j*phi/2.0), 0], [0, np.exp(1j*phi/2.0)]], dtype=complex) Rytheta = np.array([[np.cos(theta/2.0), -np.sin(theta/2.0)], [np.sin(theta/2.0), np.cos(theta/2.0)]], dtype=complex) Rzlambda = np.array([[np.exp(-1j*lamb/2.0), 0], [0, np.exp(1j*lamb/2.0)]], dtype=complex) V = np.dot(Rzphi, np.dot(Rytheta, Rzlambda)) if la.norm(V - U) > _CUTOFF_PRECISION: raise QiskitError("euler_angles_1q: incorrect result") return theta, phi, lamb
159,781
Return the gate u1, u2, or u3 implementing U with the fewest pulses. The returned gate implements U exactly, not up to a global phase. Args: theta, phi, lam: input Euler rotation angles for a general U gate Returns: Gate: one of IdGate, U1Gate, U2Gate, U3Gate.
def simplify_U(theta, phi, lam): gate = U3Gate(theta, phi, lam) # Y rotation is 0 mod 2*pi, so the gate is a u1 if abs(gate.params[0] % (2.0 * math.pi)) < _CUTOFF_PRECISION: gate = U1Gate(gate.params[0] + gate.params[1] + gate.params[2]) # Y rotation is pi/2 or -pi/2 mod 2*pi, so the gate is a u2 if isinstance(gate, U3Gate): # theta = pi/2 + 2*k*pi if abs((gate.params[0] - math.pi / 2) % (2.0 * math.pi)) < _CUTOFF_PRECISION: gate = U2Gate(gate.params[1], gate.params[2] + (gate.params[0] - math.pi / 2)) # theta = -pi/2 + 2*k*pi if abs((gate.params[0] + math.pi / 2) % (2.0 * math.pi)) < _CUTOFF_PRECISION: gate = U2Gate(gate.params[1] + math.pi, gate.params[2] - math.pi + (gate.params[0] + math.pi / 2)) # u1 and lambda is 0 mod 4*pi so gate is nop if isinstance(gate, U1Gate) and abs(gate.params[0] % (4.0 * math.pi)) < _CUTOFF_PRECISION: gate = IdGate() return gate
159,782
Decompose a two-qubit gate over SU(2)+CNOT using the KAK decomposition. Args: unitary (Operator): a 4x4 unitary operator to decompose. Returns: QuantumCircuit: a circuit implementing the unitary over SU(2)+CNOT Raises: QiskitError: input not a unitary, or error in KAK decomposition.
def two_qubit_kak(unitary): if hasattr(unitary, 'to_operator'): # If input is a BaseOperator subclass this attempts to convert # the object to an Operator so that we can extract the underlying # numpy matrix from `Operator.data`. unitary = unitary.to_operator().data if hasattr(unitary, 'to_matrix'): # If input is Gate subclass or some other class object that has # a to_matrix method this will call that method. unitary = unitary.to_matrix() # Convert to numpy array incase not already an array unitary_matrix = np.array(unitary, dtype=complex) # Check input is a 2-qubit unitary if unitary_matrix.shape != (4, 4): raise QiskitError("two_qubit_kak: Expected 4x4 matrix") if not is_unitary_matrix(unitary_matrix): raise QiskitError("Input matrix is not unitary.") phase = la.det(unitary_matrix)**(-1.0/4.0) # Make it in SU(4), correct phase at the end U = phase * unitary_matrix # B changes to the Bell basis B = (1.0/math.sqrt(2)) * np.array([[1, 1j, 0, 0], [0, 0, 1j, 1], [0, 0, 1j, -1], [1, -1j, 0, 0]], dtype=complex) # We also need B.conj().T below Bdag = B.conj().T # U' = Bdag . U . B Uprime = Bdag.dot(U.dot(B)) # M^2 = trans(U') . U' M2 = Uprime.T.dot(Uprime) # Diagonalize M2 # Must use diagonalization routine which finds a real orthogonal matrix P # when M2 is real. D, P = la.eig(M2) D = np.diag(D) # If det(P) == -1 then in O(4), apply a swap to make P in SO(4) if abs(la.det(P)+1) < 1e-5: swap = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]], dtype=complex) P = P.dot(swap) D = swap.dot(D.dot(swap)) Q = np.sqrt(D) # array from elementwise sqrt # Want to take square root so that Q has determinant 1 if abs(la.det(Q)+1) < 1e-5: Q[0, 0] = -Q[0, 0] # Q^-1*P.T = P' -> QP' = P.T (solve for P' using Ax=b) Pprime = la.solve(Q, P.T) # K' now just U' * P * P' Kprime = Uprime.dot(P.dot(Pprime)) K1 = B.dot(Kprime.dot(P.dot(Bdag))) A = B.dot(Q.dot(Bdag)) K2 = B.dot(P.T.dot(Bdag)) # KAK = K1 * A * K2 KAK = K1.dot(A.dot(K2)) # Verify decomp matches input unitary. if la.norm(KAK - U) > 1e-6: raise QiskitError("two_qubit_kak: KAK decomposition " + "does not return input unitary.") # Compute parameters alpha, beta, gamma so that # A = exp(i * (alpha * XX + beta * YY + gamma * ZZ)) xx = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]], dtype=complex) yy = np.array([[0, 0, 0, -1], [0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0]], dtype=complex) zz = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=complex) A_real_tr = A.real.trace() alpha = math.atan2(A.dot(xx).imag.trace(), A_real_tr) beta = math.atan2(A.dot(yy).imag.trace(), A_real_tr) gamma = math.atan2(A.dot(zz).imag.trace(), A_real_tr) # K1 = kron(U1, U2) and K2 = kron(V1, V2) # Find the matrices U1, U2, V1, V2 # Find a block in K1 where U1_ij * [U2] is not zero L = K1[0:2, 0:2] if la.norm(L) < 1e-9: L = K1[0:2, 2:4] if la.norm(L) < 1e-9: L = K1[2:4, 2:4] # Remove the U1_ij prefactor Q = L.dot(L.conj().T) U2 = L / math.sqrt(Q[0, 0].real) # Now grab U1 given we know U2 R = K1.dot(np.kron(np.identity(2), U2.conj().T)) U1 = np.zeros((2, 2), dtype=complex) U1[0, 0] = R[0, 0] U1[0, 1] = R[0, 2] U1[1, 0] = R[2, 0] U1[1, 1] = R[2, 2] # Repeat K1 routine for K2 L = K2[0:2, 0:2] if la.norm(L) < 1e-9: L = K2[0:2, 2:4] if la.norm(L) < 1e-9: L = K2[2:4, 2:4] Q = np.dot(L, np.transpose(L.conjugate())) V2 = L / np.sqrt(Q[0, 0]) R = np.dot(K2, np.kron(np.identity(2), np.transpose(V2.conjugate()))) V1 = np.zeros_like(U1) V1[0, 0] = R[0, 0] V1[0, 1] = R[0, 2] V1[1, 0] = R[2, 0] V1[1, 1] = R[2, 2] if la.norm(np.kron(U1, U2) - K1) > 1e-4: raise QiskitError("two_qubit_kak: K1 != U1 x U2") if la.norm(np.kron(V1, V2) - K2) > 1e-4: raise QiskitError("two_qubit_kak: K2 != V1 x V2") test = la.expm(1j*(alpha * xx + beta * yy + gamma * zz)) if la.norm(A - test) > 1e-4: raise QiskitError("two_qubit_kak: " + "Matrix A does not match xx,yy,zz decomposition.") # Circuit that implements K1 * A * K2 (up to phase), using # Vatan and Williams Fig. 6 of quant-ph/0308006v3 # Include prefix and suffix single-qubit gates into U2, V1 respectively. V2 = np.array([[np.exp(1j*np.pi/4), 0], [0, np.exp(-1j*np.pi/4)]], dtype=complex).dot(V2) U1 = U1.dot(np.array([[np.exp(-1j*np.pi/4), 0], [0, np.exp(1j*np.pi/4)]], dtype=complex)) # Corrects global phase: exp(ipi/4)*phase' U1 = U1.dot(np.array([[np.exp(1j*np.pi/4), 0], [0, np.exp(1j*np.pi/4)]], dtype=complex)) U1 = phase.conjugate() * U1 # Test g1 = np.kron(V1, V2) g2 = np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]], dtype=complex) theta = 2*gamma - np.pi/2 Ztheta = np.array([[np.exp(1j*theta/2), 0], [0, np.exp(-1j*theta/2)]], dtype=complex) kappa = np.pi/2 - 2*alpha Ykappa = np.array([[math.cos(kappa/2), math.sin(kappa/2)], [-math.sin(kappa/2), math.cos(kappa/2)]], dtype=complex) g3 = np.kron(Ztheta, Ykappa) g4 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]], dtype=complex) zeta = 2*beta - np.pi/2 Yzeta = np.array([[math.cos(zeta/2), math.sin(zeta/2)], [-math.sin(zeta/2), math.cos(zeta/2)]], dtype=complex) g5 = np.kron(np.identity(2), Yzeta) g6 = g2 g7 = np.kron(U1, U2) V = g2.dot(g1) V = g3.dot(V) V = g4.dot(V) V = g5.dot(V) V = g6.dot(V) V = g7.dot(V) if la.norm(V - U*phase.conjugate()) > 1e-6: raise QiskitError("two_qubit_kak: " + "sequence incorrect, unknown error") v1_param = euler_angles_1q(V1) v2_param = euler_angles_1q(V2) u1_param = euler_angles_1q(U1) u2_param = euler_angles_1q(U2) v1_gate = U3Gate(v1_param[0], v1_param[1], v1_param[2]) v2_gate = U3Gate(v2_param[0], v2_param[1], v2_param[2]) u1_gate = U3Gate(u1_param[0], u1_param[1], u1_param[2]) u2_gate = U3Gate(u2_param[0], u2_param[1], u2_param[2]) q = QuantumRegister(2) return_circuit = QuantumCircuit(q) return_circuit.append(v1_gate, [q[1]]) return_circuit.append(v2_gate, [q[0]]) return_circuit.append(CnotGate(), [q[0], q[1]]) gate = U3Gate(0.0, 0.0, -2.0*gamma + np.pi/2.0) return_circuit.append(gate, [q[1]]) gate = U3Gate(-np.pi/2.0 + 2.0*alpha, 0.0, 0.0) return_circuit.append(gate, [q[0]]) return_circuit.append(CnotGate(), [q[1], q[0]]) gate = U3Gate(-2.0*beta + np.pi/2.0, 0.0, 0.0) return_circuit.append(gate, [q[0]]) return_circuit.append(CnotGate(), [q[0], q[1]]) return_circuit.append(u1_gate, [q[1]]) return_circuit.append(u2_gate, [q[0]]) return return_circuit
159,783
Extends dag with virtual qubits that are in layout but not in the circuit yet. Args: dag (DAGCircuit): DAG to extend. Returns: DAGCircuit: An extended DAG. Raises: TranspilerError: If there is not layout in the property set or not set at init time.
def run(self, dag): self.layout = self.layout or self.property_set['layout'] if self.layout is None: raise TranspilerError("EnlargeWithAncilla requires property_set[\"layout\"] or" " \"layout\" parameter to run") layout_virtual_qubits = self.layout.get_virtual_bits().keys() new_qregs = set(virtual_qubit[0] for virtual_qubit in layout_virtual_qubits if virtual_qubit not in dag.wires) for qreg in new_qregs: dag.add_qreg(qreg) return dag
159,784
The backend configuration widget. Args: backend (IBMQbackend): The backend. Returns: grid: A GridBox widget.
def config_tab(backend): status = backend.status().to_dict() config = backend.configuration().to_dict() config_dict = {**status, **config} upper_list = ['n_qubits', 'operational', 'status_msg', 'pending_jobs', 'basis_gates', 'local', 'simulator'] lower_list = list(set(config_dict.keys()).difference(upper_list)) # Remove gates because they are in a different tab lower_list.remove('gates') upper_str = "<table>" upper_str += footer = "</table>" # Upper HBox widget data upper_str += "<tr><th>Property</th><th>Value</th></tr>" for key in upper_list: upper_str += "<tr><td><font style='font-weight:bold'>%s</font></td><td>%s</td></tr>" % ( key, config_dict[key]) upper_str += footer upper_table = widgets.HTML( value=upper_str, layout=widgets.Layout(width='100%', grid_area='left')) image_widget = widgets.Output( layout=widgets.Layout(display='flex-inline', grid_area='right', padding='10px 10px 10px 10px', width='auto', max_height='300px', align_items='center')) if not config['simulator']: with image_widget: gate_map = plot_gate_map(backend) display(gate_map) plt.close(gate_map) lower_str = "<table>" lower_str += lower_str += "<tr><th></th><th></th></tr>" for key in lower_list: if key != 'name': lower_str += "<tr><td>%s</td><td>%s</td></tr>" % ( key, config_dict[key]) lower_str += footer lower_table = widgets.HTML(value=lower_str, layout=widgets.Layout( width='auto', grid_area='bottom')) grid = widgets.GridBox(children=[upper_table, image_widget, lower_table], layout=widgets.Layout( grid_template_rows='auto auto', grid_template_columns='25% 25% 25% 25%', grid_template_areas=, grid_gap='0px 0px')) return grid
159,786
The qubits properties widget Args: backend (IBMQbackend): The backend. Returns: VBox: A VBox widget.
def qubits_tab(backend): props = backend.properties().to_dict() header_html = "<div><font style='font-weight:bold'>{key}</font>: {value}</div>" header_html = header_html.format(key='last_update_date', value=props['last_update_date']) update_date_widget = widgets.HTML(value=header_html) qubit_html = "<table>" qubit_html += qubit_html += "<tr><th></th><th>Frequency</th><th>T1</th><th>T2</th>" qubit_html += "<th>U1 gate error</th><th>U2 gate error</th><th>U3 gate error</th>" qubit_html += "<th>Readout error</th></tr>" qubit_footer = "</table>" for qub in range(len(props['qubits'])): name = 'Q%s' % qub qubit_data = props['qubits'][qub] gate_data = props['gates'][3*qub:3*qub+3] t1_info = qubit_data[0] t2_info = qubit_data[1] freq_info = qubit_data[2] readout_info = qubit_data[3] freq = str(round(freq_info['value'], 5))+' '+freq_info['unit'] T1 = str(round(t1_info['value'], # pylint: disable=invalid-name 5))+' ' + t1_info['unit'] T2 = str(round(t2_info['value'], # pylint: disable=invalid-name 5))+' ' + t2_info['unit'] # pylint: disable=invalid-name U1 = str(round(gate_data[0]['parameters'][0]['value'], 5)) # pylint: disable=invalid-name U2 = str(round(gate_data[1]['parameters'][0]['value'], 5)) # pylint: disable=invalid-name U3 = str(round(gate_data[2]['parameters'][0]['value'], 5)) readout_error = round(readout_info['value'], 5) qubit_html += "<tr><td><font style='font-weight:bold'>%s</font></td><td>%s</td>" qubit_html += "<td>%s</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>" qubit_html = qubit_html % (name, freq, T1, T2, U1, U2, U3, readout_error) qubit_html += qubit_footer qubit_widget = widgets.HTML(value=qubit_html) out = widgets.VBox([update_date_widget, qubit_widget]) return out
159,787
The multiple qubit gate error widget. Args: backend (IBMQbackend): The backend. Returns: VBox: A VBox widget.
def gates_tab(backend): config = backend.configuration().to_dict() props = backend.properties().to_dict() multi_qubit_gates = props['gates'][3*config['n_qubits']:] header_html = "<div><font style='font-weight:bold'>{key}</font>: {value}</div>" header_html = header_html.format(key='last_update_date', value=props['last_update_date']) update_date_widget = widgets.HTML(value=header_html, layout=widgets.Layout(grid_area='top')) gate_html = "<table>" gate_html += gate_html += "<tr><th></th><th>Type</th><th>Gate error</th></tr>" gate_footer = "</table>" # Split gates into two columns left_num = math.ceil(len(multi_qubit_gates)/3) mid_num = math.ceil((len(multi_qubit_gates)-left_num)/2) left_table = gate_html for qub in range(left_num): gate = multi_qubit_gates[qub] name = gate['name'] ttype = gate['gate'] error = round(gate['parameters'][0]['value'], 5) left_table += "<tr><td><font style='font-weight:bold'>%s</font>" left_table += "</td><td>%s</td><td>%s</td></tr>" left_table = left_table % (name, ttype, error) left_table += gate_footer middle_table = gate_html for qub in range(left_num, left_num+mid_num): gate = multi_qubit_gates[qub] name = gate['name'] ttype = gate['gate'] error = round(gate['parameters'][0]['value'], 5) middle_table += "<tr><td><font style='font-weight:bold'>%s</font>" middle_table += "</td><td>%s</td><td>%s</td></tr>" middle_table = middle_table % (name, ttype, error) middle_table += gate_footer right_table = gate_html for qub in range(left_num+mid_num, len(multi_qubit_gates)): gate = multi_qubit_gates[qub] name = gate['name'] ttype = gate['gate'] error = round(gate['parameters'][0]['value'], 5) right_table += "<tr><td><font style='font-weight:bold'>%s</font>" right_table += "</td><td>%s</td><td>%s</td></tr>" right_table = right_table % (name, ttype, error) right_table += gate_footer left_table_widget = widgets.HTML(value=left_table, layout=widgets.Layout(grid_area='left')) middle_table_widget = widgets.HTML(value=middle_table, layout=widgets.Layout(grid_area='middle')) right_table_widget = widgets.HTML(value=right_table, layout=widgets.Layout(grid_area='right')) grid = widgets.GridBox(children=[update_date_widget, left_table_widget, middle_table_widget, right_table_widget], layout=widgets.Layout( grid_template_rows='auto auto', grid_template_columns='33% 33% 33%', grid_template_areas=, grid_gap='0px 0px')) return grid
159,788