docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Returns a vocabulary after eliminating the words that appear < `n`.
Args:
n (integer): specifies the minimum word frequency allowed. | def min_count(self, n=1):
word_count = {w:c for w,c in iteritems(self.word_count) if c >= n}
return CountedVocabulary(word_count=word_count) | 165,544 |
Apply `func` to lines of text in parallel or sequential.
Args:
func : a function that takes a list of lines. | def apply(self, func, workers=1, job_size=10000):
if workers == 1:
for lines in self.iter_chunks(job_size):
yield func(lines)
else:
with ProcessPoolExecutor(max_workers=workers) as executor:
for result in executor.map(func, self.iter_chunks(job_size)):
yield result | 165,560 |
Annotate a squence of words with entity tags.
Args:
sent: sequence of strings/words. | def annotate(self, sent):
preds = []
words = []
for word, fv in self.sent2examples(sent):
probs = self.predictor(fv)
tags = probs.argsort()
tag = self.ID_TAG[tags[-1]]
words.append(word)
preds.append(tag)
# fix_chunks(preds)
annotations = zip(words, preds)
return annotations | 165,566 |
Recurses DynamicMap to find DynamicMaps inputs
Args:
dmap: DynamicMap to recurse to look for DynamicMap inputs
Returns:
List of DynamicMap instances that were found | def get_nested_dmaps(dmap):
if not isinstance(dmap, DynamicMap):
return []
dmaps = [dmap]
for o in dmap.callback.inputs:
dmaps.extend(get_nested_dmaps(o))
return list(set(dmaps)) | 166,106 |
Recurses supplied DynamicMap to find all streams
Args:
dmap: DynamicMap to recurse to look for streams
Returns:
List of streams that were found | def get_nested_streams(dmap):
return list({s for dmap in get_nested_dmaps(dmap) for s in dmap.streams}) | 166,107 |
Group by supplied dimension(s) and overlay each group
Groups data by supplied dimension(s) overlaying the groups
along the dimension(s).
Args:
dimensions: Dimension(s) of dimensions to group by
Returns:
NdOverlay object(s) with supplied dimensions | def overlay(self, dimensions=None, **kwargs):
dimensions = self._valid_dimensions(dimensions)
if len(dimensions) == self.ndims:
with item_check(False):
return NdOverlay(self, **kwargs).reindex(dimensions)
else:
dims = [d for d in self.kdims if d not in dimensions]
return self.groupby(dims, group_type=NdOverlay, **kwargs) | 166,110 |
Group by supplied dimension(s) and lay out groups in grid
Groups data by supplied dimension(s) laying the groups along
the dimension(s) out in a GridSpace.
Args:
dimensions: Dimension/str or list
Dimension or list of dimensions to group by
Returns:
GridSpace with supplied dimensions | def grid(self, dimensions=None, **kwargs):
dimensions = self._valid_dimensions(dimensions)
if len(dimensions) == self.ndims:
with item_check(False):
return GridSpace(self, **kwargs).reindex(dimensions)
return self.groupby(dimensions, container_type=GridSpace, **kwargs) | 166,111 |
Group by supplied dimension(s) and lay out groups
Groups data by supplied dimension(s) laying the groups along
the dimension(s) out in a NdLayout.
Args:
dimensions: Dimension(s) to group by
Returns:
NdLayout with supplied dimensions | def layout(self, dimensions=None, **kwargs):
dimensions = self._valid_dimensions(dimensions)
if len(dimensions) == self.ndims:
with item_check(False):
return NdLayout(self, **kwargs).reindex(dimensions)
return self.groupby(dimensions, container_type=NdLayout, **kwargs) | 166,112 |
Clones the Callable optionally with new settings
Args:
callable: New callable function to wrap
**overrides: Parameter overrides to apply
Returns:
Cloned Callable object | def clone(self, callable=None, **overrides):
old = {k: v for k, v in self.get_param_values()
if k not in ['callable', 'name']}
params = dict(old, **overrides)
callable = self.callable if callable is None else callable
return self.__class__(callable, **params) | 166,127 |
Calls the callable function with supplied args and kwargs.
If enabled uses memoization to avoid calling function
unneccessarily.
Args:
*args: Arguments passed to the callable function
**kwargs: Keyword arguments passed to the callable function
Returns:
Return value of the wrapped callable function | def __call__(self, *args, **kwargs):
# Nothing to do for callbacks that accept no arguments
kwarg_hash = kwargs.pop('_memoization_hash_', ())
(self.args, self.kwargs) = (args, kwargs)
if not args and not kwargs and not any(kwarg_hash): return self.callable()
inputs = [i for i in self.inputs if isinstance(i, DynamicMap)]
streams = []
for stream in [s for i in inputs for s in get_nested_streams(i)]:
if stream not in streams: streams.append(stream)
memoize = self._stream_memoization and not any(s.transient and s._triggering for s in streams)
values = tuple(tuple(sorted(s.hashkey.items())) for s in streams)
key = args + kwarg_hash + values
hashed_key = util.deephash(key) if self.memoize else None
if hashed_key is not None and memoize and hashed_key in self._memoized:
return self._memoized[hashed_key]
if self.argspec.varargs is not None:
# Missing information on positional argument names, cannot promote to keywords
pass
elif len(args) != 0: # Turn positional arguments into keyword arguments
pos_kwargs = {k:v for k,v in zip(self.argspec.args, args)}
ignored = range(len(self.argspec.args),len(args))
if len(ignored):
self.param.warning('Ignoring extra positional argument %s'
% ', '.join('%s' % i for i in ignored))
clashes = set(pos_kwargs.keys()) & set(kwargs.keys())
if clashes:
self.param.warning(
'Positional arguments %r overriden by keywords'
% list(clashes))
args, kwargs = (), dict(pos_kwargs, **kwargs)
try:
ret = self.callable(*args, **kwargs)
except KeyError:
# KeyError is caught separately because it is used to signal
# invalid keys on DynamicMap and should not warn
raise
except Exception as e:
posstr = ', '.join(['%r' % el for el in self.args]) if self.args else ''
kwstr = ', '.join('%s=%r' % (k,v) for k,v in self.kwargs.items())
argstr = ', '.join([el for el in [posstr, kwstr] if el])
message = ("Callable raised \"{e}\".\n"
"Invoked as {name}({argstr})")
self.param.warning(message.format(name=self.name, argstr=argstr, e=repr(e)))
raise
if hashed_key is not None:
self._memoized = {hashed_key : ret}
return ret | 166,128 |
Updates attached streams and triggers events
Automatically find streams matching the supplied kwargs to
update and trigger events on them.
Args:
**kwargs: Events to update streams with | def event(self, **kwargs):
if self.callback.noargs and self.streams == []:
self.param.warning(
'No streams declared. To update a DynamicMaps using '
'generators (or callables without arguments) use streams=[Next()]')
return
if self.streams == []:
self.param.warning('No streams on DynamicMap, calling event '
'will have no effect')
return
stream_params = set(util.stream_parameters(self.streams))
invalid = [k for k in kwargs.keys() if k not in stream_params]
if invalid:
msg = 'Key(s) {invalid} do not correspond to stream parameters'
raise KeyError(msg.format(invalid = ', '.join('%r' % i for i in invalid)))
streams = []
for stream in self.streams:
contents = stream.contents
applicable_kws = {k:v for k,v in kwargs.items()
if k in set(contents.keys())}
if not applicable_kws and contents:
continue
streams.append(stream)
rkwargs = util.rename_stream_kwargs(stream, applicable_kws, reverse=True)
stream.update(**rkwargs)
Stream.trigger(streams) | 166,135 |
Groups data by supplied dimension(s) laying the groups along
the dimension(s) out in a GridSpace.
Args:
dimensions: Dimension/str or list
Dimension or list of dimensions to group by
Returns:
grid: GridSpace
GridSpace with supplied dimensions | def grid(self, dimensions=None, **kwargs):
return self.groupby(dimensions, container_type=GridSpace, **kwargs) | 166,150 |
Groups data by supplied dimension(s) laying the groups along
the dimension(s) out in a NdLayout.
Args:
dimensions: Dimension/str or list
Dimension or list of dimensions to group by
Returns:
layout: NdLayout
NdLayout with supplied dimensions | def layout(self, dimensions=None, **kwargs):
return self.groupby(dimensions, container_type=NdLayout, **kwargs) | 166,151 |
Group by supplied dimension(s) and overlay each group
Groups data by supplied dimension(s) overlaying the groups
along the dimension(s).
Args:
dimensions: Dimension(s) of dimensions to group by
Returns:
NdOverlay object(s) with supplied dimensions | def overlay(self, dimensions=None, **kwargs):
if dimensions is None:
dimensions = self.kdims
else:
if not isinstance(dimensions, (list, tuple)):
dimensions = [dimensions]
dimensions = [self.get_dimension(d, strict=True)
for d in dimensions]
dims = [d for d in self.kdims if d not in dimensions]
return self.groupby(dims, group_type=NdOverlay) | 166,152 |
Reorders key dimensions on DynamicMap
Create a new object with a reordered set of key dimensions.
Dropping dimensions is not allowed on a DynamicMap.
Args:
kdims: List of dimensions to reindex the mapping with
force: Not applicable to a DynamicMap
Returns:
Reindexed DynamicMap | def reindex(self, kdims=[], force=False):
if not isinstance(kdims, list):
kdims = [kdims]
kdims = [self.get_dimension(kd, strict=True) for kd in kdims]
dropped = [kd for kd in self.kdims if kd not in kdims]
if dropped:
raise ValueError("DynamicMap does not allow dropping dimensions, "
"reindex may only be used to reorder dimensions.")
return super(DynamicMap, self).reindex(kdims, force) | 166,154 |
Snaps indices into the GridSpace to the closest coordinate.
Args:
key: Tuple index into the GridSpace
Returns:
Transformed key snapped to closest numeric coordinates | def _transform_indices(self, key):
ndims = self.ndims
if all(not (isinstance(el, slice) or callable(el)) for el in key):
dim_inds = []
for dim in self.kdims:
dim_type = self.get_dimension_type(dim)
if isinstance(dim_type, type) and issubclass(dim_type, Number):
dim_inds.append(self.get_dimension_index(dim))
str_keys = iter(key[i] for i in range(self.ndims)
if i not in dim_inds)
num_keys = []
if len(dim_inds):
keys = list({tuple(k[i] if ndims > 1 else k for i in dim_inds)
for k in self.keys()})
q = np.array([tuple(key[i] if ndims > 1 else key for i in dim_inds)])
idx = np.argmin([np.inner(q - np.array(x), q - np.array(x))
if len(dim_inds) == 2 else np.abs(q-x)
for x in keys])
num_keys = iter(keys[idx])
key = tuple(next(num_keys) if i in dim_inds else next(str_keys)
for i in range(self.ndims))
elif any(not (isinstance(el, slice) or callable(el)) for el in key):
keys = self.keys()
for i, k in enumerate(key):
if isinstance(k, slice):
continue
dim_keys = np.array([ke[i] for ke in keys])
if dim_keys.dtype.kind in 'OSU':
continue
snapped_val = dim_keys[np.argmin(np.abs(dim_keys-k))]
key = list(key)
key[i] = snapped_val
key = tuple(key)
return key | 166,156 |
Returns the keys of the GridSpace
Args:
full_grid (bool, optional): Return full cross-product of keys
Returns:
List of keys | def keys(self, full_grid=False):
keys = super(GridSpace, self).keys()
if self.ndims == 1 or not full_grid:
return keys
dim1_keys = sorted(set(k[0] for k in keys))
dim2_keys = sorted(set(k[1] for k in keys))
return [(d1, d2) for d1 in dim1_keys for d2 in dim2_keys] | 166,157 |
Get a layer in the Overlay.
Get a particular layer in the Overlay using its path string
or an integer index.
Args:
identifier: Index or path string of the item to return
default: Value to return if no item is found
Returns:
The indexed layer of the Overlay | def get(self, identifier, default=None):
if isinstance(identifier, int):
values = list(self.data.values())
if 0 <= identifier < len(values):
return values[identifier]
else:
return default
return super(Overlay, self).get(identifier, default) | 166,176 |
Returns the current frame in a mapping given a key mapping.
Args:
obj: Nested Dimensioned object
key_map: Dictionary mapping between dimensions and key value
cached: Whether to allow looking up key in cache
Returns:
The item in the mapping corresponding to the supplied key. | def get_plot_frame(map_obj, key_map, cached=False):
if map_obj.kdims and len(map_obj.kdims) == 1 and map_obj.kdims[0] == 'Frame':
# Special handling for static plots
return map_obj.last
key = tuple(key_map[kd.name] for kd in map_obj.kdims if kd.name in key_map)
if key in map_obj.data and cached:
return map_obj.data[key]
else:
try:
return map_obj[key]
except KeyError:
return None
except StopIteration as e:
raise e
except Exception:
print(traceback.format_exc())
return None | 166,192 |
Extracts a single frame from a nested object.
Replaces any HoloMap or DynamicMap in the nested data structure,
with the item corresponding to the supplied key.
Args:
obj: Nested Dimensioned object
key_map: Dictionary mapping between dimensions and key value
cached: Whether to allow looking up key in cache
Returns:
Nested datastructure where maps are replaced with single frames | def get_nested_plot_frame(obj, key_map, cached=False):
clone = obj.map(lambda x: x)
# Ensure that DynamicMaps in the cloned frame have
# identical callback inputs to allow memoization to work
for it1, it2 in zip(obj.traverse(lambda x: x), clone.traverse(lambda x: x)):
if isinstance(it1, DynamicMap):
with disable_constant(it2.callback):
it2.callback.inputs = it1.callback.inputs
with item_check(False):
return clone.map(lambda x: get_plot_frame(x, key_map, cached=cached),
[DynamicMap, HoloMap], clone=False) | 166,193 |
Clones the NdLayout, overriding data and parameters.
Args:
data: New data replacing the existing data
shared_data (bool, optional): Whether to use existing data
new_type (optional): Type to cast object to
*args: Additional arguments to pass to constructor
**overrides: New keyword arguments to pass to constructor
Returns:
Cloned NdLayout object | def clone(self, *args, **overrides):
clone = super(NdLayout, self).clone(*args, **overrides)
clone._max_cols = self._max_cols
clone.id = self.id
return clone | 166,480 |
Clones the Layout, overriding data and parameters.
Args:
data: New data replacing the existing data
shared_data (bool, optional): Whether to use existing data
new_type (optional): Type to cast object to
*args: Additional arguments to pass to constructor
**overrides: New keyword arguments to pass to constructor
Returns:
Cloned Layout object | def clone(self, *args, **overrides):
clone = super(Layout, self).clone(*args, **overrides)
clone._max_cols = self._max_cols
return clone | 166,484 |
Converts a cmap spec to a plotly colorscale
Args:
cmap: A recognized colormap by name or list of colors
levels: A list or integer declaring the color-levels
cmin: The lower bound of the color range
cmax: The upper bound of the color range
Returns:
A valid plotly colorscale | def get_colorscale(cmap, levels=None, cmin=None, cmax=None):
ncolors = levels if isinstance(levels, int) else None
if isinstance(levels, list):
ncolors = len(levels) - 1
if isinstance(cmap, list) and len(cmap) != ncolors:
raise ValueError('The number of colors in the colormap '
'must match the intervals defined in the '
'color_levels, expected %d colors found %d.'
% (ncolors, len(cmap)))
try:
palette = process_cmap(cmap, ncolors)
except Exception as e:
colorscale = colors.PLOTLY_SCALES.get(cmap)
if colorscale is None:
raise e
return colorscale
if isinstance(levels, int):
colorscale = []
scale = np.linspace(0, 1, levels+1)
for i in range(levels+1):
if i == 0:
colorscale.append((scale[0], palette[i]))
elif i == levels:
colorscale.append((scale[-1], palette[-1]))
else:
colorscale.append((scale[i], palette[i-1]))
colorscale.append((scale[i], palette[i]))
return colorscale
elif isinstance(levels, list):
palette, (cmin, cmax) = color_intervals(
palette, levels, clip=(cmin, cmax))
return colors.make_colorscale(palette) | 166,532 |
Convert dimension values to DataFrame.
Returns a pandas dataframe of columns along each dimension,
either completely flat or indexed by key dimensions.
Args:
dimensions: Dimensions to return as columns
multi_index: Convert key dimensions to (multi-)index
Returns:
DataFrame of columns corresponding to each dimension | def dframe(self, dimensions=None, multi_index=False):
import pandas as pd
if dimensions is None:
dimensions = [d.name for d in self.dimensions()]
else:
dimensions = [self.get_dimension(d, strict=True).name for d in dimensions]
column_names = dimensions
dim_vals = OrderedDict([(dim, self.dimension_values(dim)) for dim in column_names])
df = pd.DataFrame(dim_vals)
if multi_index:
df = df.set_index([d for d in dimensions if d in self.kdims])
return df | 166,589 |
Convert dimension values to columnar array.
Args:
dimensions: List of dimensions to return
Returns:
Array of columns corresponding to each dimension | def array(self, dimensions=None):
if dimensions is None:
dims = [d for d in self.kdims + self.vdims]
else:
dims = [self.get_dimension(d, strict=True) for d in dimensions]
columns, types = [], []
for dim in dims:
column = self.dimension_values(dim)
columns.append(column)
types.append(column.dtype.kind)
if len(set(types)) > 1:
columns = [c.astype('object') for c in columns]
return np.column_stack(columns) | 166,590 |
Formatted contents of table cell.
Args:
row (int): Integer index of table row
col (int): Integer index of table column
Returns:
Formatted table cell contents | def pprint_cell(self, row, col):
ndims = self.ndims
if col >= self.cols:
raise Exception("Maximum column index is %d" % self.cols-1)
elif row >= self.rows:
raise Exception("Maximum row index is %d" % self.rows-1)
elif row == 0:
if col >= ndims:
if self.vdims:
return self.vdims[col - ndims].pprint_label
else:
return ''
return self.kdims[col].pprint_label
else:
dim = self.get_dimension(col)
return dim.pprint_value(self.iloc[row-1, col]) | 166,593 |
Computes the maximal lower and upper bounds from a list bounds.
Args:
ranges (list of tuples): A list of range tuples
combined (boolean, optional): Whether to combine bounds
Whether range should be computed on lower and upper bound
independently or both at once
Returns:
The maximum range as a single tuple | def max_range(ranges, combined=True):
try:
with warnings.catch_warnings():
warnings.filterwarnings('ignore', r'All-NaN (slice|axis) encountered')
values = [tuple(np.NaN if v is None else v for v in r) for r in ranges]
if pd and any(isinstance(v, datetime_types) and not isinstance(v, cftime_types)
for r in values for v in r):
converted = []
for l, h in values:
if isinstance(l, datetime_types) and isinstance(h, datetime_types):
l, h = (pd.Timestamp(l).to_datetime64(),
pd.Timestamp(h).to_datetime64())
converted.append((l, h))
values = converted
arr = np.array(values)
if not len(arr):
return np.NaN, np.NaN
elif arr.dtype.kind in 'OSU':
arr = list(python2sort([
v for r in values for v in r
if not is_nan(v) and v is not None]))
return arr[0], arr[-1]
elif arr.dtype.kind in 'M':
return ((arr.min(), arr.max()) if combined else
(arr[:, 0].min(), arr[:, 1].min()))
if combined:
return (np.nanmin(arr), np.nanmax(arr))
else:
return (np.nanmin(arr[:, 0]), np.nanmax(arr[:, 1]))
except:
return (np.NaN, np.NaN) | 166,763 |
Returns an array of unique values in the input order.
Args:
arr (np.ndarray or list): The array to compute unique values on
Returns:
A new array of unique values | def unique_array(arr):
if not len(arr):
return np.asarray(arr)
elif pd:
if isinstance(arr, np.ndarray) and arr.dtype.kind not in 'MO':
# Avoid expensive unpacking if not potentially datetime
return pd.unique(arr)
values = []
for v in arr:
if (isinstance(v, datetime_types) and
not isinstance(v, cftime_types)):
v = pd.Timestamp(v).to_datetime64()
values.append(v)
return pd.unique(values)
else:
arr = np.asarray(arr)
_, uniq_inds = np.unique(arr, return_index=True)
return arr[np.sort(uniq_inds)] | 166,770 |
Whether the object is a method on a parameterized object.
Args:
obj: Object to check
has_deps (boolean, optional): Check for dependencies
Whether to also check whether the method has been annotated
with param.depends
Returns:
A boolean value indicating whether the object is a method
on a Parameterized object and if enabled whether it has any
dependencies | def is_param_method(obj, has_deps=False):
parameterized = (inspect.ismethod(obj) and
isinstance(get_method_owner(obj), param.Parameterized))
if parameterized and has_deps:
return getattr(obj, "_dinfo", {}).get('dependencies')
return parameterized | 166,788 |
Replaces dimensions in list with dictionary of overrides.
Args:
dimensions: List of dimensions
overrides: Dictionary of dimension specs indexed by name
Returns:
list: List of dimensions with replacements applied | def replace_dimensions(cls, dimensions, overrides):
from .dimension import Dimension
replaced = []
for d in dimensions:
if d.name in overrides:
override = overrides[d.name]
elif d.label in overrides:
override = overrides[d.label]
else:
override = None
if override is None:
replaced.append(d)
elif isinstance(override, (util.basestring, tuple)):
replaced.append(d.clone(override))
elif isinstance(override, Dimension):
replaced.append(override)
elif isinstance(override, dict):
replaced.append(d.clone(override.get('name',None),
**{k:v for k,v in override.items() if k != 'name'}))
else:
raise ValueError('Dimension can only be overridden '
'with another dimension or a dictionary '
'of attributes')
return replaced | 166,957 |
Returns the corresponding Options object.
Args:
group: The options group. Flattens across groups if None.
backend: Current backend if None otherwise chosen backend.
Returns:
Options object associated with the object containing the
applied option keywords. | def get(self, group=None, backend=None):
from .options import Store, Options
keywords = {}
groups = Options._option_groups if group is None else [group]
backend = backend if backend else Store.current_backend
for group in groups:
optsobj = Store.lookup_options(backend, self._obj, group)
keywords = dict(keywords, **optsobj.kwargs)
return Options(**keywords) | 166,962 |
Prints a repr of the object including any applied options.
Args:
show_defaults: Whether to include default options | def info(self, show_defaults=False):
pprinter = PrettyPrinter(show_options=True, show_defaults=show_defaults)
print(pprinter.pprint(self._obj)) | 166,965 |
Drops dimension(s) from keys
Args:
dimensions: Dimension(s) to drop
Returns:
Clone of object with with dropped dimension(s) | def drop_dimension(self, dimensions):
dimensions = [dimensions] if np.isscalar(dimensions) else dimensions
dims = [d for d in self.kdims if d not in dimensions]
dim_inds = [self.get_dimension_index(d) for d in dims]
key_getter = itemgetter(*dim_inds)
return self.clone([(key_getter(k), v) for k, v in self.data.items()],
kdims=dims) | 167,035 |
Merges other item with this object
Args:
other: Object containing items to merge into this object
Must be a dictionary or NdMapping type | def update(self, other):
if isinstance(other, NdMapping):
dims = [d for d in other.kdims if d not in self.kdims]
if len(dims) == other.ndims:
raise KeyError("Cannot update with NdMapping that has"
" a different set of key dimensions.")
elif dims:
other = other.drop_dimension(dims)
other = other.data
for key, data in other.items():
self._add_item(key, data, sort=False)
if self.sort:
self._resort() | 167,039 |
Convert dimension values to DataFrame.
Returns a pandas dataframe of columns along each dimension,
either completely flat or indexed by key dimensions.
Args:
dimensions: Dimensions to return as columns
multi_index: Convert key dimensions to (multi-)index
Returns:
DataFrame of columns corresponding to each dimension | def dframe(self, dimensions=None, multi_index=False):
import pandas as pd
if dimensions is None:
outer_dimensions = self.kdims
inner_dimensions = None
else:
outer_dimensions = [self.get_dimension(d) for d in dimensions
if d in self.kdims]
inner_dimensions = [d for d in dimensions
if d not in outer_dimensions]
inds = [(d, self.get_dimension_index(d)) for d in outer_dimensions]
dframes = []
for key, element in self.data.items():
df = element.dframe(inner_dimensions, multi_index)
names = [d.name for d in outer_dimensions]
key_dims = [(d.name, key[i]) for d, i in inds]
if multi_index:
length = len(df)
indexes = [[v]*length for _, v in key_dims]
if df.index.names != [None]:
indexes += [df.index]
names += list(df.index.names)
df = df.set_index(indexes)
df.index.names = names
else:
for dim, val in key_dims:
dimn = 1
while dim in df:
dim = dim+'_%d' % dimn
if dim in df:
dimn += 1
df.insert(0, dim, val)
dframes.append(df)
return pd.concat(dframes) | 167,056 |
Snaps coordinate(s) to closest coordinate in Dataset
Args:
coords: List of coordinates expressed as tuples
**kwargs: Coordinates defined as keyword pairs
Returns:
List of tuples of the snapped coordinates
Raises:
NotImplementedError: Raised if snapping is not supported | def closest(self, coords=[], **kwargs):
if self.ndims > 1:
raise NotImplementedError("Closest method currently only "
"implemented for 1D Elements")
if kwargs:
if len(kwargs) > 1:
raise NotImplementedError("Closest method currently only "
"supports 1D indexes")
samples = list(kwargs.values())[0]
coords = samples if isinstance(samples, list) else [samples]
xs = self.dimension_values(0)
if xs.dtype.kind in 'SO':
raise NotImplementedError("Closest only supported for numeric types")
idxs = [np.argmin(np.abs(xs-coord)) for coord in coords]
return [xs[idx] for idx in idxs] | 167,065 |
Sorts the data by the values along the supplied dimensions.
Args:
by: Dimension(s) to sort by
reverse (bool, optional): Reverse sort order
Returns:
Sorted Dataset | def sort(self, by=None, reverse=False):
if by is None:
by = self.kdims
elif not isinstance(by, list):
by = [by]
sorted_columns = self.interface.sort(self, by, reverse)
return self.clone(sorted_columns) | 167,066 |
Return the lower and upper bounds of values along dimension.
Args:
dimension: The dimension to compute the range on.
data_range (bool): Compute range from data values
dimension_range (bool): Include Dimension ranges
Whether to include Dimension range and soft_range
in range calculation
Returns:
Tuple containing the lower and upper bound | def range(self, dim, data_range=True, dimension_range=True):
dim = self.get_dimension(dim)
if dim is None or (not data_range and not dimension_range):
return (None, None)
elif all(util.isfinite(v) for v in dim.range) and dimension_range:
return dim.range
elif dim in self.dimensions() and data_range and bool(self):
lower, upper = self.interface.range(self, dim)
else:
lower, upper = (np.NaN, np.NaN)
if not dimension_range:
return lower, upper
return util.dimension_range(lower, upper, dim.range, dim.soft_range) | 167,067 |
Reindexes Dataset dropping static or supplied kdims
Creates a new object with a reordered or reduced set of key
dimensions. By default drops all non-varying key dimensions.x
Args:
kdims (optional): New list of key dimensionsx
vdims (optional): New list of value dimensions
Returns:
Reindexed object | def reindex(self, kdims=None, vdims=None):
gridded = self.interface.gridded
scalars = []
if gridded:
coords = [(d, self.interface.coords(self, d.name)) for d in self.kdims]
scalars = [d for d, vs in coords if len(vs) == 1]
if kdims is None:
# If no key dimensions are defined and interface is gridded
# drop all scalar key dimensions
key_dims = [d for d in self.kdims if (not vdims or d not in vdims)
and not d in scalars]
elif not isinstance(kdims, list):
key_dims = [self.get_dimension(kdims, strict=True)]
else:
key_dims = [self.get_dimension(k, strict=True) for k in kdims]
dropped = [d for d in self.kdims if not d in key_dims and not d in scalars]
new_type = None
if vdims is None:
val_dims = [d for d in self.vdims if not kdims or d not in kdims]
else:
val_dims = [self.get_dimension(v, strict=True) for v in vdims]
new_type = self._vdim_reductions.get(len(val_dims), type(self))
data = self.interface.reindex(self, key_dims, val_dims)
datatype = self.datatype
if gridded and dropped:
interfaces = self.interface.interfaces
datatype = [dt for dt in datatype if not
getattr(interfaces.get(dt, None), 'gridded', True)]
return self.clone(data, kdims=key_dims, vdims=val_dims,
new_type=new_type, datatype=datatype) | 167,070 |
Get the type of the requested dimension.
Type is determined by Dimension.type attribute or common
type of the dimension values, otherwise None.
Args:
dimension: Dimension to look up by name or by index
Returns:
Declared type of values along the dimension | def get_dimension_type(self, dim):
dim_obj = self.get_dimension(dim)
if dim_obj and dim_obj.type is not None:
return dim_obj.type
return self.interface.dimension_type(self, dim_obj) | 167,077 |
Convert dimension values to DataFrame.
Returns a pandas dataframe of columns along each dimension,
either completely flat or indexed by key dimensions.
Args:
dimensions: Dimensions to return as columns
multi_index: Convert key dimensions to (multi-)index
Returns:
DataFrame of columns corresponding to each dimension | def dframe(self, dimensions=None, multi_index=False):
if dimensions is None:
dimensions = [d.name for d in self.dimensions()]
else:
dimensions = [self.get_dimension(d, strict=True).name for d in dimensions]
df = self.interface.dframe(self, dimensions)
if multi_index:
df = df.set_index([d for d in dimensions if d in self.kdims])
return df | 167,078 |
Convert dimension values to a dictionary.
Returns a dictionary of column arrays along each dimension
of the element.
Args:
dimensions: Dimensions to return as columns
Returns:
Dictionary of arrays for each dimension | def columns(self, dimensions=None):
if dimensions is None:
dimensions = self.dimensions()
else:
dimensions = [self.get_dimension(d, strict=True) for d in dimensions]
return OrderedDict([(d.name, self.dimension_values(d)) for d in dimensions]) | 167,079 |
Clones the object, overriding data and parameters.
Args:
data: New data replacing the existing data
shared_data (bool, optional): Whether to use existing data
new_type (optional): Type to cast object to
*args: Additional arguments to pass to constructor
**overrides: New keyword arguments to pass to constructor
Returns:
Cloned object | def clone(self, data=None, shared_data=True, new_type=None, *args, **overrides):
if 'datatype' not in overrides:
datatypes = [self.interface.datatype] + self.datatype
overrides['datatype'] = list(util.unique_iterator(datatypes))
return super(Dataset, self).clone(data, shared_data, new_type, *args, **overrides) | 167,080 |
Returns Params streams given a dictionary of parameters
Args:
params (dict): Dictionary of parameters
Returns:
List of Params streams | def from_params(cls, params):
key_fn = lambda x: id(x[1].owner)
streams = []
for _, group in groupby(sorted(params.items(), key=key_fn), key_fn):
group = list(group)
inst = [p.owner for _, p in group][0]
if not isinstance(inst, param.Parameterized):
continue
names = [p.name for _, p in group]
rename = {p.name: n for n, p in group}
streams.append(cls(inst, names, rename=rename))
return streams | 167,130 |
Converts support date types to milliseconds since epoch
Attempts highest precision conversion of different datetime
formats to milliseconds since the epoch (1970-01-01 00:00:00).
If datetime is a cftime with a non-standard calendar the
caveats described in hv.core.util.cftime_to_timestamp apply.
Args:
date: Date- or datetime-like object
Returns:
Milliseconds since 1970-01-01 00:00:00 | def date_to_integer(date):
if pd and isinstance(date, pd.Timestamp):
try:
date = date.to_datetime64()
except:
date = date.to_datetime()
if isinstance(date, np.datetime64):
return date.astype('datetime64[ms]').astype(float)
elif isinstance(date, cftime_types):
return cftime_to_timestamp(date, 'ms')
if hasattr(date, 'timetuple'):
dt_int = calendar.timegm(date.timetuple())*1000
else:
raise ValueError('Datetime type not recognized')
return dt_int | 167,183 |
Convert the input to a Dimension.
Args:
dimension: tuple, dict or string type to convert to Dimension
Returns:
A Dimension object constructed from the dimension spec. No
copy is performed if the input is already a Dimension. | def asdim(dimension):
if isinstance(dimension, Dimension):
return dimension
elif isinstance(dimension, (tuple, dict, basestring)):
return Dimension(dimension)
else:
raise ValueError('%s type could not be interpreted as Dimension. '
'Dimensions must be declared as a string, tuple, '
'dictionary or Dimension type.') | 167,220 |
Return the Dimension.name for a dimension-like object.
Args:
dimension: Dimension or dimension string, tuple or dict
Returns:
The name of the Dimension or what would be the name if the
input as converted to a Dimension. | def dimension_name(dimension):
if isinstance(dimension, Dimension):
return dimension.name
elif isinstance(dimension, basestring):
return dimension
elif isinstance(dimension, tuple):
return dimension[0]
elif isinstance(dimension, dict):
return dimension['name']
elif dimension is None:
return None
else:
raise ValueError('%s type could not be interpreted as Dimension. '
'Dimensions must be declared as a string, tuple, '
'dictionary or Dimension type.'
% type(dimension).__name__) | 167,221 |
Converts kdims and vdims to Dimension objects.
Args:
kdims: List or single key dimension(s) specified as strings,
tuples dicts or Dimension objects.
vdims: List or single value dimension(s) specified as strings,
tuples dicts or Dimension objects.
Returns:
Dictionary containing kdims and vdims converted to Dimension
objects:
{'kdims': [Dimension('x')], 'vdims': [Dimension('y')] | def process_dimensions(kdims, vdims):
dimensions = {}
for group, dims in [('kdims', kdims), ('vdims', vdims)]:
if dims is None:
continue
elif isinstance(dims, (tuple, basestring, Dimension, dict)):
dims = [dims]
elif not isinstance(dims, list):
raise ValueError("%s argument expects a Dimension or list of dimensions, "
"specified as tuples, strings, dictionaries or Dimension "
"instances, not a %s type. Ensure you passed the data as the "
"first argument." % (group, type(dims).__name__))
for dim in dims:
if not isinstance(dim, (tuple, basestring, Dimension, dict)):
raise ValueError('Dimensions must be defined as a tuple, '
'string, dictionary or Dimension instance, '
'found a %s type.' % type(dim).__name__)
dimensions[group] = [asdim(d) for d in dims]
return dimensions | 167,222 |
Clones the Dimension with new parameters
Derive a new Dimension that inherits existing parameters
except for the supplied, explicit overrides
Args:
spec (tuple, optional): Dimension tuple specification
**overrides: Dimension parameter overrides
Returns:
Cloned Dimension object | def clone(self, spec=None, **overrides):
settings = dict(self.get_param_values(), **overrides)
if spec is None:
spec = (self.name, overrides.get('label', self.label))
if 'label' in overrides and isinstance(spec, basestring) :
spec = (spec, overrides['label'])
elif 'label' in overrides and isinstance(spec, tuple) :
if overrides['label'] != spec[1]:
self.param.warning(
'Using label as supplied by keyword ({!r}), ignoring '
'tuple value {!r}'.format(overrides['label'], spec[1]))
spec = (spec[0], overrides['label'])
return self.__class__(spec, **{k:v for k,v in settings.items()
if k not in ['name', 'label']}) | 167,225 |
Applies the applicable formatter to the value.
Args:
value: Dimension value to format
Returns:
Formatted dimension value | def pprint_value(self, value):
own_type = type(value) if self.type is None else self.type
formatter = (self.value_format if self.value_format
else self.type_formatters.get(own_type))
if formatter:
if callable(formatter):
return formatter(value)
elif isinstance(formatter, basestring):
if isinstance(value, (dt.datetime, dt.date)):
return value.strftime(formatter)
elif isinstance(value, np.datetime64):
return util.dt64_to_dt(value).strftime(formatter)
elif re.findall(r"\{(\w+)\}", formatter):
return formatter.format(value)
else:
return formatter % value
return unicode(bytes_to_unicode(value)) | 167,231 |
Pretty print the dimension value and unit.
Args:
value: Dimension value to format
Returns:
Formatted dimension value string with unit | def pprint_value_string(self, value):
unit = '' if self.unit is None else ' ' + bytes_to_unicode(self.unit)
value = self.pprint_value(value)
return title_format.format(name=bytes_to_unicode(self.label), val=value, unit=unit) | 167,232 |
Whether the spec applies to this object.
Args:
spec: A function, spec or type to check for a match
* A 'type[[.group].label]' string which is compared
against the type, group and label of this object
* A function which is given the object and returns
a boolean.
* An object type matched using isinstance.
Returns:
bool: Whether the spec matched this object. | def matches(self, spec):
if callable(spec) and not isinstance(spec, type): return spec(self)
elif isinstance(spec, type): return isinstance(self, spec)
specification = (self.__class__.__name__, self.group, self.label)
split_spec = tuple(spec.split('.')) if not isinstance(spec, tuple) else spec
split_spec, nocompare = zip(*((None, True) if s == '*' or s is None else (s, False)
for s in split_spec))
if all(nocompare): return True
match_fn = itemgetter(*(idx for idx, nc in enumerate(nocompare) if not nc))
self_spec = match_fn(split_spec)
unescaped_match = match_fn(specification[:len(split_spec)]) == self_spec
if unescaped_match: return True
sanitizers = [util.sanitize_identifier, util.group_sanitizer, util.label_sanitizer]
identifier_specification = tuple(fn(ident, escape=False)
for ident, fn in zip(specification, sanitizers))
identifier_match = match_fn(identifier_specification[:len(split_spec)]) == self_spec
return identifier_match | 167,237 |
Get a Dimension object by name or index.
Args:
dimension: Dimension to look up by name or integer index
default (optional): Value returned if Dimension not found
strict (bool, optional): Raise a KeyError if not found
Returns:
Dimension object for the requested dimension or default | def get_dimension(self, dimension, default=None, strict=False):
if dimension is not None and not isinstance(dimension, (int, basestring, Dimension)):
raise TypeError('Dimension lookup supports int, string, '
'and Dimension instances, cannot lookup '
'Dimensions using %s type.' % type(dimension).__name__)
all_dims = self.dimensions()
if isinstance(dimension, int):
if 0 <= dimension < len(all_dims):
return all_dims[dimension]
elif strict:
raise KeyError("Dimension %r not found" % dimension)
else:
return default
dimension = dimension_name(dimension)
name_map = {dim.name: dim for dim in all_dims}
name_map.update({dim.label: dim for dim in all_dims})
name_map.update({util.dimension_sanitizer(dim.name): dim for dim in all_dims})
if strict and dimension not in name_map:
raise KeyError("Dimension %r not found." % dimension)
else:
return name_map.get(dimension, default) | 167,245 |
Get the index of the requested dimension.
Args:
dimension: Dimension to look up by name or by index
Returns:
Integer index of the requested dimension | def get_dimension_index(self, dimension):
if isinstance(dimension, int):
if (dimension < (self.ndims + len(self.vdims)) or
dimension < len(self.dimensions())):
return dimension
else:
return IndexError('Dimension index out of bounds')
dim = dimension_name(dimension)
try:
dimensions = self.kdims+self.vdims
return [i for i, d in enumerate(dimensions) if d == dim][0]
except IndexError:
raise Exception("Dimension %s not found in %s." %
(dim, self.__class__.__name__)) | 167,246 |
Get the type of the requested dimension.
Type is determined by Dimension.type attribute or common
type of the dimension values, otherwise None.
Args:
dimension: Dimension to look up by name or by index
Returns:
Declared type of values along the dimension | def get_dimension_type(self, dim):
dim_obj = self.get_dimension(dim)
if dim_obj and dim_obj.type is not None:
return dim_obj.type
dim_vals = [type(v) for v in self.dimension_values(dim)]
if len(set(dim_vals)) == 1:
return dim_vals[0]
else:
return None | 167,247 |
Return the lower and upper bounds of values along dimension.
Args:
dimension: The dimension to compute the range on.
data_range (bool): Compute range from data values
dimension_range (bool): Include Dimension ranges
Whether to include Dimension range and soft_range
in range calculation
Returns:
Tuple containing the lower and upper bound | def range(self, dimension, data_range=True, dimension_range=True):
dimension = self.get_dimension(dimension)
if dimension is None or (not data_range and not dimension_range):
return (None, None)
elif all(util.isfinite(v) for v in dimension.range) and dimension_range:
return dimension.range
elif data_range:
if dimension in self.kdims+self.vdims:
dim_vals = self.dimension_values(dimension.name)
lower, upper = util.find_range(dim_vals)
else:
dname = dimension.name
match_fn = lambda x: dname in x.kdims + x.vdims
range_fn = lambda x: x.range(dname)
ranges = self.traverse(range_fn, [match_fn])
lower, upper = util.max_range(ranges)
else:
lower, upper = (np.NaN, np.NaN)
if not dimension_range:
return lower, upper
return util.dimension_range(lower, upper, dimension.range, dimension.soft_range) | 167,250 |
Set default options for a session.
Set default options for a session. whether in a Python script or
a Jupyter notebook.
Args:
*options: Option objects used to specify the defaults.
backend: The plotting extension the options apply to | def defaults(cls, *options, **kwargs):
if kwargs and len(kwargs) != 1 and list(kwargs.keys())[0] != 'backend':
raise Exception('opts.defaults only accepts "backend" keyword argument')
cls._linemagic(cls._expand_options(merge_options_to_dict(options)), backend=kwargs.get('backend')) | 167,468 |
Unity-based normalization to scale data into 0-1 range.
(values - min) / (max - min)
Args:
values: Array of values to be normalized
min (float, optional): Lower bound of normalization range
max (float, optional): Upper bound of normalization range
Returns:
Array of normalized values | def norm(values, min=None, max=None):
min = np.min(values) if min is None else min
max = np.max(values) if max is None else max
return (values - min) / (max-min) | 167,493 |
Bins data into declared bins
Bins data into declared bins. By default each bin is labelled
with bin center values but an explicit list of bin labels may be
defined.
Args:
values: Array of values to be binned
bins: List or array containing the bin boundaries
labels: List of labels to assign to each bin
If the bins are length N the labels should be length N-1
Returns:
Array of binned values | def bin(values, bins, labels=None):
bins = np.asarray(bins)
if labels is None:
labels = (bins[:-1] + np.diff(bins)/2.)
else:
labels = np.asarray(labels)
dtype = 'float' if labels.dtype.kind == 'f' else 'O'
binned = np.full_like(values, (np.nan if dtype == 'f' else None), dtype=dtype)
for lower, upper, label in zip(bins[:-1], bins[1:], labels):
condition = (values > lower) & (values <= upper)
binned[np.where(condition)[0]] = label
return binned | 167,494 |
Maps discrete values to supplied categories.
Replaces discrete values in input array with a fixed set of
categories defined either as a list or dictionary.
Args:
values: Array of values to be categorized
categories: List or dict of categories to map inputs to
default: Default value to assign if value not in categories
Returns:
Array of categorized values | def categorize(values, categories, default=None):
uniq_cats = list(unique_iterator(values))
cats = []
for c in values:
if isinstance(categories, list):
cat_ind = uniq_cats.index(c)
if cat_ind < len(categories):
cat = categories[cat_ind]
else:
cat = default
else:
cat = categories.get(c, default)
cats.append(cat)
return np.asarray(cats) | 167,495 |
Bins continuous values.
Bins continuous using the provided bins and assigns labels
either computed from each bins center point or from the
supplied labels.
Args:
bins: List or array containing the bin boundaries
labels: List of labels to assign to each bin
If the bins are length N the labels should be length N-1 | def bin(self, bins, labels=None):
return dim(self, bin, bins, labels=labels) | 167,509 |
Replaces discrete values with supplied categories
Replaces discrete values in input array into a fixed set of
categories defined either as a list or dictionary.
Args:
categories: List or dict of categories to map inputs to
default: Default value to assign if value not in categories | def categorize(self, categories, default=None):
return dim(self, categorize, categories=categories, default=default) | 167,510 |
Unity-based normalization to scale data into 0-1 range.
(values - min) / (max - min)
Args:
limits: tuple of (min, max) defining the normalization range | def norm(self, limits=None):
kwargs = {}
if limits is not None:
kwargs = {'min': limits[0], 'max': limits[1]}
return dim(self, norm, **kwargs) | 167,511 |
Get a node of the AttrTree using its path string.
Args:
identifier: Path string of the node to return
default: Value to return if no node is found
Returns:
The indexed node of the AttrTree | def get(self, identifier, default=None):
split_label = (tuple(identifier.split('.'))
if isinstance(identifier, str) else tuple(identifier))
if len(split_label) == 1:
identifier = split_label[0]
return self.__dict__.get(identifier, default)
path_item = self
for identifier in split_label:
if path_item == default or path_item is None:
return default
path_item = path_item.get(identifier, default)
return path_item | 167,648 |
Pop a node of the AttrTree using its path string.
Args:
identifier: Path string of the node to return
default: Value to return if no node is found
Returns:
The node that was removed from the AttrTree | def pop(self, identifier, default=None):
if identifier in self.children:
item = self[identifier]
self.__delitem__(identifier)
return item
else:
return default | 167,649 |
Return the values along the requested dimension.
Args:
dimension: The dimension to return values for
expanded (bool, optional): Whether to expand values
flat (bool, optional): Whether to flatten array
Returns:
NumPy array of values along the requested dimension | def dimension_values(self, dimension, expanded=True, flat=True):
index = self.get_dimension_index(dimension)
if index == 0:
return np.array([self.data if np.isscalar(self.data) else self.data[index]])
elif index == 1:
return [] if np.isscalar(self.data) else np.array([self.data[1]])
else:
return super(Annotation, self).dimension_values(dimension) | 167,691 |
Clones the object, overriding data and parameters.
Args:
data: New data replacing the existing data
shared_data (bool, optional): Whether to use existing data
new_type (optional): Type to cast object to
*args: Additional arguments to pass to constructor
**overrides: New keyword arguments to pass to constructor
Returns:
Cloned Spline | def clone(self, data=None, shared_data=True, new_type=None, *args, **overrides):
return Element2D.clone(self, data, shared_data, new_type,
*args, **overrides) | 167,696 |
Return the values along the requested dimension.
Args:
dimension: The dimension to return values for
expanded (bool, optional): Whether to expand values
flat (bool, optional): Whether to flatten array
Returns:
NumPy array of values along the requested dimension | def dimension_values(self, dimension, expanded=True, flat=True):
index = self.get_dimension_index(dimension)
if index in [0, 1]:
return np.array([point[index] for point in self.data[0]])
else:
return super(Spline, self).dimension_values(dimension) | 167,697 |
Return the values along the requested dimension.
Args:
dimension: The dimension to return values for
expanded (bool, optional): Whether to expand values
flat (bool, optional): Whether to flatten array
Returns:
NumPy array of values along the requested dimension | def dimension_values(self, dimension, expanded=True, flat=True):
index = self.get_dimension_index(dimension)
if index == 0:
return np.array([self.x])
elif index == 1:
return np.array([self.y])
else:
return super(Arrow, self).dimension_values(dimension) | 167,700 |
Return the lower and upper bounds of values along dimension.
Args:
dimension: The dimension to compute the range on.
data_range (bool): Compute range from data values
dimension_range (bool): Include Dimension ranges
Whether to include Dimension range and soft_range
in range calculation
Returns:
Tuple containing the lower and upper bound | def range(self, dim, data_range=True, dimension_range=True):
iskdim = self.get_dimension(dim) not in self.vdims
return super(StatisticsElement, self).range(dim, iskdim, dimension_range) | 167,753 |
Get the type of the requested dimension.
Type is determined by Dimension.type attribute or common
type of the dimension values, otherwise None.
Args:
dimension: Dimension to look up by name or by index
Returns:
Declared type of values along the dimension | def get_dimension_type(self, dim):
dim = self.get_dimension(dim)
if dim is None:
return None
elif dim.type is not None:
return dim.type
elif dim in self.vdims:
return np.float64
return self.interface.dimension_type(self, dim) | 167,755 |
Convert dimension values to DataFrame.
Returns a pandas dataframe of columns along each dimension,
either completely flat or indexed by key dimensions.
Args:
dimensions: Dimensions to return as columns
multi_index: Convert key dimensions to (multi-)index
Returns:
DataFrame of columns corresponding to each dimension | def dframe(self, dimensions=None, multi_index=False):
if dimensions:
dimensions = [self.get_dimension(d, strict=True) for d in dimensions]
else:
dimensions = self.kdims
vdims = [d for d in dimensions if d in self.vdims]
if vdims:
raise ValueError('%s element does not hold data for value '
'dimensions. Could not return data for %s '
'dimension(s).' %
(type(self).__name__, ', '.join([d.name for d in vdims])))
return super(StatisticsElement, self).dframe(dimensions, False) | 167,756 |
Convert dimension values to a dictionary.
Returns a dictionary of column arrays along each dimension
of the element.
Args:
dimensions: Dimensions to return as columns
Returns:
Dictionary of arrays for each dimension | def columns(self, dimensions=None):
if dimensions is None:
dimensions = self.kdims
else:
dimensions = [self.get_dimension(d, strict=True) for d in dimensions]
vdims = [d for d in dimensions if d in self.vdims]
if vdims:
raise ValueError('%s element does not hold data for value '
'dimensions. Could not return data for %s '
'dimension(s).' %
(type(self).__name__, ', '.join([d.name for d in vdims])))
return OrderedDict([(d.name, self.dimension_values(d)) for d in dimensions]) | 167,757 |
Summary
Args:
weld_type (TYPE): Description
dim (TYPE): Description
Returns:
TYPE: Description | def to_weld_type(weld_type, dim):
for i in xrange(dim):
weld_type = WeldVec(weld_type)
return weld_type | 168,028 |
Summary
Args:
expr (TYPE): Description
weld_type (TYPE): Description
dim (TYPE): Description | def __init__(self, expr, weld_type, dim):
self.expr = expr
self.weld_type = weld_type
self.dim = dim | 168,029 |
Summary
Args:
verbose (bool, optional): Description
decode (bool, optional): Description
Returns:
TYPE: Description | def evaluate(self, verbose=True, decode=True, passes=None, num_threads=1,
apply_experimental_transforms=False):
if isinstance(self.expr, WeldObject):
return self.expr.evaluate(
to_weld_type(
self.weld_type,
self.dim),
verbose,
decode,
passes=passes,
num_threads=num_threads,
apply_experimental_transforms=apply_experimental_transforms)
return self.expr | 168,030 |
Summary
Args:
key (TYPE): Description
Returns:
TYPE: Description
Raises:
Exception: Description | def __getitem__(self, key):
if isinstance(key, str): # Single-key get
# First check if key corresponds to an un-materialized column
if key in self.unmaterialized_cols:
return self.unmaterialized_cols[key]
raw_column = self.df[key].values
dtype = str(raw_column.dtype)
# If column type is "object", then cast as "vec[char]" in Weld
if dtype == 'object':
raw_column = self.raw_columns[key]
weld_type = WeldVec(WeldChar())
else:
weld_type = grizzly_impl.numpy_to_weld_type_mapping[dtype]
if self.predicates is None:
return SeriesWeld(raw_column, weld_type, self, key)
return SeriesWeld(
grizzly_impl.filter(
raw_column,
self.predicates.expr,
weld_type
),
weld_type,
self,
key
)
elif isinstance(key, list):
# For multi-key get, return type is a dataframe
return DataFrameWeld(self.df[key], self.predicates)
elif isinstance(key, SeriesWeld):
# Can also apply predicate to a dataframe
if self.predicates is not None:
return DataFrameWeld(self.df, key.per_element_and(self.predicates))
return DataFrameWeld(self.df, key)
raise Exception("Invalid type in __getitem__") | 168,053 |
Summary
Args:
key (TYPE): Description
value (TYPE): Description
Returns:
TYPE: Description | def __setitem__(self, key, value):
if isinstance(value, np.ndarray):
dtype = str(value.dtype)
weld_type = grizzly_impl.numpy_to_weld_type_mapping[dtype]
self.unmaterialized_cols[key] = SeriesWeld(
value,
weld_type,
self,
key
)
elif isinstance(value, SeriesWeld):
self.unmaterialized_cols[key] = value
elif isinstance(value, LazyOpResult):
self.unmaterialized_cols[key] = SeriesWeld(
value.expr,
value.weld_type,
self,
key
) | 168,054 |
Summary
Args:
grouping_column_name (TYPE): Description
Returns:
TYPE: Description | def filter(self, predicates):
tys = []
for col_name, raw_column in self.raw_columns.items():
dtype = str(raw_column.dtype)
if dtype == 'object' or dtype == '|S64':
weld_type = WeldVec(WeldChar())
else:
weld_type = grizzly_impl.numpy_to_weld_type_mapping[dtype]
tys.append(weld_type)
if len(tys) == 1:
weld_type = tys[0]
else:
weld_type = WeldStruct(tys)
if isinstance(predicates, SeriesWeld):
predicates = predicates.expr
return DataFrameWeldExpr(
grizzly_impl.filter(
grizzly_impl.zip_columns(
self.raw_columns.values(),
),
predicates
),
self.raw_columns.keys(),
weld_type
) | 168,057 |
Summary
TODO: Implement an actual Index Object like how Pandas does
Args:
expr (TYPE): Description
weld_type (TYPE): Description
df (None, optional): Description
column_name (None, optional): Description | def __init__(self, expr, weld_type, df=None, column_name=None, index_type=None, index_name=None):
self.expr = expr
self.weld_type = weld_type
self.dim = 1
self.df = df
self.column_name = column_name
self.index_type = index_type
self.index_name = index_name | 168,069 |
Summary
Args:
predicates (TYPE): Description
new_value (TYPE): Description
Returns:
TYPE: Description | def __getitem__(self, key):
if isinstance(key, slice):
start = key.start
# TODO : We currently do nothing with step
step = key.step
stop = key.stop
if self.index_type is not None:
index_expr = grizzly_impl.get_field(self.expr, 0)
column_expr = grizzly_impl.get_field(self.expr, 1)
zip_expr = grizzly_impl.zip_columns([index_expr, column_expr])
sliced_expr = grizzly_impl.slice_vec(zip_expr, start, stop)
unzip_expr = grizzly_impl.unzip_columns(
sliced_expr,
[self.index_type, self.weld_type]
)
return SeriesWeld(
unzip_expr,
self.weld_type,
self.df,
self.column_name,
self.index_type,
self.index_name
)
else:
return SeriesWeld(
grizzly_impl.slice_vec(
self.expr,
start,
stop
)
)
else:
# By default we return as if the key were predicates to filter by
return self.filter(key) | 168,070 |
Summary
Args:
predicates (TYPE): Description
new_value (TYPE): Description
Returns:
TYPE: Description | def __setitem__(self, predicates, new_value):
if self.df is not None and self.column_name is not None:
self.df[self.column_name] = self.mask(predicates, new_value) | 168,071 |
Summary
Args:
key (TYPE): Description
Returns:
TYPE: Description
Raises:
Exception: Description | def __getattr__(self, key):
if key == 'str' and self.weld_type == WeldVec(WeldChar()):
return StringSeriesWeld(
self.expr,
self.weld_type,
self.df,
self.column_name
)
raise AttributeError("Attr %s does not exist" % key) | 168,072 |
Summary
Args:
predicates (TYPE): Description
new_value (TYPE): Description
Returns:
TYPE: Description | def mask(self, predicates, new_value):
if isinstance(predicates, SeriesWeld):
predicates = predicates.expr
return SeriesWeld(
grizzly_impl.mask(
self.expr,
predicates,
new_value,
self.weld_type
),
self.weld_type,
self.df,
self.column_name
) | 168,083 |
Summary
Args:
other (TYPE): Description
Returns:
TYPE: Description | def add(self, other):
if isinstance(other, SeriesWeld):
other = other.expr
return SeriesWeld(
grizzly_impl.element_wise_op(
self.expr,
other,
"+",
self.weld_type
),
self.weld_type,
self.df,
self.column_name
) | 168,085 |
Summary
Args:
other (TYPE): Description
Returns:
TYPE: Description | def __eq__(self, other):
return SeriesWeld(
grizzly_impl.compare(
self.expr,
other,
"==",
self.weld_type
),
WeldBit(),
self.df,
self.column_name
) | 168,087 |
Summary
Args:
other (TYPE): Description
Returns:
TYPE: Description | def __ge__(self, other):
if self.index_type is not None:
expr = grizzly_impl.get_field(self.expr, 1)
else:
expr = self.expr
return SeriesWeld(
grizzly_impl.compare(
expr,
other,
">=",
self.weld_type
),
WeldBit(),
self.df,
self.column_name
) | 168,088 |
Summary
Args:
expr (TYPE): Description
weld_type (TYPE): Description
df (None, optional): Description
column_name (None, optional): Description | def __init__(self, expr, weld_type, df=None, column_name=None):
self.expr = expr
self.weld_type = weld_type
self.dim = 1
self.df = df
self.column_name = column_name | 168,089 |
Summary
Args:
start (TYPE): Description
size (TYPE): Description
Returns:
TYPE: Description | def slice(self, start, size):
return SeriesWeld(
grizzly_impl.slice(
self.expr,
start,
size,
self.weld_type
),
self.weld_type,
self.df,
self.column_name
) | 168,090 |
Summary
Args:
df (TYPE): Description
grouping_column_name (TYPE): Description | def __init__(self, df, grouping_column_names):
self.df = df
self.grouping_columns = []
self.grouping_column_types = []
if isinstance(grouping_column_names, str):
grouping_column_names = [grouping_column_names]
for column_name in grouping_column_names:
column = df[column_name]
if isinstance(column, LazyOpResult):
self.grouping_column_types.append(column.weld_type)
self.grouping_columns.append(column.expr)
elif isinstance(column, np.ndarray):
column_type = numpyImpl.numpy_to_weld_type_mapping[
str(column.dtype)]
self.grouping_column_types.append(column_type)
self.grouping_columns.append(column)
self.grouping_column_names = grouping_column_names
self.column_names = []
for x in df._get_column_names():
if x not in self.grouping_column_names:
self.column_names.append(x)
self.columns = []
self.column_types = []
for column_name in self.column_names:
column = df[column_name]
column_type = None
if isinstance(column, LazyOpResult):
column_type = column.weld_type
column = column.expr
elif isinstance(column, np.ndarray):
column_type = numpyImpl.numpy_to_weld_type_mapping[
str(column.dtype)]
self.columns.append(column)
self.column_types.append(column_type) | 168,097 |
Summary
Args:
expr (TYPE): Description
grouping_column_name (TYPE): Description
column_names (TYPE): Description
grouping_column_type (TYPE): Description
column_types (TYPE): Description | def __init__(
self,
expr,
grouping_column_names,
column_names,
grouping_column_types,
column_types):
self.expr = expr
self.grouping_column_name = grouping_column_names
self.column_names = column_names
self.grouping_column_types = grouping_column_types
self.column_types = column_types
if isinstance(self.column_types, list):
if len(self.column_types) == 1:
column_types = self.column_types[0]
else:
column_types = WeldStruct(self.column_types)
if len(self.grouping_column_types) == 1:
grouping_column_types = self.grouping_column_types[0]
else:
grouping_column_types = WeldStruct(self.grouping_column_types)
self.weld_type = WeldStruct([grouping_column_types, column_types]) | 168,102 |
Summary
Args:
column_name (TYPE): Description
column_type (TYPE): Description
index (TYPE): Description
Returns:
TYPE: Description | def get_column(self, column_name, column_type, index, verbose=True):
return LazyOpResult(
grizzly_impl.get_column(
self.expr,
self.weld_type,
index
),
column_type,
1
) | 168,104 |
Computes the aggregate of elements in the array.
Args:
array (WeldObject / Numpy.ndarray): Input array to aggregate
op (str): Op string used to aggregate the array (+ / *)
initial_value (int): Initial value for aggregation
ty (WeldType): Type of each element in the input array
Returns:
A WeldObject representing this computation | def aggr(array, op, initial_value, ty):
weld_obj = WeldObject(encoder_, decoder_)
array_var = weld_obj.update(array)
if isinstance(array, WeldObject):
array_var = array.obj_id
weld_obj.dependencies[array_var] = array
weld_template =
weld_obj.weld_code = weld_template % {
"array": array_var, "ty": ty, "op": op}
return weld_obj | 168,123 |
Computes the dot product between a matrix and a vector.
Args:
matrix (WeldObject / Numpy.ndarray): 2-d input matrix
vector (WeldObject / Numpy.ndarray): 1-d input vector
ty (WeldType): Type of each element in the input matrix and vector
Returns:
A WeldObject representing this computation | def dot(matrix, vector, matrix_ty, vector_ty):
weld_obj = WeldObject(encoder_, decoder_)
matrix_var = weld_obj.update(matrix)
if isinstance(matrix, WeldObject):
matrix_var = matrix.obj_id
weld_obj.dependencies[matrix_var] = matrix
vector_var = weld_obj.update(vector)
loopsize_annotation = ""
if isinstance(vector, WeldObject):
vector_var = vector.obj_id
weld_obj.dependencies[vector_var] = vector
if isinstance(vector, np.ndarray):
loopsize_annotation = "@(loopsize: %dL)" % len(vector)
weld_template =
weld_obj.weld_code = weld_template % {"matrix": matrix_var,
"vector": vector_var,
"matrix_ty": matrix_ty,
"vector_ty": vector_ty,
"loopsize_annotation": loopsize_annotation}
return weld_obj | 168,124 |
Computes the per-element exponenet of the passed-in array.
Args:
array (WeldObject / Numpy.ndarray): Input array
ty (WeldType): Type of each element in the input array
Returns:
A WeldObject representing this computation | def exp(array, ty):
weld_obj = WeldObject(encoder_, decoder_)
array_var = weld_obj.update(array)
if isinstance(array, WeldObject):
array_var = array.obj_id
weld_obj.dependencies[array_var] = array
weld_template =
weld_obj.weld_code = weld_template % {"array": array_var, "ty": ty}
return weld_obj | 168,125 |
Summary
Args:
field_types (TYPE): Description | def __init__(self, field_types):
assert False not in [isinstance(e, WeldType) for e in field_types]
self.field_types = field_types | 168,138 |
Returns a new array, with each element in the original array satisfying the
passed-in predicate set to `new_value`
Args:
array (WeldObject / Numpy.ndarray): Input array
predicates (WeldObject / Numpy.ndarray<bool>): Predicate set
new_value (WeldObject / Numpy.ndarray / str): mask value
ty (WeldType): Type of each element in the input array
Returns:
A WeldObject representing this computation | def mask(array, predicates, new_value, ty):
weld_obj = WeldObject(encoder_, decoder_)
array_var = weld_obj.update(array)
if isinstance(array, WeldObject):
array_var = array.obj_id
weld_obj.dependencies[array_var] = array
predicates_var = weld_obj.update(predicates)
if isinstance(predicates, WeldObject):
predicates_var = predicates.obj_id
weld_obj.dependencies[predicates_var] = predicates
if str(ty).startswith("vec"):
new_value_var = weld_obj.update(new_value)
if isinstance(new_value, WeldObject):
new_value_var = new_value.obj_id
weld_obj.dependencies[new_value_var] = new_value
else:
new_value_var = "%s(%s)" % (ty, str(new_value))
weld_template =
weld_obj.weld_code = weld_template % {
"array": array_var,
"predicates": predicates_var,
"new_value": new_value_var,
"ty": ty}
return weld_obj | 168,143 |
Returns a new array, with each element in the original array satisfying the
passed-in predicate set to `new_value`
Args:
array (WeldObject / Numpy.ndarray): Input array
predicates (WeldObject / Numpy.ndarray<bool>): Predicate set
ty (WeldType): Type of each element in the input array
Returns:
A WeldObject representing this computation | def filter(array, predicates, ty=None):
weld_obj = WeldObject(encoder_, decoder_)
array_var = weld_obj.update(array)
if isinstance(array, WeldObject):
array_var = array.obj_id
weld_obj.dependencies[array_var] = array
predicates_var = weld_obj.update(predicates)
if isinstance(predicates, WeldObject):
predicates_var = predicates.obj_id
weld_obj.dependencies[predicates_var] = predicates
weld_template =
weld_obj.weld_code = weld_template % {
"array": array_var,
"predicates": predicates_var}
return weld_obj | 168,144 |
Returns a new array, with each element in the original array satisfying the
passed-in predicate set to `new_value`
Args:
array (WeldObject / Numpy.ndarray): Input array
predicates (WeldObject / Numpy.ndarray<bool>): Predicate set
ty (WeldType): Type of each element in the input array
Returns:
A WeldObject representing this computation | def pivot_filter(pivot_array, predicates, ty=None):
weld_obj = WeldObject(encoder_, decoder_)
pivot_array_var = weld_obj.update(pivot_array)
if isinstance(pivot_array, WeldObject):
pivot_array_var = pivot_array.obj_id
weld_obj.dependencies[pivot_array_var] = pivot_array
predicates_var = weld_obj.update(predicates)
if isinstance(predicates, WeldObject):
predicates_var = predicates.obj_id
weld_obj.dependencies[predicates_var] = predicates
weld_template =
weld_obj.weld_code = weld_template % {
"array": pivot_array_var,
"predicates": predicates_var}
return weld_obj | 168,145 |
Operation of series and other, element-wise (binary operator add)
Args:
array (WeldObject / Numpy.ndarray): Input array
other (WeldObject / Numpy.ndarray): Second Input array
op (str): Op string used to compute element-wise operation (+ / *)
ty (WeldType): Type of each element in the input array
Returns:
A WeldObject representing this computation | def element_wise_op(array, other, op, ty):
weld_obj = WeldObject(encoder_, decoder_)
array_var = weld_obj.update(array)
if isinstance(array, WeldObject):
array_var = array.obj_id
weld_obj.dependencies[array_var] = array
other_var = weld_obj.update(other)
if isinstance(other, WeldObject):
other_var = other.obj_id
weld_obj.dependencies[other_var] = other
weld_template =
weld_obj.weld_code = weld_template % {"array": array_var,
"other": other_var,
"ty": ty, "op": op}
return weld_obj | 168,146 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.