File size: 5,064 Bytes
9eeef69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9ed0a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
dataset_info:
  features:
  - name: image_id
    dtype: int64
  - name: image
    dtype: image
  - name: width
    dtype: int32
  - name: height
    dtype: int32
  - name: objects
    struct:
    - name: bbox
      sequence:
        sequence: float32
        length: 4
    - name: category_id
      sequence: int64
    - name: category
      sequence: string
    - name: area
      sequence: float32
    - name: iscrowd
      sequence: int64
  splits:
  - name: train
    num_bytes: 97076536.768
    num_examples: 3456
  - name: valid
    num_bytes: 14929397.0
    num_examples: 470
  - name: test
    num_bytes: 9853454.0
    num_examples: 311
  download_size: 121355015
  dataset_size: 121859387.768
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: valid
    path: data/valid-*
  - split: test
    path: data/test-*
---
# Experimento-3 - Industrial Machinery Text Detection Dataset

## Dataset Description

This dataset contains **4,237 images** of industrial machinery nameplates with detailed text field annotations for OCR and information extraction tasks. The dataset focuses on extracting key information from equipment nameplates including manufacturer, model, serial numbers, and dates.

## Dataset Summary

- **Task**: Industrial text detection and OCR
- **Domain**: Industrial machinery and equipment
- **Images**: 4,237 total images
- **Annotations**: Bounding boxes for text fields with 8 categories
- **Source**: [Roboflow Universe - Experimento-3](https://universe.roboflow.com/marcos-feria/experimento-3)

## Dataset Structure

### Splits

| Split | Images |
|-------|--------|
| Train | 3,456 |
| Valid | 470 |
| Test | 311 |

### Categories

The dataset includes 8 text field categories commonly found on industrial equipment nameplates:

| ID | Category | Description |
|----|----------|-------------|
| 0 | tipos-pl | Equipment type (unused in annotations) |
| 1 | FABRICANTE | Manufacturer name |
| 2 | FECHA | Date information |
| 3 | MODEL | Model designation |
| 4 | MODELO | Model designation (Spanish) |
| 5 | NUMERO DE SERIE | Serial number (full text) |
| 6 | SN | Serial number (abbreviated) |
| 7 | YEAR | Year information |

## Data Fields

Each example contains:

- `image_id`: Unique image identifier
- `image`: PIL Image of the machinery nameplate
- `width`: Image width in pixels
- `height`: Image height in pixels
- `objects`: Dictionary containing:
  - `bbox`: List of bounding boxes in [x, y, width, height] format (COCO format)
  - `category_id`: List of category IDs (0-7)
  - `category`: List of category names
  - `area`: List of bounding box areas
  - `iscrowd`: List of crowd flags (typically 0)

## Use Cases

This dataset is ideal for:

1. **Industrial OCR Systems**: Extracting text from machinery nameplates
2. **Equipment Inventory Management**: Automated data collection from equipment
3. **Maintenance Planning**: Identifying equipment details for service schedules
4. **Asset Tracking**: Digital cataloging of industrial equipment
5. **Computer Vision Research**: Multi-language text detection in industrial settings

## Data Collection

The images were collected from various industrial machinery and equipment, focusing on nameplates and identification tags. The dataset includes equipment from multiple manufacturers and spans different time periods, providing diverse examples for robust model training.

## Licensing & Attribution

Please refer to the original Roboflow dataset for licensing information. When using this dataset, please cite:

```bibtex
@misc{
    experimento-3_dataset,
    title = { Experimento-3 Dataset },
    type = { Open Source Dataset },
    author = { Marcos Feria },
    howpublished = { \url{ https://universe.roboflow.com/marcos-feria/experimento-3 } },
    url = { https://universe.roboflow.com/marcos-feria/experimento-3 },
    journal = { Roboflow Universe },
    publisher = { Roboflow },
    year = { 2023 },
    note = { visited on 2025-01-25 },
}
```

## Loading the Dataset

```python
from datasets import load_dataset

# Load the full dataset
dataset = load_dataset("kahua-ml/experimento3-industrial-text-detection")

# Load specific split
train_dataset = load_dataset("kahua-ml/experimento3-industrial-text-detection", split="train")

# Example usage
example = dataset["train"][0]
image = example["image"]
bboxes = example["objects"]["bbox"]
categories = example["objects"]["category"]
```

## Dataset Statistics

- **Average annotations per image**: ~6.2 text fields
- **Most common categories**: FABRICANTE, SN, NUMERO DE SERIE
- **Image resolution**: Primarily 544x416 pixels
- **Languages**: Mixed Spanish/English text fields

## Applications

This dataset has been successfully used for:
- Training YOLO models for industrial text detection
- Fine-tuning vision transformers for equipment OCR
- Developing maintenance automation systems
- Creating inventory management solutions

## Contact

For questions about this dataset, please refer to the original Roboflow project or create an issue in this repository.