topic
stringlengths
3
96
wiki
stringlengths
33
127
url
stringlengths
101
106
action
stringclasses
7 values
sent
stringlengths
34
223
annotation
stringlengths
74
227
logic
stringlengths
207
5.45k
logic_str
stringlengths
37
493
interpret
stringlengths
43
471
num_func
stringclasses
15 values
nid
stringclasses
13 values
g_ids
stringlengths
70
455
g_ids_features
stringlengths
98
670
g_adj
stringlengths
79
515
table_header
stringlengths
40
458
table_cont
large_stringlengths
135
4.41k
1972 u.s. open ( golf )
https://en.wikipedia.org/wiki/1972_U.S._Open_%28golf%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17245554-3.html.csv
comparative
arnold palmer had a higher score than kermit zarley in the 1972 u.s. open .
{'row_1': '7', 'row_2': '3', 'col': '4', 'col_other': '2', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'player', 'arnold palmer'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose player record fuzzily matches to arnold palmer .', 'tostr': 'filter_eq { all_rows ; player ; arnold palmer }'}, 'score'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; player ; arnold palmer } ; score }', 'tointer': 'select the rows whose player record fuzzily matches to arnold palmer . take the score record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'player', 'kermit zarley'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose player record fuzzily matches to kermit zarley .', 'tostr': 'filter_eq { all_rows ; player ; kermit zarley }'}, 'score'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; player ; kermit zarley } ; score }', 'tointer': 'select the rows whose player record fuzzily matches to kermit zarley . take the score record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; player ; arnold palmer } ; score } ; hop { filter_eq { all_rows ; player ; kermit zarley } ; score } } = true', 'tointer': 'select the rows whose player record fuzzily matches to arnold palmer . take the score record of this row . select the rows whose player record fuzzily matches to kermit zarley . take the score record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; player ; arnold palmer } ; score } ; hop { filter_eq { all_rows ; player ; kermit zarley } ; score } } = true
select the rows whose player record fuzzily matches to arnold palmer . take the score record of this row . select the rows whose player record fuzzily matches to kermit zarley . take the score record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'player_7': 7, 'arnold palmer_8': 8, 'score_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'player_11': 11, 'kermit zarley_12': 12, 'score_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'player_7': 'player', 'arnold palmer_8': 'arnold palmer', 'score_9': 'score', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'player_11': 'player', 'kermit zarley_12': 'kermit zarley', 'score_13': 'score'}
{'greater_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'player_7': [0], 'arnold palmer_8': [0], 'score_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'player_11': [1], 'kermit zarley_12': [1], 'score_13': [3]}
['place', 'player', 'country', 'score', 'to par']
[['t1', 'jack nicklaus', 'united states', '71 + 73 = 144', 'e'], ['t1', 'bruce crampton', 'australia', '74 + 70 = 144', 'e'], ['t1', 'kermit zarley', 'united states', '71 + 73 = 144', 'e'], ['t1', 'lanny wadkins', 'united states', '76 + 68 = 144', 'e'], ['t1', 'homero blancas', 'united states', '74 + 70 = 144', 'e'], ['t1', 'cesar sanudo', 'united states', '72 + 72 = 144', 'e'], ['7', 'arnold palmer', 'united states', '77 + 68 = 145', '+ 1'], ['t8', 'lee trevino', 'united states', '74 + 72 = 146', '+ 2'], ['t8', 'lee elder', 'united states', '75 + 71 = 146', '+ 2'], ['t8', 'ralph johnston', 'united states', '74 + 72 = 146', '+ 2'], ['t8', 'rod funseth', 'united states', '73 + 73 = 146', '+ 2'], ['t8', 'gary player', 'south africa', '72 + 74 = 146', '+ 2'], ['t8', 'chi - chi rodrã\xadguez', 'united states', '71 + 75 = 146', '+ 2']]
1996 jacksonville jaguars season
https://en.wikipedia.org/wiki/1996_Jacksonville_Jaguars_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16779982-1.html.csv
count
in the 1996 jacksonville jaguars season , among the games that attracted more than 70,000 people , two of them were shown on fox .
{'scope': 'subset', 'criterion': 'fuzzily_match', 'value': 'fox', 'result': '2', 'col': '5', 'subset': {'col': '6', 'criterion': 'greater_than', 'value': '70000'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'attendance', '70000'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; attendance ; 70000 }', 'tointer': 'select the rows whose attendance record is greater than 70000 .'}, 'tv time', 'fox'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose attendance record is greater than 70000 . among these rows , select the rows whose tv time record fuzzily matches to fox .', 'tostr': 'filter_eq { filter_greater { all_rows ; attendance ; 70000 } ; tv time ; fox }'}], 'result': '2', 'ind': 2, 'tostr': 'count { filter_eq { filter_greater { all_rows ; attendance ; 70000 } ; tv time ; fox } }', 'tointer': 'select the rows whose attendance record is greater than 70000 . among these rows , select the rows whose tv time record fuzzily matches to fox . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_eq { filter_greater { all_rows ; attendance ; 70000 } ; tv time ; fox } } ; 2 } = true', 'tointer': 'select the rows whose attendance record is greater than 70000 . among these rows , select the rows whose tv time record fuzzily matches to fox . the number of such rows is 2 .'}
eq { count { filter_eq { filter_greater { all_rows ; attendance ; 70000 } ; tv time ; fox } } ; 2 } = true
select the rows whose attendance record is greater than 70000 . among these rows , select the rows whose tv time record fuzzily matches to fox . the number of such rows is 2 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_str_eq_1': 1, 'filter_greater_0': 0, 'all_rows_5': 5, 'attendance_6': 6, '70000_7': 7, 'tv time_8': 8, 'fox_9': 9, '2_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_str_eq_1': 'filter_str_eq', 'filter_greater_0': 'filter_greater', 'all_rows_5': 'all_rows', 'attendance_6': 'attendance', '70000_7': '70000', 'tv time_8': 'tv time', 'fox_9': 'fox', '2_10': '2'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_str_eq_1': [2], 'filter_greater_0': [1], 'all_rows_5': [0], 'attendance_6': [0], '70000_7': [0], 'tv time_8': [1], 'fox_9': [1], '2_10': [3]}
['week', 'date', 'opponent', 'result', 'tv time', 'attendance']
[['1', 'september 1 , 1996', 'pittsburgh steelers', 'w 24 - 9', 'nbc 1:00 pm', '70210'], ['2', 'september 8 , 1996', 'houston oilers', 'l 34 - 27', 'nbc 1:00 pm', '66468'], ['3', 'september 15 , 1996', 'oakland raiders', 'l 17 - 3', 'nbc 4:00 pm', '46291'], ['4', 'september 22 , 1996', 'new england patriots', 'l 28 - 25 ( ot )', 'nbc 4:00 pm', '59446'], ['5', 'september 29 , 1996', 'carolina panthers', 'w 24 - 14', 'fox 1:00 pm', '71537'], ['6', 'october 6 , 1996', 'new orleans saints', 'l 17 - 13', 'nbc 1:00 pm', '34231'], ['7', 'october 13 , 1996', 'new york jets', 'w 21 - 17', 'nbc 1:00 pm', '65699'], ['8', 'october 20 , 1996', 'st louis rams', 'l 17 - 14', 'nbc 1:00 pm', '60066'], ['9', 'october 27 , 1996', 'cincinnati bengals', 'l 28 - 21', 'nbc 1:00 pm', '45890'], ['10', '-', '-', '-', '-', ''], ['11', 'november 10 , 1996', 'baltimore ravens', 'w 30 - 27', 'nbc 4:00 pm', '64628'], ['12', 'november 17 , 1996', 'pittsburgh steelers', 'l 28 - 3', 'nbc 1:00 pm', '57879'], ['13', 'november 24 , 1996', 'baltimore ravens', 'w 28 - 25 ( ot )', 'nbc 4:00 pm', '57384'], ['14', 'december 1 , 1996', 'cincinnati bengals', 'w 30 - 27', 'nbc 1:00 pm', '57408'], ['15', 'december 8 , 1996', 'houston oilers', 'w 23 - 17', 'nbc 1:00 pm', '20196'], ['16', 'december 15 , 1996', 'seattle seahawks', 'w 20 - 13', 'espn 8:00 pm', '66134'], ['17', 'december 22 , 1996', 'atlanta falcons', 'w 19 - 17', 'fox 1:00 pm', '71449']]
1964 world series
https://en.wikipedia.org/wiki/1964_World_Series
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1100124-1.html.csv
comparative
the attendance rate of the 1964 world series was the same on october 14th and october 8th .
{'row_1': '6', 'row_2': '2', 'col': '5', 'col_other': '2', 'relation': 'equal', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'date', 'october 14'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose date record fuzzily matches to october 14 .', 'tostr': 'filter_eq { all_rows ; date ; october 14 }'}, 'attendance'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; date ; october 14 } ; attendance }', 'tointer': 'select the rows whose date record fuzzily matches to october 14 . take the attendance record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'date', 'october 8'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose date record fuzzily matches to october 8 .', 'tostr': 'filter_eq { all_rows ; date ; october 8 }'}, 'attendance'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; date ; october 8 } ; attendance }', 'tointer': 'select the rows whose date record fuzzily matches to october 8 . take the attendance record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_eq { all_rows ; date ; october 14 } ; attendance } ; hop { filter_eq { all_rows ; date ; october 8 } ; attendance } } = true', 'tointer': 'select the rows whose date record fuzzily matches to october 14 . take the attendance record of this row . select the rows whose date record fuzzily matches to october 8 . take the attendance record of this row . the first record is equal to the second record .'}
eq { hop { filter_eq { all_rows ; date ; october 14 } ; attendance } ; hop { filter_eq { all_rows ; date ; october 8 } ; attendance } } = true
select the rows whose date record fuzzily matches to october 14 . take the attendance record of this row . select the rows whose date record fuzzily matches to october 8 . take the attendance record of this row . the first record is equal to the second record .
5
5
{'eq_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'date_7': 7, 'october 14_8': 8, 'attendance_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'date_11': 11, 'october 8_12': 12, 'attendance_13': 13}
{'eq_4': 'eq', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'date_7': 'date', 'october 14_8': 'october 14', 'attendance_9': 'attendance', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'date_11': 'date', 'october 8_12': 'october 8', 'attendance_13': 'attendance'}
{'eq_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'date_7': [0], 'october 14_8': [0], 'attendance_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'date_11': [1], 'october 8_12': [1], 'attendance_13': [3]}
['game', 'date', 'location', 'time', 'attendance']
[['1', 'october 7', 'busch stadium ( i )', '2:42', '30805'], ['2', 'october 8', 'busch stadium ( i )', '2:29', '30805'], ['3', 'october 10', 'yankee stadium ( i )', '2:16', '67101'], ['4', 'october 11', 'yankee stadium ( i )', '2:18', '66312'], ['5', 'october 12', 'yankee stadium ( i )', '2:37', '65633'], ['6', 'october 14', 'busch stadium ( i )', '2:37', '30805'], ['7', 'october 15', 'busch stadium ( i )', '2:40', '30346']]
meistriliiga
https://en.wikipedia.org/wiki/Meistriliiga
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1558755-1.html.csv
unique
of the clubs in meistriliiga whose first season in the top division was in 1992 , the only one that has had 9 seasons there was in 5th position in 2012 .
{'scope': 'subset', 'row': '7', 'col': '4', 'col_other': '2', 'criterion': 'equal', 'value': '9', 'subset': {'col': '3', 'criterion': 'equal', 'value': '1992'}}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'first season in top division', '1992'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; first season in top division ; 1992 }', 'tointer': 'select the rows whose first season in top division record is equal to 1992 .'}, 'number of seasons in meistriliiga', '9'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose first season in top division record is equal to 1992 . among these rows , select the rows whose number of seasons in meistriliiga record is equal to 9 .', 'tostr': 'filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 }'}], 'result': True, 'ind': 2, 'tostr': 'only { filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 } }', 'tointer': 'select the rows whose first season in top division record is equal to 1992 . among these rows , select the rows whose number of seasons in meistriliiga record is equal to 9 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'first season in top division', '1992'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; first season in top division ; 1992 }', 'tointer': 'select the rows whose first season in top division record is equal to 1992 .'}, 'number of seasons in meistriliiga', '9'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose first season in top division record is equal to 1992 . among these rows , select the rows whose number of seasons in meistriliiga record is equal to 9 .', 'tostr': 'filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 }'}, 'position in 2012'], 'result': '5th', 'ind': 3, 'tostr': 'hop { filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 } ; position in 2012 }'}, '5th'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 } ; position in 2012 } ; 5th }', 'tointer': 'the position in 2012 record of this unqiue row is 5th .'}], 'result': True, 'ind': 5, 'tostr': 'and { only { filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 } } ; eq { hop { filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 } ; position in 2012 } ; 5th } } = true', 'tointer': 'select the rows whose first season in top division record is equal to 1992 . among these rows , select the rows whose number of seasons in meistriliiga record is equal to 9 . there is only one such row in the table . the position in 2012 record of this unqiue row is 5th .'}
and { only { filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 } } ; eq { hop { filter_eq { filter_eq { all_rows ; first season in top division ; 1992 } ; number of seasons in meistriliiga ; 9 } ; position in 2012 } ; 5th } } = true
select the rows whose first season in top division record is equal to 1992 . among these rows , select the rows whose number of seasons in meistriliiga record is equal to 9 . there is only one such row in the table . the position in 2012 record of this unqiue row is 5th .
8
6
{'and_5': 5, 'result_6': 6, 'only_2': 2, 'filter_eq_1': 1, 'filter_eq_0': 0, 'all_rows_7': 7, 'first season in top division_8': 8, '1992_9': 9, 'number of seasons in meistriliiga_10': 10, '9_11': 11, 'str_eq_4': 4, 'str_hop_3': 3, 'position in 2012_12': 12, '5th_13': 13}
{'and_5': 'and', 'result_6': 'true', 'only_2': 'only', 'filter_eq_1': 'filter_eq', 'filter_eq_0': 'filter_eq', 'all_rows_7': 'all_rows', 'first season in top division_8': 'first season in top division', '1992_9': '1992', 'number of seasons in meistriliiga_10': 'number of seasons in meistriliiga', '9_11': '9', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'position in 2012_12': 'position in 2012', '5th_13': '5th'}
{'and_5': [6], 'result_6': [], 'only_2': [5], 'filter_eq_1': [2, 3], 'filter_eq_0': [1], 'all_rows_7': [0], 'first season in top division_8': [0], '1992_9': [0], 'number of seasons in meistriliiga_10': [1], '9_11': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'position in 2012_12': [3], '5th_13': [4]}
['club', 'position in 2012', 'first season in top division', 'number of seasons in meistriliiga', 'first season of current spell in top division', 'top division titles']
[['flora a , b , c', '3rd', '1992', '23', '1992', '9'], ['infonet c', '1st , ( esiliiga )', '2013', '1', '2013', '0'], ['nõmme kalju c', '1st', '2008', '6', '2008', '1'], ['kuressaare', '8th', '2000', '10', '2009', '0'], ['levadia c', '2nd', '1999', '15', '1999', '7'], ['paide linnameeskond c', '6th', '2009', '5', '2009', '0'], ['sillamäe kalev a', '5th', '1992', '9', '2008', '0'], ['tallinna kalev', '9th', '2007', '5', '2012', '0'], ['tammeka', '10th', '2005', '9', '2005', '0'], ['narva trans a , b , c', '4th', '1992', '23', '1992', '0']]
flin flon bombers
https://en.wikipedia.org/wiki/Flin_Flon_Bombers
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1216375-2.html.csv
count
bobby clarke scored 51 goals on two separate occasions when playing for the bombers .
{'scope': 'subset', 'criterion': 'equal', 'value': '51', 'result': '2', 'col': '4', 'subset': {'col': '3', 'criterion': 'equal', 'value': 'bobby clarke'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'bobby clarke'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; winner ; bobby clarke }', 'tointer': 'select the rows whose winner record fuzzily matches to bobby clarke .'}, 'goals', '51'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose winner record fuzzily matches to bobby clarke . among these rows , select the rows whose goals record is equal to 51 .', 'tostr': 'filter_eq { filter_eq { all_rows ; winner ; bobby clarke } ; goals ; 51 }'}], 'result': '2', 'ind': 2, 'tostr': 'count { filter_eq { filter_eq { all_rows ; winner ; bobby clarke } ; goals ; 51 } }', 'tointer': 'select the rows whose winner record fuzzily matches to bobby clarke . among these rows , select the rows whose goals record is equal to 51 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_eq { filter_eq { all_rows ; winner ; bobby clarke } ; goals ; 51 } } ; 2 } = true', 'tointer': 'select the rows whose winner record fuzzily matches to bobby clarke . among these rows , select the rows whose goals record is equal to 51 . the number of such rows is 2 .'}
eq { count { filter_eq { filter_eq { all_rows ; winner ; bobby clarke } ; goals ; 51 } } ; 2 } = true
select the rows whose winner record fuzzily matches to bobby clarke . among these rows , select the rows whose goals record is equal to 51 . the number of such rows is 2 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_eq_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'winner_6': 6, 'bobby clarke_7': 7, 'goals_8': 8, '51_9': 9, '2_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_eq_1': 'filter_eq', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'winner_6': 'winner', 'bobby clarke_7': 'bobby clarke', 'goals_8': 'goals', '51_9': '51', '2_10': '2'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_eq_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'winner_6': [0], 'bobby clarke_7': [0], 'goals_8': [1], '51_9': [1], '2_10': [3]}
['season', 'league', 'winner', 'goals', 'assists', 'points']
[['1967 - 68', 'wcjhl', 'bobby clarke', '51', '117', '168'], ['1968 - 69', 'wcjhl', 'bobby clarke', '51', '86', '137'], ['1969 - 70', 'wchl', 'reggie leach', '65', '46', '111'], ['1970 - 71', 'wchl', 'chuck arnason', '79', '84', '163'], ['2007 - 08', 'sjhl', 'reid macleod', '47', '42', '89']]
2010 ucla bruins baseball team
https://en.wikipedia.org/wiki/2010_UCLA_Bruins_baseball_team
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-27862483-4.html.csv
majority
most games in may of the 2010 ucla bruins baseball season was played at jackie robinson stadium .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'jackie robinson stadium', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'site / stadium', 'jackie robinson stadium'], 'result': True, 'ind': 0, 'tointer': 'for the site / stadium records of all rows , most of them fuzzily match to jackie robinson stadium .', 'tostr': 'most_eq { all_rows ; site / stadium ; jackie robinson stadium } = true'}
most_eq { all_rows ; site / stadium ; jackie robinson stadium } = true
for the site / stadium records of all rows , most of them fuzzily match to jackie robinson stadium .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'site / stadium_3': 3, 'jackie robinson stadium_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'site / stadium_3': 'site / stadium', 'jackie robinson stadium_4': 'jackie robinson stadium'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'site / stadium_3': [0], 'jackie robinson stadium_4': [0]}
['', 'date', 'opponent', 'site / stadium', 'score', 'win', 'loss', 'save', 'attendance', 'overall record', 'pac - 10 record']
[['39', 'may 1', 'arizona state', 'jackie robinson stadium', '6 - 1', 'm kelly ( 9 - 0 )', 't bauer ( 6 - 3 )', 'b rodgers ( 3 )', '1725', '30 - 9', '7 - 7'], ['40', 'may 2', 'arizona state', 'jackie robinson stadium', '12 - 3', 'j borup ( 9 - 1 )', 'r rasmussen ( 6 - 2 )', 'none', '1921', '30 - 10', '7 - 8'], ['41', 'may 4', 'pepperdine', 'eddy d field stadium', '5 - 1', 'g claypool ( 7 - 1 )', 'r dickmann ( 6 - 4 )', 'none', '261', '31 - 10', '7 - 8'], ['42', 'may 7', 'washington', 'husky ballpark', '7 - 2', 'g cole ( 7 - 2 )', 'g brown ( 1 - 4 )', 'none', '485', '32 - 10', '8 - 8'], ['43', 'may 8', 'washington', 'husky ballpark', '14 - 6', 't bauer ( 7 - 3 )', 'a kittredge ( 6 - 4 )', 'd klein ( 9 )', '716', '33 - 10', '9 - 8'], ['44', 'may 9', 'washington', 'husky ballpark', '7 - 6', 'r rasmussen ( 7 - 2 )', 'f snow ( 4 - 2 )', 'none', '562', '34 - 10', '10 - 8'], ['45', 'may 11', 'uc irvine', 'cicerone field', '2 - 1', 'n hoover ( 2 - 0 )', 'g claypool ( 7 - 2 )', 'e brock ( 1 )', '1172', '34 - 11', '10 - 8'], ['46', 'may 14', 'usc', 'jackie robinson stadium', '13 - 7', 'g cole ( 8 - 2 )', 'b mount ( 5 - 4 )', 'none', '1707', '35 - 11', '11 - 8'], ['47', 'may 15', 'usc', 'jackie robinson stadium', '15 - 2', 't bauer ( 8 - 3 )', 'c mezger ( 4 - 1 )', 'none', '1360', '36 - 11', '12 - 8'], ['48', 'may 16', 'usc', 'jackie robinson stadium', '2 - 1', 'd klein ( 4 - 0 )', 'c smith ( 4 - 6 )', 'none', '1531', '37 - 11', '13 - 8'], ['49', 'may 18', 'uc santa barbara', 'jackie robinson stadium', '6 - 2', 'g claypool ( 8 - 2 )', 'n capito ( 4 - 6 )', 'none', '587', '38 - 11', '13 - 8'], ['50', 'may 21', 'california', 'evans diamond', '8 - 7', 'd klein ( 5 - 0 )', 'm flemer ( 2 - 3 )', 'none', '417', '39 - 11', '14 - 8'], ['51', 'may 22', 'california', 'evans diamond', '12 - 4', 't bauer ( 9 - 3 )', 'd anderson ( 4 - 3 )', 'none', '534', '40 - 11', '15 - 8'], ['52', 'may 23', 'california', 'evans diamond', '11 - 2', 'r rasmussen ( 8 - 2 )', 'j jones ( 9 - 5 )', 'none', '737', '41 - 11', '16 - 8'], ['53', 'may 25', 'cal state fullerton', 'goodwin field', '5 - 2', 'no ramirez ( 9 - 1 )', 'g claypool ( 8 - 3 )', 'ni ramirez ( 9 )', '2376', '41 - 12', '16 - 8'], ['54', 'may 28', 'washington state', 'jackie robinson stadium', '6 - 1', 'g cole ( 9 - 2 )', 'c arnold ( 5 - 3 )', 'none', '1006', '42 - 12', '17 - 8'], ['55', 'may 29', 'washington state', 'jackie robinson stadium', '6 - 4', 's harvey ( 3 - 1 )', 'm grace ( 0 - 1 )', 'a conley ( 11 )', '1170', '42 - 13', '17 - 9']]
allsvenskan
https://en.wikipedia.org/wiki/Allsvenskan
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1096793-8.html.csv
aggregation
the allvenskan teams have won a combined total of 81 swedish championship titles .
{'scope': 'all', 'col': '2', 'type': 'sum', 'result': '81', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': ['all_rows', 'swedish championship titles'], 'result': '81', 'ind': 0, 'tostr': 'sum { all_rows ; swedish championship titles }'}, '81'], 'result': True, 'ind': 1, 'tostr': 'round_eq { sum { all_rows ; swedish championship titles } ; 81 } = true', 'tointer': 'the sum of the swedish championship titles record of all rows is 81 .'}
round_eq { sum { all_rows ; swedish championship titles } ; 81 } = true
the sum of the swedish championship titles record of all rows is 81 .
2
2
{'eq_1': 1, 'result_2': 2, 'sum_0': 0, 'all_rows_3': 3, 'swedish championship titles_4': 4, '81_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'sum_0': 'sum', 'all_rows_3': 'all_rows', 'swedish championship titles_4': 'swedish championship titles', '81_5': '81'}
{'eq_1': [2], 'result_2': [], 'sum_0': [1], 'all_rows_3': [0], 'swedish championship titles_4': [0], '81_5': [1]}
['club', 'swedish championship titles', 'allsvenskan titles', 'introduced', 'stars symbolizes']
[['malmö ff', '17', '20', '2006', 'number of allsvenskan titles'], ['ifk göteborg', '18', '13', '2006', 'number of swedish championship titles'], ['ifk norrköping', '12', '12', '2006', 'number of swedish championship titles'], ['örgryte is', '12', '2', '2006', 'number of swedish championship titles'], ['djurgårdens if', '11', '7', '2006', 'number of swedish championship titles'], ['aik', '11', '5', '2000', 'number of swedish championship titles']]
motori moderni
https://en.wikipedia.org/wiki/Motori_Moderni
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1226710-1.html.csv
unique
jolly club spa is the only entrant with motori moderni who participated once .
{'scope': 'all', 'row': '6', 'col': '2', 'col_other': '4', 'criterion': 'equal', 'value': 'jolly club spa', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'entrant', 'jolly club spa'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose entrant record fuzzily matches to jolly club spa .', 'tostr': 'filter_eq { all_rows ; entrant ; jolly club spa }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; entrant ; jolly club spa } }', 'tointer': 'select the rows whose entrant record fuzzily matches to jolly club spa . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'entrant', 'jolly club spa'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose entrant record fuzzily matches to jolly club spa .', 'tostr': 'filter_eq { all_rows ; entrant ; jolly club spa }'}, 'engine'], 'result': 'motori moderni tipo 615 - 90 1.5 v6 t', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; entrant ; jolly club spa } ; engine }'}, 'motori moderni tipo 615 - 90 1.5 v6 t'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; entrant ; jolly club spa } ; engine } ; motori moderni tipo 615 - 90 1.5 v6 t }', 'tointer': 'the engine record of this unqiue row is motori moderni tipo 615 - 90 1.5 v6 t .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; entrant ; jolly club spa } } ; eq { hop { filter_eq { all_rows ; entrant ; jolly club spa } ; engine } ; motori moderni tipo 615 - 90 1.5 v6 t } } = true', 'tointer': 'select the rows whose entrant record fuzzily matches to jolly club spa . there is only one such row in the table . the engine record of this unqiue row is motori moderni tipo 615 - 90 1.5 v6 t .'}
and { only { filter_eq { all_rows ; entrant ; jolly club spa } } ; eq { hop { filter_eq { all_rows ; entrant ; jolly club spa } ; engine } ; motori moderni tipo 615 - 90 1.5 v6 t } } = true
select the rows whose entrant record fuzzily matches to jolly club spa . there is only one such row in the table . the engine record of this unqiue row is motori moderni tipo 615 - 90 1.5 v6 t .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'entrant_7': 7, 'jolly club spa_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'engine_9': 9, 'motori moderni tipo 615 - 90 1.5 v6 t_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'entrant_7': 'entrant', 'jolly club spa_8': 'jolly club spa', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'engine_9': 'engine', 'motori moderni tipo 615 - 90 1.5 v6 t_10': 'motori moderni tipo 615 - 90 1.5 v6 t'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'entrant_7': [0], 'jolly club spa_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'engine_9': [2], 'motori moderni tipo 615 - 90 1.5 v6 t_10': [3]}
['year', 'entrant', 'chassis', 'engine', 'tyres', 'points']
[['1985', 'minardi team spa', 'minardi m185', 'motori moderni tipo 615 - 90 1.5 v6 t', 'p', '0'], ['1985', 'minardi team spa', 'minardi m185', 'motori moderni tipo 615 - 90 1.5 v6 t', 'p', '0'], ['1986', 'minardi team spa', 'minardi m185b m186', 'motori moderni tipo 615 - 90 1.5 v6 t', 'p', '0'], ['1986', 'minardi team spa', 'minardi m185b m186', 'motori moderni tipo 615 - 90 1.5 v6 t', 'p', '0'], ['1986', 'minardi team spa', 'minardi m185b m186', 'motori moderni tipo 615 - 90 1.5 v6 t', 'p', '0'], ['1986', 'jolly club spa', 'ags jh21c', 'motori moderni tipo 615 - 90 1.5 v6 t', 'g', '0'], ['1987', 'minardi team spa', 'minardi m187', 'motori moderni tipo 615 - 90 1.5 v6 t', 'g', '0'], ['1987', 'minardi team spa', 'minardi m187', 'motori moderni tipo 615 - 90 1.5 v6 t', 'g', '0'], ['1987', 'minardi team spa', 'minardi m187', 'motori moderni tipo 615 - 90 1.5 v6 t', 'g', '0']]
list of intel core i7 microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18823880-15.html.csv
superlative
on the list of intel core i7 microprocessers , of those that have a cache of 8 mb , there 's only one that has a frequency of 3 ghz , and that is core ( i7-3940 xm ) .
{'scope': 'subset', 'col_superlative': '4', 'row_superlative': '11', 'value_mentioned': 'yes', 'max_or_min': 'max', 'other_col': '1,7', 'subset': {'col': '7', 'criterion': 'equal', 'value': '8 mb'}}
{'func': 'and', 'args': [{'func': 'eq', 'args': [{'func': 'max', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'l3 cache', '8 mb'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; l3 cache ; 8 mb }', 'tointer': 'select the rows whose l3 cache record fuzzily matches to 8 mb .'}, 'frequency'], 'result': '3 ghz', 'ind': 1, 'tostr': 'max { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency }', 'tointer': 'select the rows whose l3 cache record fuzzily matches to 8 mb . the maximum frequency record of these rows is 3 ghz .'}, '3 ghz'], 'result': True, 'ind': 2, 'tostr': 'eq { max { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; 3 ghz }', 'tointer': 'select the rows whose l3 cache record fuzzily matches to 8 mb . the maximum frequency record of these rows is 3 ghz .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'l3 cache', '8 mb'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; l3 cache ; 8 mb }', 'tointer': 'select the rows whose l3 cache record fuzzily matches to 8 mb .'}, 'frequency'], 'result': None, 'ind': 3, 'tostr': 'argmax { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency }'}, 'model number'], 'result': 'core i7 - 3940xm', 'ind': 4, 'tostr': 'hop { argmax { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; model number }'}, 'core i7 - 3940xm'], 'result': True, 'ind': 5, 'tostr': 'eq { hop { argmax { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; model number } ; core i7 - 3940xm }', 'tointer': 'the model number record of the row with superlative frequency record is core i7 - 3940xm .'}], 'result': True, 'ind': 6, 'tostr': 'and { eq { max { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; 3 ghz } ; eq { hop { argmax { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; model number } ; core i7 - 3940xm } } = true', 'tointer': 'select the rows whose l3 cache record fuzzily matches to 8 mb . the maximum frequency record of these rows is 3 ghz . the model number record of the row with superlative frequency record is core i7 - 3940xm .'}
and { eq { max { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; 3 ghz } ; eq { hop { argmax { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; model number } ; core i7 - 3940xm } } = true
select the rows whose l3 cache record fuzzily matches to 8 mb . the maximum frequency record of these rows is 3 ghz . the model number record of the row with superlative frequency record is core i7 - 3940xm .
8
7
{'and_6': 6, 'result_7': 7, 'eq_2': 2, 'max_1': 1, 'filter_str_eq_0': 0, 'all_rows_8': 8, 'l3 cache_9': 9, '8 mb_10': 10, 'frequency_11': 11, '3 ghz_12': 12, 'str_eq_5': 5, 'str_hop_4': 4, 'argmax_3': 3, 'frequency_13': 13, 'model number_14': 14, 'core i7 - 3940xm_15': 15}
{'and_6': 'and', 'result_7': 'true', 'eq_2': 'eq', 'max_1': 'max', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_8': 'all_rows', 'l3 cache_9': 'l3 cache', '8 mb_10': '8 mb', 'frequency_11': 'frequency', '3 ghz_12': '3 ghz', 'str_eq_5': 'str_eq', 'str_hop_4': 'str_hop', 'argmax_3': 'argmax', 'frequency_13': 'frequency', 'model number_14': 'model number', 'core i7 - 3940xm_15': 'core i7 - 3940xm'}
{'and_6': [7], 'result_7': [], 'eq_2': [6], 'max_1': [2], 'filter_str_eq_0': [1, 3], 'all_rows_8': [0], 'l3 cache_9': [0], '8 mb_10': [0], 'frequency_11': [1], '3 ghz_12': [2], 'str_eq_5': [6], 'str_hop_4': [5], 'argmax_3': [4], 'frequency_13': [3], 'model number_14': [4], 'core i7 - 3940xm_15': [5]}
['model number', 'sspec number', 'cores', 'frequency', 'turbo', 'l2 cache', 'l3 cache', 'gpu model', 'gpu frequency', 'socket', 'i / o bus', 'release date', 'part number ( s )', 'release price ( usd )']
[['standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power'], ['core i7 - 3610qm', 'sr0 mn ( e1 )', '4', '2.3 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1100 mhz', 'socketg2', 'dmi 2.0', 'april 2012', 'aw8063801013511', '378'], ['core i7 - 3615qm', 'sr0 mp ( e1 )', '4', '2.3 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1200 mhz', 'bga - 1224', 'dmi 2.0', 'april 2012', 'av8063801013612', '378'], ['core i7 - 3630qm', 'sr0ux ( e1 )', '4', '2.4 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1150 mhz', 'socket g2', 'dmi 2.0', 'september 2012', 'aw8063801106200', '378'], ['core i7 - 3635qm', 'sr0uy ( e1 )', '4', '2.4 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1200 mhz', 'bga - 1224', 'dmi 2.0', 'september 2012', 'av8063801106500', '378'], ['core i7 - 3720qm', 'sr0 ml ( e1 ) sr0 mm ( e1 )', '4', '2.6 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1250 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'april 2012', 'aw8063801013116av8063801013210', '378'], ['core i7 - 3740qm', 'sr0uv ( e1 ) sr0uw ( e1 )', '4', '2.7 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1300 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'september 2012', 'aw8063801105000bx80638i73740qmav8063801105300', '378'], ['core i7 - 3820qm', 'sr0 mj ( e1 ) sr0 mk ( e1 )', '4', '2.7 ghz', '8 / 8 / 9 / 10', '4 256 kb', '8 mb', 'hd graphics 4000', '650 - 1250 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'april 2012', 'aw8063801012708av8063801012807', '568'], ['core i7 - 3840qm', 'sr0ut ( e1 ) sr0uu ( e1 )', '4', '2.8 ghz', '8 / 8 / 9 / 10', '4 256 kb', '8 mb', 'hd graphics 4000', '650 - 1300 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'september 2012', 'aw8063801103800bx80638i73840qmav8063801104100', '568'], ['core i7 - 3920xm', 'sr0 mh ( e1 ) sr0t2 ( e1 )', '4', '2.9 ghz', '7 / 7 / 8 / 9', '4 256 kb', '8 mb', 'hd graphics 4000', '650 - 1300 mhz', 'socket g2', 'dmi 2.0', 'april 2012', 'aw8063801009606aw8063801009607', '1096'], ['core i7 - 3940xm', 'sr0us ( e1 )', '4', '3 ghz', '7 / 7 / 8 / 9', '4 256 kb', '8 mb', 'hd graphics 4000', '650 - 1350 mhz', 'socket g2', 'dmi 2.0', 'september 2012', 'aw8063801103501', '1096'], ['standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded'], ['core i7 - 3610qe', 'sr0np ( e1 )', '4', '2.3 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1000 mhz', 'socket g2', 'dmi 2.0', 'april 2012', 'aw8063801118306', '393'], ['core i7 - 3615qe', 'sr0nc ( e1 )', '4', '2.3 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1000 mhz', 'bga - 1023', 'dmi 2.0', 'april 2012', 'av8063801117503', '393'], ['low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power'], ['core i7 - 3612qm', 'sr0 mq ( e1 ) sr0 mr ( e1 )', '4', '2.1 ghz', '7 / 7 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1100 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'april 2012', 'av8063801130504av8063801130704', '378'], ['core i7 - 3632qm', 'sr0v0 ( e1 ) sr0uz ( e1 )', '4', '2.2 ghz', '7 / 7 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1150 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'october 2012', 'aw8063801152800av8063801152700', '378'], ['low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded'], ['core i7 - 3612qe', 'sr0nd ( e1 )', '4', '2.1 ghz', '7 / 7 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1000 mhz', 'bga - 1023', 'dmi 2.0', 'april 2012', 'av8063801149203', '426']]
1921 grand prix season
https://en.wikipedia.org/wiki/1921_Grand_Prix_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18269311-2.html.csv
superlative
the garda circuit is the first venue used in the 1921 grand prix season .
{'scope': 'all', 'col_superlative': '3', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'min', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': ['all_rows', 'date'], 'result': None, 'ind': 0, 'tostr': 'argmin { all_rows ; date }'}, 'name'], 'result': 'garda circuit', 'ind': 1, 'tostr': 'hop { argmin { all_rows ; date } ; name }'}, 'garda circuit'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmin { all_rows ; date } ; name } ; garda circuit } = true', 'tointer': 'select the row whose date record of all rows is minimum . the name record of this row is garda circuit .'}
eq { hop { argmin { all_rows ; date } ; name } ; garda circuit } = true
select the row whose date record of all rows is minimum . the name record of this row is garda circuit .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmin_0': 0, 'all_rows_4': 4, 'date_5': 5, 'name_6': 6, 'garda circuit_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmin_0': 'argmin', 'all_rows_4': 'all_rows', 'date_5': 'date', 'name_6': 'name', 'garda circuit_7': 'garda circuit'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmin_0': [1], 'all_rows_4': [0], 'date_5': [0], 'name_6': [1], 'garda circuit_7': [2]}
['name', 'circuit', 'date', 'winning driver', 'winning constructor', 'report']
[['garda circuit', 'salã square', '22 may', 'eugenio silvani', 'bugatti', 'report'], ['targa florio', 'madonie', '29 may', 'giulio masetti', 'fiat', 'report'], ['coppa della cascine', 'florence', '6 june', 'deo', 'chiribiri', 'report'], ['mugello circuit', 'mugello', '24 july', 'giuseppe campari', 'alfa romeo', 'report'], ['coppa florio', 'brescia', '4 september', 'jules goux', 'ballot', 'report'], ['gentlemen grand prix', 'brescia', '11 september', 'giulio masetti', 'mercedes', 'report'], ['coppa montenero', 'montenero', '25 september', 'corrado lotti', 'ansaldo', 'report']]
1982 vfl season
https://en.wikipedia.org/wiki/1982_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10824095-15.html.csv
ordinal
the second biggest crowd showed up for the north melbourne game .
{'row': '6', 'col': '6', 'order': '2', 'col_other': '1', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'crowd', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; crowd ; 2 }'}, 'home team'], 'result': 'north melbourne', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; crowd ; 2 } ; home team }'}, 'north melbourne'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; crowd ; 2 } ; home team } ; north melbourne } = true', 'tointer': 'select the row whose crowd record of all rows is 2nd maximum . the home team record of this row is north melbourne .'}
eq { hop { nth_argmax { all_rows ; crowd ; 2 } ; home team } ; north melbourne } = true
select the row whose crowd record of all rows is 2nd maximum . the home team record of this row is north melbourne .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'crowd_5': 5, '2_6': 6, 'home team_7': 7, 'north melbourne_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'crowd_5': 'crowd', '2_6': '2', 'home team_7': 'home team', 'north melbourne_8': 'north melbourne'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'crowd_5': [0], '2_6': [0], 'home team_7': [1], 'north melbourne_8': [2]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['essendon', '21.13 ( 139 )', 'fitzroy', '7.12 ( 54 )', 'windy hill', '20059', '3 july 1982'], ['carlton', '18.20 ( 128 )', 'melbourne', '16.15 ( 111 )', 'princes park', '21871', '3 july 1982'], ['richmond', '17.14 ( 116 )', 'hawthorn', '22.14 ( 146 )', 'mcg', '48338', '3 july 1982'], ['swans', '18.18 ( 126 )', 'geelong', '12.15 ( 87 )', 'scg', '12221', '3 july 1982'], ['st kilda', '20.11 ( 131 )', 'footscray', '18.12 ( 120 )', 'moorabbin oval', '15958', '3 july 1982'], ['north melbourne', '16.13 ( 109 )', 'collingwood', '13.11 ( 89 )', 'vfl park', '32812', '3 july 1982']]
1932 boston braves ( nfl ) season
https://en.wikipedia.org/wiki/1932_Boston_Braves_%28NFL%29_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14608543-1.html.csv
count
in the 1932 boston braves season , the brooklyn dodgers were the opponent two times .
{'scope': 'all', 'criterion': 'equal', 'value': 'brooklyn dodgers', 'result': '2', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'brooklyn dodgers'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose opponent record fuzzily matches to brooklyn dodgers .', 'tostr': 'filter_eq { all_rows ; opponent ; brooklyn dodgers }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; opponent ; brooklyn dodgers } }', 'tointer': 'select the rows whose opponent record fuzzily matches to brooklyn dodgers . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; opponent ; brooklyn dodgers } } ; 2 } = true', 'tointer': 'select the rows whose opponent record fuzzily matches to brooklyn dodgers . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; opponent ; brooklyn dodgers } } ; 2 } = true
select the rows whose opponent record fuzzily matches to brooklyn dodgers . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'opponent_5': 5, 'brooklyn dodgers_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'opponent_5': 'opponent', 'brooklyn dodgers_6': 'brooklyn dodgers', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'opponent_5': [0], 'brooklyn dodgers_6': [0], '2_7': [2]}
['week', 'date', 'opponent', 'result', 'game site', 'record']
[['1', 'october 2 , 1932', 'brooklyn dodgers', 'l 14 - 0', 'braves field', '0 - 1'], ['2', 'october 9 , 1932', 'new york giants', 'w 14 - 6', 'braves field', '1 - 1'], ['3', 'october 16 , 1932', 'chicago cardinals', 'l 9 - 0', 'braves field', '1 - 2'], ['4', 'october 23 , 1932', 'new york giants', 't 0 - 0', 'polo grounds', '1 - 2 - 1'], ['5', 'october 30 , 1932', 'chicago bears', 't 7 - 7', 'braves field', '1 - 2 - 2'], ['6', 'november 6 , 1932', 'staten island stapletons', 'w 19 - 6', 'braves field', '2 - 2 - 2'], ['7', 'november 13 , 1932', 'green bay packers', 'l 21 - 0', 'braves field', '2 - 3 - 2'], ['8', 'november 20 , 1932', 'portsmouth spartans', 'l 10 - 0', 'universal stadium', '2 - 4 - 2'], ['9', 'november 27 , 1932', 'chicago cardinals', 'w 8 - 6', 'comiskey park', '3 - 4 - 2'], ['10', 'december 4 , 1932', 'brooklyn dodgers', 'w 7 - 0', 'ebbets field', '4 - 4 - 2']]
fiba oceania championship for women
https://en.wikipedia.org/wiki/FIBA_Oceania_Championship_for_Women
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-13150131-4.html.csv
aggregation
in the fiba oceania championship for women , the average number of gold medals won was 1 .
{'scope': 'all', 'col': '2', 'type': 'average', 'result': '1', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'gold'], 'result': '1', 'ind': 0, 'tostr': 'avg { all_rows ; gold }'}, '1'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; gold } ; 1 } = true', 'tointer': 'the average of the gold record of all rows is 1 .'}
round_eq { avg { all_rows ; gold } ; 1 } = true
the average of the gold record of all rows is 1 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'gold_4': 4, '1_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'gold_4': 'gold', '1_5': '1'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'gold_4': [0], '1_5': [1]}
['rank', 'gold', 'silver', 'bronze', 'total']
[['1', '3', '0', '0', '3'], ['2', '1', '3', '1', '5'], ['3', '1', '0', '0', '1'], ['5', '0', '2', '4', '6'], ['6', '0', '1', '1', '2']]
swimming at the 2000 summer olympics - women 's 100 metre backstroke
https://en.wikipedia.org/wiki/Swimming_at_the_2000_Summer_Olympics_%E2%80%93_Women%27s_100_metre_backstroke
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12427181-5.html.csv
majority
a majority of swimmers in the 2000 olympics completed their race in over 1 minute .
{'scope': 'all', 'col': '5', 'most_or_all': 'most', 'criterion': 'greater_than', 'value': '1:00', 'subset': None}
{'func': 'most_greater', 'args': ['all_rows', 'time', '1:00'], 'result': True, 'ind': 0, 'tointer': 'for the time records of all rows , most of them are greater than 1:00 .', 'tostr': 'most_greater { all_rows ; time ; 1:00 } = true'}
most_greater { all_rows ; time ; 1:00 } = true
for the time records of all rows , most of them are greater than 1:00 .
1
1
{'most_greater_0': 0, 'result_1': 1, 'all_rows_2': 2, 'time_3': 3, '1:00_4': 4}
{'most_greater_0': 'most_greater', 'result_1': 'true', 'all_rows_2': 'all_rows', 'time_3': 'time', '1:00_4': '1:00'}
{'most_greater_0': [1], 'result_1': [], 'all_rows_2': [0], 'time_3': [0], '1:00_4': [0]}
['rank', 'lane', 'name', 'nationality', 'time']
[['1', '4', 'mai nakamura', 'japan', '1:01.07'], ['2', '6', 'noriko inada', 'japan', '1:01.25'], ['3', '3', 'nina zhivanevskaya', 'spain', '1:01.41'], ['4', '5', 'roxana maracineanu', 'france', '1:01.61'], ['5', '2', 'antje buschschulte', 'germany', '1:01.91'], ['6', '7', 'katy sexton', 'great britain', '1:02.35'], ['7', '1', 'sandra vãlker', 'germany', '1:03.01'], ['8', '8', 'lu donghua', 'china', '1:03.31']]
upper grand district school board
https://en.wikipedia.org/wiki/Upper_Grand_District_School_Board
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1803594-1.html.csv
ordinal
orangeville district secondary school has the second largest enrollment among all schools .
{'row': '9', 'col': '3', 'order': '2', 'col_other': '1', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'enrollment', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; enrollment ; 2 }'}, 'name'], 'result': 'orangeville district secondary school', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; enrollment ; 2 } ; name }'}, 'orangeville district secondary school'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; enrollment ; 2 } ; name } ; orangeville district secondary school } = true', 'tointer': 'select the row whose enrollment record of all rows is 2nd maximum . the name record of this row is orangeville district secondary school .'}
eq { hop { nth_argmax { all_rows ; enrollment ; 2 } ; name } ; orangeville district secondary school } = true
select the row whose enrollment record of all rows is 2nd maximum . the name record of this row is orangeville district secondary school .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'enrollment_5': 5, '2_6': 6, 'name_7': 7, 'orangeville district secondary school_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'enrollment_5': 'enrollment', '2_6': '2', 'name_7': 'name', 'orangeville district secondary school_8': 'orangeville district secondary school'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'enrollment_5': [0], '2_6': [0], 'name_7': [1], 'orangeville district secondary school_8': [2]}
['name', 'location', 'enrollment', '1 - year ranking of 727', '5 - year ranking of 693']
[['centennial collegiate vocational institute', 'guelph', '1533', '63', '22'], ['centre dufferin district high school', 'shelburne', '998', '265', '281'], ['centre wellington district high school', 'fergus', '1459', '330', '246'], ['college heights secondary school', 'guelph', '649', '717', '688'], ['erin district high school', 'erin', '616', '197', '148'], ['guelph collegiate vocational institute', 'guelph', '1314', '16', '30'], ['john f ross collegiate vocational institute', 'guelph', '1895', '181', '165'], ['norwell district secondary school', 'palmerston', '795', '126', '343'], ['orangeville district secondary school', 'orangeville', '1574', '181', '194'], ['wellington heights secondary school', 'mount forest', '680', '371', '426'], ['westside secondary school', 'orangeville', '996', '478', '343']]
dedee nathan
https://en.wikipedia.org/wiki/DeDee_Nathan
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15307428-1.html.csv
count
dedee nathan had a total of three 1st position finishes .
{'scope': 'all', 'criterion': 'equal', 'value': '1st', 'result': '3', 'col': '4', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'position', '1st'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose position record fuzzily matches to 1st .', 'tostr': 'filter_eq { all_rows ; position ; 1st }'}], 'result': '3', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; position ; 1st } }', 'tointer': 'select the rows whose position record fuzzily matches to 1st . the number of such rows is 3 .'}, '3'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; position ; 1st } } ; 3 } = true', 'tointer': 'select the rows whose position record fuzzily matches to 1st . the number of such rows is 3 .'}
eq { count { filter_eq { all_rows ; position ; 1st } } ; 3 } = true
select the rows whose position record fuzzily matches to 1st . the number of such rows is 3 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'position_5': 5, '1st_6': 6, '3_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'position_5': 'position', '1st_6': '1st', '3_7': '3'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'position_5': [0], '1st_6': [0], '3_7': [2]}
['year', 'competition', 'venue', 'position', 'notes']
[['1991', 'pan american games', 'havana , cuba', '1st', 'heptathlon'], ['1993', 'world indoor championships', 'toronto , canada', '8th', 'pentathlon'], ['1993', 'world championships', 'stuttgart , germany', '17th', 'heptathlon'], ['1995', 'pan american games', 'mar del plata , argentina', '3rd', 'heptathlon'], ['1995', 'world championships', 'gothenburg , sweden', '8th', 'heptathlon'], ['1997', 'world indoor championships', 'paris , france', '7th', 'pentathlon'], ['1997', 'world championships', 'athens , greece', '7th', 'heptathlon'], ['1999', 'world indoor championships', 'maebashi , japan', '1st', 'pentathlon'], ['1999', 'hypo - meeting', 'götzis , austria', '1st', 'heptathlon'], ['2000', 'hypo - meeting', 'götzis , austria', '12th', 'heptathlon'], ['2000', 'olympic games', 'sydney , australia', '9th', 'heptathlon'], ['2001', 'world championships', 'edmonton , canada', '7th', 'heptathlon']]
1965 vfl season
https://en.wikipedia.org/wiki/1965_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10788451-14.html.csv
superlative
the game played at the moorabbin oval venue drew the largest crowd .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '4', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '5', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'crowd'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; crowd }'}, 'venue'], 'result': 'moorabbin oval', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; crowd } ; venue }'}, 'moorabbin oval'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; crowd } ; venue } ; moorabbin oval } = true', 'tointer': 'select the row whose crowd record of all rows is maximum . the venue record of this row is moorabbin oval .'}
eq { hop { argmax { all_rows ; crowd } ; venue } ; moorabbin oval } = true
select the row whose crowd record of all rows is maximum . the venue record of this row is moorabbin oval .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'crowd_5': 5, 'venue_6': 6, 'moorabbin oval_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'crowd_5': 'crowd', 'venue_6': 'venue', 'moorabbin oval_7': 'moorabbin oval'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'crowd_5': [0], 'venue_6': [1], 'moorabbin oval_7': [2]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['geelong', '10.17 ( 77 )', 'north melbourne', '5.4 ( 34 )', 'kardinia park', '19658', '31 july 1965'], ['essendon', '13.18 ( 96 )', 'footscray', '6.11 ( 47 )', 'windy hill', '16800', '31 july 1965'], ['carlton', '9.19 ( 73 )', 'south melbourne', '13.12 ( 90 )', 'princes park', '20744', '31 july 1965'], ['st kilda', '14.12 ( 96 )', 'richmond', '11.17 ( 83 )', 'moorabbin oval', '34076', '31 july 1965'], ['melbourne', '12.11 ( 83 )', 'fitzroy', '11.15 ( 81 )', 'mcg', '30381', '31 july 1965'], ['hawthorn', '8.12 ( 60 )', 'collingwood', '12.22 ( 94 )', 'glenferrie oval', '18500', '31 july 1965']]
1971 - 72 st. louis blues season
https://en.wikipedia.org/wiki/1971%E2%80%9372_St._Louis_Blues_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-22402438-7.html.csv
ordinal
the first person that the blues picked in the 71-72 season was gene carr .
{'row': '1', 'col': '1', 'order': '1', 'col_other': '2', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'pick', '1'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; pick ; 1 }'}, 'player'], 'result': 'gene carr', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; pick ; 1 } ; player }'}, 'gene carr'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; pick ; 1 } ; player } ; gene carr } = true', 'tointer': 'select the row whose pick record of all rows is 1st minimum . the player record of this row is gene carr .'}
eq { hop { nth_argmin { all_rows ; pick ; 1 } ; player } ; gene carr } = true
select the row whose pick record of all rows is 1st minimum . the player record of this row is gene carr .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'pick_5': 5, '1_6': 6, 'player_7': 7, 'gene carr_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'pick_5': 'pick', '1_6': '1', 'player_7': 'player', 'gene carr_8': 'gene carr'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'pick_5': [0], '1_6': [0], 'player_7': [1], 'gene carr_8': [2]}
['pick', 'player', 'position', 'nationality', 'nhl team', 'college / junior / club team']
[['4', 'gene carr', 'centre', 'canada', 'st louis blues', 'flin flon bombers ( wchl )'], ['38', 'john garrett', 'goaltender', 'canada', 'st louis blues', 'peterborough petes ( oha )'], ['52', 'derek harker', 'defence', 'canada', 'st louis blues', 'edmonton oil kings ( wchl )'], ['66', 'wayne gibbs', 'defence', 'canada', 'st louis blues', 'calgary centennials ( wchl )'], ['80', 'bernie doan', 'defence', 'canada', 'st louis blues', 'calgary centennials ( wchl )'], ['94', 'dave smith', 'defence', 'canada', 'st louis blues', 'regina pats ( wchl )']]
john isner
https://en.wikipedia.org/wiki/John_Isner
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12509095-8.html.csv
count
john isner won two tennis tournaments that were played on a grass surface .
{'scope': 'all', 'criterion': 'equal', 'value': 'grass', 'result': '2', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'surface', 'grass'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose surface record fuzzily matches to grass .', 'tostr': 'filter_eq { all_rows ; surface ; grass }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; surface ; grass } }', 'tointer': 'select the rows whose surface record fuzzily matches to grass . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; surface ; grass } } ; 2 } = true', 'tointer': 'select the rows whose surface record fuzzily matches to grass . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; surface ; grass } } ; 2 } = true
select the rows whose surface record fuzzily matches to grass . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'surface_5': 5, 'grass_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'surface_5': 'surface', 'grass_6': 'grass', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'surface_5': [0], 'grass_6': [0], '2_7': [2]}
['outcome', 'date', 'surface', 'opponent', 'score']
[['runner - up', 'august 5 , 2007', 'hard', 'andy roddick', '4 - 6 , 6 - 7 ( 4 - 7 )'], ['winner', 'january 16 , 2010', 'hard', 'arnaud clément', '6 - 3 , 5 - 7 , 7 - 6 ( 7 - 2 )'], ['runner - up', 'february 21 , 2010', 'hard ( i )', 'sam querrey', '7 - 6 ( 7 - 3 ) , 6 - 7 ( 5 - 7 ) , 3 - 6'], ['runner - up', 'may 9 , 2010', 'clay', 'sam querrey', '6 - 3 , 6 - 7 ( 4 - 7 ) , 4 - 6'], ['runner - up', 'july 25 , 2010', 'hard', 'mardy fish', '6 - 4 , 4 - 6 , 6 - 7 ( 4 - 7 )'], ['winner', 'july 10 , 2011', 'grass', 'olivier rochus', '6 - 3 , 7 - 6 ( 8 - 6 )'], ['runner - up', 'july 24 , 2011', 'hard', 'mardy fish', '6 - 3 , 6 - 7 ( 6 - 8 ) , 2 - 6'], ['winner', 'august 27 , 2011', 'hard', 'julien benneteau', '4 - 6 , 6 - 3 , 6 - 4'], ['runner - up', 'march 18 , 2012', 'hard', 'roger federer', '6 - 7 ( 7 - 9 ) , 3 - 6'], ['runner - up', 'april 15 , 2012', 'clay', 'juan mónaco', '2 - 6 , 6 - 3 , 3 - 6'], ['winner', 'july 15 , 2012', 'grass', 'lleyton hewitt', '7 - 6 ( 7 - 1 ) , 6 - 4'], ['winner', 'august 25 , 2012', 'hard', 'tomáš berdych', '3 - 6 , 6 - 4 , 7 - 6 ( 11 - 9 )'], ['winner', 'april 14 , 2013', 'clay', 'nicolás almagro', '6 - 3 , 7 - 5'], ['winner', 'july 28 , 2013', 'hard', 'kevin anderson', '6 - 7 ( 3 - 7 ) , 7 - 6 ( 7 - 2 ) , 7 - 6 ( 7 - 2 )'], ['runner - up', 'august 4 , 2013', 'hard', 'juan martín del potro', '6 - 3 , 1 - 6 , 2 - 6'], ['runner - up', 'august 18 , 2013', 'hard', 'rafael nadal', '6 - 7 ( 8 - 10 ) , 6 - 7 ( 3 - 7 )']]
1972 isle of man tt
https://en.wikipedia.org/wiki/1972_Isle_of_Man_TT
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15753390-1.html.csv
superlative
the only participant from italy reached the highest top speed among all competitors at the 1972 isle of man tt .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '3', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'speed'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; speed }'}, 'country'], 'result': 'italy', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; speed } ; country }'}, 'italy'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; speed } ; country } ; italy } = true', 'tointer': 'select the row whose speed record of all rows is maximum . the country record of this row is italy .'}
eq { hop { argmax { all_rows ; speed } ; country } ; italy } = true
select the row whose speed record of all rows is maximum . the country record of this row is italy .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'speed_5': 5, 'country_6': 6, 'italy_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'speed_5': 'speed', 'country_6': 'country', 'italy_7': 'italy'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'speed_5': [0], 'country_6': [1], 'italy_7': [2]}
['place', 'rider', 'country', 'machine', 'speed', 'time', 'points']
[['1', 'giacomo agostini', 'italy', 'mv agusta', '102.03 mph', '1:50.56.8', '15'], ['2', 'tony rutter', 'united kingdom', 'yamaha', '98.13 mph', '1:55.21.4', '12'], ['3', 'mick grant', 'united kingdom', 'yamaha', '97.57 mph', '1:56.01.0', '10'], ['4', 'jack findlay', 'australia', 'yamaha', '97.41 mph', '1:53.13.0', '8'], ['5', 'derek chatterton', 'united kingdom', 'yamaha', '95.65 mph', '1:58.21.4', '6'], ['6', 'selwyn griffiths', 'united kingdom', 'yamaha', '94.16 mph', '2:00.13.8', '5'], ['7', 'mick chatterton', 'united kingdom', 'yamaha', '92.98 mph', '2:01.45.2', '4'], ['8', 'lászló szabó', 'hungary', 'yamaha', '90.52 mph', '2:05.03.80', '3'], ['9', 'bill rae', 'united kingdom', 'yamaha', '90.51 mph', '2:05.04.80', '2'], ['10', 'blee', 'united kingdom', 'yamaha', '89.85 mph', '2:05.59.6', '1']]
royal canadian mint numismatic coins ( 2000s )
https://en.wikipedia.org/wiki/Royal_Canadian_Mint_numismatic_coins_%282000s%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11916083-28.html.csv
unique
of all of the royal canadian mint numismatic coins from the 2000s , the only one whose artist was kerri burnett , was trumpeter swan .
{'scope': 'all', 'row': '5', 'col': '3', 'col_other': '2', 'criterion': 'equal', 'value': 'kerri burnett', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'artist', 'kerri burnett'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose artist record fuzzily matches to kerri burnett .', 'tostr': 'filter_eq { all_rows ; artist ; kerri burnett }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; artist ; kerri burnett } }', 'tointer': 'select the rows whose artist record fuzzily matches to kerri burnett . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'artist', 'kerri burnett'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose artist record fuzzily matches to kerri burnett .', 'tostr': 'filter_eq { all_rows ; artist ; kerri burnett }'}, 'theme'], 'result': 'trumpeter swan', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; artist ; kerri burnett } ; theme }'}, 'trumpeter swan'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; artist ; kerri burnett } ; theme } ; trumpeter swan }', 'tointer': 'the theme record of this unqiue row is trumpeter swan .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; artist ; kerri burnett } } ; eq { hop { filter_eq { all_rows ; artist ; kerri burnett } ; theme } ; trumpeter swan } } = true', 'tointer': 'select the rows whose artist record fuzzily matches to kerri burnett . there is only one such row in the table . the theme record of this unqiue row is trumpeter swan .'}
and { only { filter_eq { all_rows ; artist ; kerri burnett } } ; eq { hop { filter_eq { all_rows ; artist ; kerri burnett } ; theme } ; trumpeter swan } } = true
select the rows whose artist record fuzzily matches to kerri burnett . there is only one such row in the table . the theme record of this unqiue row is trumpeter swan .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'artist_7': 7, 'kerri burnett_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'theme_9': 9, 'trumpeter swan_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'artist_7': 'artist', 'kerri burnett_8': 'kerri burnett', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'theme_9': 'theme', 'trumpeter swan_10': 'trumpeter swan'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'artist_7': [0], 'kerri burnett_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'theme_9': [2], 'trumpeter swan_10': [3]}
['year', 'theme', 'artist', 'mintage', 'issue price']
[['2002', '15th anniversary loonie', 'dora de pãdery - hunt', '67672', '39.95'], ['2004', 'jack miner bird sanctuary', 'susan taylor', 'n / a', '39.95'], ['2005', 'tufted puffin', 'n / a', 'n / a', '39.95'], ['2006', 'snowy owl', 'glen loates', '20000', '39.95'], ['2007', 'trumpeter swan', 'kerri burnett', '40000', '45.95'], ['2008', 'common eider', 'mark hobson', '40000', '45.95'], ['2009', 'great blue heron', 'chris jordison', '40000', '47.95']]
list of formula one driver records
https://en.wikipedia.org/wiki/List_of_Formula_One_driver_records
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-13599687-35.html.csv
superlative
juan manuel fangio had the most percentage in the formula one driver records .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'percentage'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; percentage }'}, 'driver'], 'result': 'juan manuel fangio', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; percentage } ; driver }'}, 'juan manuel fangio'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; percentage } ; driver } ; juan manuel fangio } = true', 'tointer': 'select the row whose percentage record of all rows is maximum . the driver record of this row is juan manuel fangio .'}
eq { hop { argmax { all_rows ; percentage } ; driver } ; juan manuel fangio } = true
select the row whose percentage record of all rows is maximum . the driver record of this row is juan manuel fangio .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'percentage_5': 5, 'driver_6': 6, 'juan manuel fangio_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'percentage_5': 'percentage', 'driver_6': 'driver', 'juan manuel fangio_7': 'juan manuel fangio'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'percentage_5': [0], 'driver_6': [1], 'juan manuel fangio_7': [2]}
['driver', 'front row starts', 'pole positions', 'entries', 'percentage']
[['juan manuel fangio', '48', '29', '52', '92.31 %'], ['jim clark', '48', '33', '73', '65.75 %'], ['ayrton senna', '87', '65', '162', '53.70 %'], ['sebastian vettel', '62', '43', '118', '52.54 %'], ['lewis hamilton', '57', '31', '127', '44.81 %'], ['alain prost', '86', '33', '202', '42.57 %'], ['jackie stewart', '42', '17', '100', '42.00 %'], ['damon hill', '47', '20', '122', '38.52 %'], ['michael schumacher', '116', '68', '308', '37.66 %'], ['nigel mansell', '56', '32', '191', '29.32 %']]
list of california golden seals draft picks
https://en.wikipedia.org/wiki/List_of_California_Golden_Seals_draft_picks
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18272351-4.html.csv
aggregation
the average pick number for the california golden seals was 27.8 .
{'scope': 'all', 'col': '3', 'type': 'average', 'result': '27.8', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'pick'], 'result': '27.8', 'ind': 0, 'tostr': 'avg { all_rows ; pick }'}, '27.8'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; pick } ; 27.8 } = true', 'tointer': 'the average of the pick record of all rows is 27.8 .'}
round_eq { avg { all_rows ; pick } ; 27.8 } = true
the average of the pick record of all rows is 27.8 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'pick_4': 4, '27.8_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'pick_4': 'pick', '27.8_5': '27.8'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'pick_4': [0], '27.8_5': [1]}
['draft', 'round', 'pick', 'player', 'nationality']
[['1967', '1', '3', 'ken hicks', 'canada'], ['1967', '2', '12', 'gary wood', 'usa'], ['1967', '3', '18', 'kevin smith', 'canada'], ['1968', '2', '13', 'doug smith', 'canada'], ['1968', '3', '20', 'jim trewin', 'canada'], ['1969', '1', '7', 'tony featherstone', 'canada'], ['1969', '2', '18', 'ron stackhouse', 'canada'], ['1969', '3', '29', "don o'donoghue", 'canada'], ['1969', '4', '41', 'pierre farmer', 'canada'], ['1969', '5', '53', 'warren harrison', 'canada'], ['1969', '6', '65', 'neil nicholson', 'canada'], ['1969', '7', '76', 'pete vipond', 'canada'], ['1970', '1', '10', 'chris oddleifson', 'canada'], ['1970', '2', '19', 'pete laframboise', 'canada'], ['1970', '3', '33', 'randy rota', 'canada']]
current members of the united states house of representatives
https://en.wikipedia.org/wiki/Current_members_of_the_United_States_House_of_Representatives
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12498224-7.html.csv
superlative
the member in district american samoa assumed office the earliest of all the members of the us house of representatives .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'min', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': ['all_rows', 'assumed office'], 'result': None, 'ind': 0, 'tostr': 'argmin { all_rows ; assumed office }'}, 'district'], 'result': 'american samoa', 'ind': 1, 'tostr': 'hop { argmin { all_rows ; assumed office } ; district }'}, 'american samoa'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmin { all_rows ; assumed office } ; district } ; american samoa } = true', 'tointer': 'select the row whose assumed office record of all rows is minimum . the district record of this row is american samoa .'}
eq { hop { argmin { all_rows ; assumed office } ; district } ; american samoa } = true
select the row whose assumed office record of all rows is minimum . the district record of this row is american samoa .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmin_0': 0, 'all_rows_4': 4, 'assumed office_5': 5, 'district_6': 6, 'american samoa_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmin_0': 'argmin', 'all_rows_4': 'all_rows', 'assumed office_5': 'assumed office', 'district_6': 'district', 'american samoa_7': 'american samoa'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmin_0': [1], 'all_rows_4': [0], 'assumed office_5': [0], 'district_6': [1], 'american samoa_7': [2]}
['district', 'party', 'religion', 'former experience', 'assumed office', 'born in']
[['american samoa', 'democratic', 'mormon', 'lieutenant governor of american samoa', '1989', '1943'], ['district of columbia', 'democratic', 'episcopalian', 'equal employment opportunity commission', '1991', '1937'], ['guam', 'democratic', 'roman catholic', 'lieutenant governor of guam', '2003', '1933'], ['puerto rico', 'new progressive party and democratic', 'roman catholic', 'attorney general of puerto rico', '2009', '1959'], ['united states virgin islands', 'democratic', 'moravian', 'commissioner of health', '1997', '1945'], ['northern mariana islands', 'democratic', 'roman catholic', 'election commission director', '2009', '1955']]
1949 vfl season
https://en.wikipedia.org/wiki/1949_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10809351-7.html.csv
superlative
the game played at the punt road oval venue drew the highest crowd attendance .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '4', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '5', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'crowd'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; crowd }'}, 'venue'], 'result': 'punt road oval', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; crowd } ; venue }'}, 'punt road oval'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; crowd } ; venue } ; punt road oval } = true', 'tointer': 'select the row whose crowd record of all rows is maximum . the venue record of this row is punt road oval .'}
eq { hop { argmax { all_rows ; crowd } ; venue } ; punt road oval } = true
select the row whose crowd record of all rows is maximum . the venue record of this row is punt road oval .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'crowd_5': 5, 'venue_6': 6, 'punt road oval_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'crowd_5': 'crowd', 'venue_6': 'venue', 'punt road oval_7': 'punt road oval'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'crowd_5': [0], 'venue_6': [1], 'punt road oval_7': [2]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['hawthorn', '6.12 ( 48 )', 'south melbourne', '12.15 ( 87 )', 'glenferrie oval', '10000', '28 may 1949'], ['essendon', '11.9 ( 75 )', 'melbourne', '13.12 ( 90 )', 'windy hill', '15000', '28 may 1949'], ['north melbourne', '8.13 ( 61 )', 'geelong', '8.7 ( 55 )', 'arden street oval', '17000', '28 may 1949'], ['richmond', '21.21 ( 147 )', 'fitzroy', '9.12 ( 66 )', 'punt road oval', '28000', '28 may 1949'], ['footscray', '8.10 ( 58 )', 'collingwood', '12.15 ( 87 )', 'western oval', '17000', '28 may 1949'], ['st kilda', '8.14 ( 62 )', 'carlton', '14.11 ( 95 )', 'junction oval', '13000', '28 may 1949']]
chris haggard
https://en.wikipedia.org/wiki/Chris_Haggard
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14734893-1.html.csv
count
of the tournaments that chris haggard participated in , 4 of the tournaments were on a clay surface .
{'scope': 'all', 'criterion': 'equal', 'value': 'clay', 'result': '4', 'col': '4', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'surface', 'clay'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose surface record fuzzily matches to clay .', 'tostr': 'filter_eq { all_rows ; surface ; clay }'}], 'result': '4', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; surface ; clay } }', 'tointer': 'select the rows whose surface record fuzzily matches to clay . the number of such rows is 4 .'}, '4'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; surface ; clay } } ; 4 } = true', 'tointer': 'select the rows whose surface record fuzzily matches to clay . the number of such rows is 4 .'}
eq { count { filter_eq { all_rows ; surface ; clay } } ; 4 } = true
select the rows whose surface record fuzzily matches to clay . the number of such rows is 4 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'surface_5': 5, 'clay_6': 6, '4_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'surface_5': 'surface', 'clay_6': 'clay', '4_7': '4'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'surface_5': [0], 'clay_6': [0], '4_7': [2]}
['outcome', 'date', 'tournament', 'surface', 'partner', 'opponents in the final', 'score in the final']
[['runner - up', '30 august 1998', 'boston , usa', 'hard', 'jack waite', 'jacco eltingh paul haarhuis', '3 - 6 , 2 - 6'], ['runner - up', '15 november 1998', 'stockholm , sweden', 'hard', 'peter nyborg', 'nicklas kulti mikael tillström', '5 - 7 , 6 - 3 , 5 - 7'], ['winner', '1 august 1999', 'kitzbühel , austria', 'clay', 'peter nyborg', 'álex calatrava dušan vemić', '6 - 3 , 6 - 7 ( 4 - 7 ) , 7 - 6 ( 7 - 4 )'], ['winner', '21 july 2002', 'amersfoort , netherlands', 'clay', 'jeff coetzee', 'andré sá alexandre simoni', '7 - 6 ( 7 - 1 ) , 6 - 3'], ['winner', '6 october 2002', 'tokyo , japan', 'hard', 'jeff coetzee', 'jan - michael gambill graydon oliver', '7 - 6 ( 7 - 4 ) , 6 - 4'], ['winner', '5 january 2003', 'adelaide , australia', 'hard', 'jeff coetzee', 'max mirnyi jeff morrison', '2 - 6 , 6 - 4 , 7 - 6 ( 9 - 7 )'], ['runner - up', '27 april 2003', 'barcelona , spain', 'clay', 'robbie koenig', 'bob bryan mike bryan', '4 - 6 , 3 - 6'], ['runner - up', '20 july 2003', 'amersfoort , netherlands', 'clay', 'andré sá', 'devin bowen ashley fisher', '0 - 6 , 4 - 6'], ['runner - up', '3 august 2003', 'washington , usa', 'hard', 'paul hanley', 'yevgeny kafelnikov sargis sargsian', '5 - 7 , 6 - 4 , 2 - 6'], ['runner - up', '22 february 2004', 'memphis , usa', 'hard', 'jeff coetzee', 'bob bryan mike bryan', '3 - 6 , 4 - 6'], ['runner - up', '7 march 2004', 'scottsdale , usa', 'hard', 'jeff coetzee', 'rick leach brian macphie', '3 - 6 , 1 - 6'], ['winner', '22 august 2004', 'washington , usa', 'hard', 'robbie koenig', 'travis parrott dmitry tursunov', '7 - 6 ( 7 - 3 ) , 6 - 1'], ['runner - up', '5 february 2006', 'delray beach , usa', 'hard', 'wesley moodie', 'mark knowles daniel nestor', '2 - 6 , 3 - 6'], ['winner', '26 february 2006', 'memphis , usa', 'hard', 'ivo karlović', 'james blake mardy fish', '0 - 6 , 7 - 5 ,'], ['runner - up', '25 june 2006', "'s - hertogenbosch , netherlands", 'grass', 'arnaud clément', 'martin damm leander paes', '1 - 6 , 6 - 7 ( 3 - 7 )'], ['runner - up', '14 january 2007', 'auckland , new zealand', 'hard', 'simon aspelin', 'jeff coetzee rogier wassen', '7 - 6 ( 13 - 11 ) , 3 - 6 ,'], ['runner - up', '18 february 2007', 'san jose , usa', 'hard', 'rainer schüttler', 'eric butorac jamie murray', '5 - 7 , 6 - 7 ( 6 - 8 )'], ['runner - up', '16 september 2007', 'beijing , china', 'hard', 'lu yen - hsun', 'rik de voest ashley fisher', '7 - 6 ( 7 - 3 ) , 0 - 6 ,']]
athletics at the 1982 commonwealth games
https://en.wikipedia.org/wiki/Athletics_at_the_1982_Commonwealth_Games
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12972743-3.html.csv
aggregation
the average number of gold medals won at the 1982 commonwealth games was 2.86 .
{'scope': 'all', 'col': '3', 'type': 'average', 'result': '2.86', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'gold'], 'result': '2.86', 'ind': 0, 'tostr': 'avg { all_rows ; gold }'}, '2.86'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; gold } ; 2.86 } = true', 'tointer': 'the average of the gold record of all rows is 2.86 .'}
round_eq { avg { all_rows ; gold } ; 2.86 } = true
the average of the gold record of all rows is 2.86 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'gold_4': 4, '2.86_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'gold_4': 'gold', '2.86_5': '2.86'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'gold_4': [0], '2.86_5': [1]}
['rank', 'nation', 'gold', 'silver', 'bronze', 'total']
[['1', 'england', '11', '10', '11', '32'], ['2', 'australia', '9', '9', '4', '22'], ['3', 'canada', '6', '7', '8', '21'], ['4', 'scotland', '3', '1', '6', '10'], ['5', 'bahamas', '2', '2', '1', '5'], ['6', 'new zealand', '2', '1', '3', '6'], ['7', 'jamaica', '2', '1', '1', '4'], ['8', 'wales', '2', '1', '0', '3'], ['9', 'tanzania', '1', '2', '1', '4'], ['10', 'kenya', '1', '1', '3', '5'], ['11', 'nigeria', '1', '0', '0', '1'], ['12', 'uganda', '0', '2', '0', '2'], ['13', 'northern ireland', '0', '1', '0', '1'], ['14', 'bermuda', '0', '0', '1', '1'], ['total', 'total', '40', '38', '39', '117']]
list of public sector undertakings in india
https://en.wikipedia.org/wiki/List_of_public_sector_undertakings_in_India
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15221362-8.html.csv
majority
most of the public sectors in india were incorporated as services .
{'scope': 'all', 'col': '5', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'services', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'sector', 'services'], 'result': True, 'ind': 0, 'tointer': 'for the sector records of all rows , most of them fuzzily match to services .', 'tostr': 'most_eq { all_rows ; sector ; services } = true'}
most_eq { all_rows ; sector ; services } = true
for the sector records of all rows , most of them fuzzily match to services .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'sector_3': 3, 'services_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'sector_3': 'sector', 'services_4': 'services'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'sector_3': [0], 'services_4': [0]}
['sno', 'company', 'incorporated', 'ministry', 'sector']
[['1', 'air india air transport services ltd', '2003', 'ministry of civil aviation', 'services'], ['2', 'air india charters', '1972', 'ministry of civil aviation', 'services'], ['3', 'air india engineering services ltd', '2006', 'ministry of civil aviation', 'enterprises under construction'], ['4', 'airline allied services ltd', '1983', 'ministry of civil aviation', 'services'], ['5', 'airports authority of india ltd', '1996', 'ministry of civil aviation', 'services']]
adriano leite ribeiro
https://en.wikipedia.org/wiki/Adriano_Leite_Ribeiro
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1142467-2.html.csv
unique
the 2004-2005 season was the only one in which adriano leite ribeiro made 12 appearances .
{'scope': 'all', 'row': '8', 'col': '4', 'col_other': '3', 'criterion': 'equal', 'value': '12', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'apps', '12'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose apps record is equal to 12 .', 'tostr': 'filter_eq { all_rows ; apps ; 12 }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; apps ; 12 } }', 'tointer': 'select the rows whose apps record is equal to 12 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'apps', '12'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose apps record is equal to 12 .', 'tostr': 'filter_eq { all_rows ; apps ; 12 }'}, 'season'], 'result': '2004 - 2005', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; apps ; 12 } ; season }'}, '2004 - 2005'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; apps ; 12 } ; season } ; 2004 - 2005 }', 'tointer': 'the season record of this unqiue row is 2004 - 2005 .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; apps ; 12 } } ; eq { hop { filter_eq { all_rows ; apps ; 12 } ; season } ; 2004 - 2005 } } = true', 'tointer': 'select the rows whose apps record is equal to 12 . there is only one such row in the table . the season record of this unqiue row is 2004 - 2005 .'}
and { only { filter_eq { all_rows ; apps ; 12 } } ; eq { hop { filter_eq { all_rows ; apps ; 12 } ; season } ; 2004 - 2005 } } = true
select the rows whose apps record is equal to 12 . there is only one such row in the table . the season record of this unqiue row is 2004 - 2005 .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_eq_0': 0, 'all_rows_6': 6, 'apps_7': 7, '12_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'season_9': 9, '2004 - 2005_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_eq_0': 'filter_eq', 'all_rows_6': 'all_rows', 'apps_7': 'apps', '12_8': '12', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'season_9': 'season', '2004 - 2005_10': '2004 - 2005'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_eq_0': [1, 2], 'all_rows_6': [0], 'apps_7': [0], '12_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'season_9': [2], '2004 - 2005_10': [3]}
['national team', 'club', 'season', 'apps', 'goals']
[['brazil', 'flamengo', '2000', '1', '0'], ['brazil', 'flamengo', '2001', '0', '0'], ['brazil', 'internazionale', '2001 - 2002', '0', '0'], ['brazil', 'fiorentina', '2001 - 2002', '0', '0'], ['brazil', 'parma', '2002 - 2003', '5', '3'], ['brazil', 'parma', '2003 - 2004', '1', '0'], ['brazil', 'internazionale', '2003 - 2004', '6', '7'], ['brazil', 'internazionale', '2004 - 2005', '12', '7'], ['brazil', 'internazionale', '2005 - 2006', '11', '8'], ['brazil', 'internazionale', '2006 - 2007', '1', '0'], ['brazil', 'internazionale', '2007 - 2008', '0', '0'], ['brazil', 'são paulo', '2008', '4', '0'], ['brazil', 'internazionale', '2008 - 2009', '3', '2'], ['brazil', 'flamengo', '2009', '3', '0'], ['brazil', 'flamengo', '2010', '1', '0'], ['total', 'total', 'total', '48', '27']]
st. catharines black hawks
https://en.wikipedia.org/wiki/St._Catharines_Black_Hawks
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1143966-1.html.csv
aggregation
from the 1962-63 season to the 1974-75 season , the st. catharines black hawks won an average of 26 games per season .
{'scope': 'all', 'col': '3', 'type': 'average', 'result': '26', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'won'], 'result': '26', 'ind': 0, 'tostr': 'avg { all_rows ; won }'}, '26'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; won } ; 26 } = true', 'tointer': 'the average of the won record of all rows is 26 .'}
round_eq { avg { all_rows ; won } ; 26 } = true
the average of the won record of all rows is 26 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'won_4': 4, '26_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'won_4': 'won', '26_5': '26'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'won_4': [0], '26_5': [1]}
['season', 'games', 'won', 'lost', 'tied', 'points', 'pct %', 'goals for', 'goals against', 'standing']
[['1962 - 63', '50', '15', '24', '11', '41', '0.410', '172', '224', '5th oha'], ['1963 - 64', '56', '29', '20', '7', '65', '0.580', '244', '215', '3rd oha'], ['1964 - 65', '56', '19', '28', '9', '41', '0.420', '236', '253', '7th oha'], ['1965 - 66', '48', '15', '26', '7', '37', '0.385', '182', '231', '8th oha'], ['1966 - 67', '48', '19', '20', '9', '47', '0.490', '175', '155', '5th oha'], ['1967 - 68', '54', '21', '30', '3', '45', '0.417', '200', '211', '6th oha'], ['1968 - 69', '54', '31', '11', '12', '74', '0.685', '296', '206', '2nd oha'], ['1969 - 70', '54', '30', '18', '6', '66', '0.611', '268', '210', '3rd oha'], ['1970 - 71', '62', '40', '17', '5', '85', '0.685', '343', '236', '2nd oha'], ['1971 - 72', '63', '25', '31', '7', '57', '0.452', '258', '311', '7th oha'], ['1972 - 73', '63', '24', '28', '11', '59', '0.468', '280', '318', '5th oha'], ['1973 - 74', '70', '41', '23', '6', '88', '0.629', '358', '278', '2nd oha'], ['1974 - 75', '70', '30', '33', '7', '67', '0.479', '284', '300', '6th oha']]
1959 toronto argonauts season
https://en.wikipedia.org/wiki/1959_Toronto_Argonauts_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-24136814-3.html.csv
majority
the majority of the games resulted in losses for the toronto argonauts .
{'scope': 'all', 'col': '5', 'most_or_all': 'most', 'criterion': 'fuzzily_match', 'value': 'l', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'final score', 'l'], 'result': True, 'ind': 0, 'tointer': 'for the final score records of all rows , most of them fuzzily match to l .', 'tostr': 'most_eq { all_rows ; final score ; l } = true'}
most_eq { all_rows ; final score ; l } = true
for the final score records of all rows , most of them fuzzily match to l .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'final score_3': 3, 'l_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'final score_3': 'final score', 'l_4': 'l'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'final score_3': [0], 'l_4': [0]}
['week', 'date', 'opponent', 'location', 'final score', 'attendance', 'record']
[['1', 'august 18', 'rough riders', 'landsdowne park', 'w 21 - 20', '20675', '1 - 0 - 0'], ['1', 'august 21', 'tiger - cats', 'exhibition stadium', 'l 16 - 7', '27554', '1 - 1 - 0'], ['2', 'august 28', 'alouettes', 'molson stadium', 'l 24 - 6', '23927', '1 - 2 - 0'], ['3', 'september 7', 'tiger - cats', 'civic stadium', 'l 37 - 3', '24245', '1 - 3 - 0'], ['4', 'september 13', 'rough riders', 'exhibition stadium', 'w 19 - 6', '25849', '2 - 3 - 0'], ['5', 'september 16', 'rough riders', 'landsdowne park', 'l 28 - 1', '13097', '2 - 4 - 0'], ['5', 'september 20', 'tiger - cats', 'exhibition stadium', 'l 34 - 17', '27883', '2 - 5 - 0'], ['6', 'september 26', 'alouettes', 'exhibition stadium', 'w 39 - 9', '20035', '3 - 5 - 0'], ['7', 'october 3', 'alouettes', 'molson stadium', 'w 37 - 14', '22152', '4 - 5 - 0'], ['8', 'october 10', 'tiger - cats', 'exhibition stadium', 'l 13 - 7', '26223', '4 - 6 - 0'], ['8', 'october 12', 'tiger - cats', 'civic stadium', 'l 20 - 7', '22068', '4 - 7 - 0'], ['9', 'october 17', 'alouettes', 'exhibition stadium', 'l 4 - 3', '19941', '4 - 8 - 0'], ['10', 'october 24', 'rough riders', 'landsdowne park', 'l 18 - 4', '14996', '4 - 9 - 0']]
welsh league
https://en.wikipedia.org/wiki/Welsh_League
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-28201906-1.html.csv
aggregation
clubs in the welsh league had an average of 9.4 points each .
{'scope': 'all', 'col': '9', 'type': 'average', 'result': '9.4', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'points'], 'result': '9.4', 'ind': 0, 'tostr': 'avg { all_rows ; points }'}, '9.4'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; points } ; 9.4 } = true', 'tointer': 'the average of the points record of all rows is 9.4 .'}
round_eq { avg { all_rows ; points } ; 9.4 } = true
the average of the points record of all rows is 9.4 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'points_4': 4, '9.4_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'points_4': 'points', '9.4_5': '9.4'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'points_4': [0], '9.4_5': [1]}
['position', 'club', 'played', 'won', 'drawn', 'lost', 'pts for', 'pts agst', 'points', 'percent']
[['1', 'ebbw vale rlfc', '8', '7', '0', '1', '135', '21', '14', '87.50 %'], ['2', 'mid - rhondda rlfc', '9', '6', '0', '3', '59', '45', '12', '66.67 %'], ['3', 'merthyr tydfil rlfc', '10', '5', '0', '5', '101', '70', '10', '50.00 %'], ['4', 'treherbert rlfc', '9', '3', '1', '5', '64', '105', '7', '38.89 %'], ['5', 'aberdare rlfc', '8', '3', '0', '5', '64', '108', '4', '37.50 %']]
1970 in paleontology
https://en.wikipedia.org/wiki/1970_in_paleontology
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15678221-2.html.csv
unique
the only specimen found in south africa in 1970 was the likhoelesaurus .
{'scope': 'all', 'row': '4', 'col': '6', 'col_other': '1', 'criterion': 'equal', 'value': 'south africa', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'location', 'south africa'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose location record fuzzily matches to south africa .', 'tostr': 'filter_eq { all_rows ; location ; south africa }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; location ; south africa } }', 'tointer': 'select the rows whose location record fuzzily matches to south africa . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'location', 'south africa'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose location record fuzzily matches to south africa .', 'tostr': 'filter_eq { all_rows ; location ; south africa }'}, 'name'], 'result': 'likhoelesaurus', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; location ; south africa } ; name }'}, 'likhoelesaurus'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; location ; south africa } ; name } ; likhoelesaurus }', 'tointer': 'the name record of this unqiue row is likhoelesaurus .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; location ; south africa } } ; eq { hop { filter_eq { all_rows ; location ; south africa } ; name } ; likhoelesaurus } } = true', 'tointer': 'select the rows whose location record fuzzily matches to south africa . there is only one such row in the table . the name record of this unqiue row is likhoelesaurus .'}
and { only { filter_eq { all_rows ; location ; south africa } } ; eq { hop { filter_eq { all_rows ; location ; south africa } ; name } ; likhoelesaurus } } = true
select the rows whose location record fuzzily matches to south africa . there is only one such row in the table . the name record of this unqiue row is likhoelesaurus .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'location_7': 7, 'south africa_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'name_9': 9, 'likhoelesaurus_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'location_7': 'location', 'south africa_8': 'south africa', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'name_9': 'name', 'likhoelesaurus_10': 'likhoelesaurus'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'location_7': [0], 'south africa_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'name_9': [2], 'likhoelesaurus_10': [3]}
['name', 'novelty', 'status', 'authors', 'unit', 'location']
[['daspletosaurus', 'gen et sp nov', 'valid', 'russell', 'oldman formation', 'usa'], ['deinocheirus', 'fam , gen et sp nov', 'valid', 'osmã cubiclska & roniewicz', 'nemegt formation', 'mongolia'], ['dilophosaurus', 'gen nov', 'valid', 'welles', 'kayenta formation', 'usa'], ['likhoelesaurus', 'gen et sp nov', 'nomen nudum', 'ellenberger', 'lower elliot formation', 'south africa'], ['megadontosaurus', 'gen et sp nov', 'nomen nudum', 'brown vide : ostrom', 'cloverly formation', 'usa'], ['microvenator', 'gen et sp nov', 'valid', 'ostrom', 'cloverly formation', 'usa'], ['sauropelta', 'gen et sp nov', 'valid', 'ostrom', 'cloverly formation', 'usa'], ['staurikosaurus', 'gen et sp nov', 'valid', 'colbert', 'santa maria formation', 'brazil'], ['tenontosaurus', 'gen et sp nov', 'valid', 'ostrom', 'cloverly formation', 'usa']]
greater rio de janeiro
https://en.wikipedia.org/wiki/Greater_Rio_de_Janeiro
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14986292-1.html.csv
ordinal
metropolitan rio janeiro is the administrative division with the highest population 2000 census among those with area more than 100 km square .
{'scope': 'subset', 'row': '17', 'col': '3', 'order': '1', 'col_other': '1', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'subset': {'col': '2', 'criterion': 'greater_than', 'value': '100'}}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'area ( km square )', '100'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; area ( km square ) ; 100 }', 'tointer': 'select the rows whose area ( km square ) record is greater than 100 .'}, 'population 2000 census', '1'], 'result': None, 'ind': 1, 'tostr': 'nth_argmax { filter_greater { all_rows ; area ( km square ) ; 100 } ; population 2000 census ; 1 }'}, 'administrative division'], 'result': 'metropolitan rio janeiro', 'ind': 2, 'tostr': 'hop { nth_argmax { filter_greater { all_rows ; area ( km square ) ; 100 } ; population 2000 census ; 1 } ; administrative division }'}, 'metropolitan rio janeiro'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { nth_argmax { filter_greater { all_rows ; area ( km square ) ; 100 } ; population 2000 census ; 1 } ; administrative division } ; metropolitan rio janeiro } = true', 'tointer': 'select the rows whose area ( km square ) record is greater than 100 . select the row whose population 2000 census record of these rows is 1st maximum . the administrative division record of this row is metropolitan rio janeiro .'}
eq { hop { nth_argmax { filter_greater { all_rows ; area ( km square ) ; 100 } ; population 2000 census ; 1 } ; administrative division } ; metropolitan rio janeiro } = true
select the rows whose area ( km square ) record is greater than 100 . select the row whose population 2000 census record of these rows is 1st maximum . the administrative division record of this row is metropolitan rio janeiro .
4
4
{'str_eq_3': 3, 'result_4': 4, 'str_hop_2': 2, 'nth_argmax_1': 1, 'filter_greater_0': 0, 'all_rows_5': 5, 'area (km square)_6': 6, '100_7': 7, 'population 2000 census_8': 8, '1_9': 9, 'administrative division_10': 10, 'metropolitan rio janeiro_11': 11}
{'str_eq_3': 'str_eq', 'result_4': 'true', 'str_hop_2': 'str_hop', 'nth_argmax_1': 'nth_argmax', 'filter_greater_0': 'filter_greater', 'all_rows_5': 'all_rows', 'area (km square)_6': 'area ( km square )', '100_7': '100', 'population 2000 census_8': 'population 2000 census', '1_9': '1', 'administrative division_10': 'administrative division', 'metropolitan rio janeiro_11': 'metropolitan rio janeiro'}
{'str_eq_3': [4], 'result_4': [], 'str_hop_2': [3], 'nth_argmax_1': [2], 'filter_greater_0': [1], 'all_rows_5': [0], 'area (km square)_6': [0], '100_7': [0], 'population 2000 census_8': [1], '1_9': [1], 'administrative division_10': [2], 'metropolitan rio janeiro_11': [3]}
['administrative division', 'area ( km square )', 'population 2000 census', 'population ( 2010 census )', 'population density 2010 ( / km square )']
[['belford roxo', '79', '434474', '469261', '5940'], ['duque de caxias', '464.5', '775456', '855046', '1840'], ['guapimirim', '361', '37952', '51487', '143'], ['itaboraí', '424.2', '187479', '218090', '514'], ['japeri', '82.9', '83278', '95391', '1151'], ['magé', '386.6', '205830', '228150', '590'], ['mesquita', '34.8', '0', '168403', '4839'], ['nilópolis', '19.4', '153712', '157483', '8118'], ['niterói', '129.3', '459451', '487327', '3769'], ['nova iguaçu', '523.8', '920599', '797212', '1518'], ['queimados', '77', '121993', '137938', '1791'], ['rio de janeiro', '1260', '5857904', '6323037', '5018'], ['são gonçalo', '249.1', '891119', '1013901', '4014'], ['são joão de meriti', '34.8', '449476', '459356', '13200'], ['seropédica', '284', '65260', '78183', '275'], ['tanguá', '147', '26057', '30731', '209'], ['metropolitan rio janeiro', '4557.4', '10670040', '12603936', '2535']]
flora , norway
https://en.wikipedia.org/wiki/Flora%2C_Norway
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-178381-1.html.csv
majority
the majority of these churches were built in kinn parish .
{'scope': 'all', 'col': '1', 'most_or_all': 'all', 'criterion': 'equal', 'value': 'kinn parish', 'subset': None}
{'func': 'all_str_eq', 'args': ['all_rows', 'parish ( prestegjeld )', 'kinn parish'], 'result': True, 'ind': 0, 'tointer': 'for the parish ( prestegjeld ) records of all rows , all of them fuzzily match to kinn parish .', 'tostr': 'all_eq { all_rows ; parish ( prestegjeld ) ; kinn parish } = true'}
all_eq { all_rows ; parish ( prestegjeld ) ; kinn parish } = true
for the parish ( prestegjeld ) records of all rows , all of them fuzzily match to kinn parish .
1
1
{'all_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'parish (prestegjeld)_3': 3, 'kinn parish_4': 4}
{'all_str_eq_0': 'all_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'parish (prestegjeld)_3': 'parish ( prestegjeld )', 'kinn parish_4': 'kinn parish'}
{'all_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'parish (prestegjeld)_3': [0], 'kinn parish_4': [0]}
['parish ( prestegjeld )', 'sub - parish ( sokn )', 'church name', 'year built', 'location of the church']
[['kinn parish', 'bru', 'askrova bedehuskapell', '1957', 'espeset'], ['kinn parish', 'bru', 'stavang kyrkje', '1957', 'stavang'], ['kinn parish', 'eikefjord', 'eikefjord kyrkje', '1812', 'eikefjord'], ['kinn parish', 'kinn', 'batalden bedehuskapell', '1907', 'fanøya'], ['kinn parish', 'kinn', 'florø kyrkje', '1882', 'florø'], ['kinn parish', 'kinn', 'kinnakyrkje', '12th century', 'kinn'], ['kinn parish', 'nordal', 'nordal kyrkje', '1898', 'nordalen']]
tampa bay rowdies ( 1975 - 1993 )
https://en.wikipedia.org/wiki/Tampa_Bay_Rowdies_%281975%E2%80%931993%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1428018-3.html.csv
ordinal
the 2nd highest average attendance for the rowdies was in 1978 .
{'row': '4', 'col': '5', 'order': '2', 'col_other': '1', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'avg attend', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; avg attend ; 2 }'}, 'indoor year'], 'result': '1978', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; avg attend ; 2 } ; indoor year }'}, '1978'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; avg attend ; 2 } ; indoor year } ; 1978 } = true', 'tointer': 'select the row whose avg attend record of all rows is 2nd maximum . the indoor year record of this row is 1978 .'}
eq { hop { nth_argmax { all_rows ; avg attend ; 2 } ; indoor year } ; 1978 } = true
select the row whose avg attend record of all rows is 2nd maximum . the indoor year record of this row is 1978 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'avg attend_5': 5, '2_6': 6, 'indoor year_7': 7, '1978_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'avg attend_5': 'avg attend', '2_6': '2', 'indoor year_7': 'indoor year', '1978_8': '1978'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'avg attend_5': [0], '2_6': [0], 'indoor year_7': [1], '1978_8': [2]}
['indoor year', 'record', 'regular season finish', 'playoffs', 'avg attend']
[['1975', '3 - 1', '1st , region 3', 'runners - up', '4235'], ['1976', '4 - 0', '1st , eastern region', 'nasl champions', '5458'], ['1977', '1 - 1', '( friendlies only )', 'none', '5685'], ['1978', '6 - 2', '( friendlies only )', 'none', '5901'], ['1979', '3 - 2', '2nd , budweiser invitational ( 2 - 0 )', 'runners - up', '6181'], ['1979 - 1980', '8 - 4', '2nd , eastern division', 'nasl champions', '5712'], ['1980 - 1981', '9 - 9', '2nd , eastern division', 'did not qualify', '5175'], ['1981 - 1982', '11 - 7', '2nd , cent division , american conference', 'runners - up', '5372'], ['1983', '10 - 2', '( 2nd , in grand prix preliminaries )', 'nasl grand prix champions', '4771'], ['1983 - 1984', '9 - 23', '7th', 'did not qualify', '2334']]
2007 - 08 new orleans hornets season
https://en.wikipedia.org/wiki/2007%E2%80%9308_New_Orleans_Hornets_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11963536-8.html.csv
count
the hornets were the visiting team in eight games .
{'scope': 'all', 'criterion': 'fuzzily_match', 'value': 'hornets', 'result': '8', 'col': '2', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'visitor', 'hornets'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose visitor record fuzzily matches to hornets .', 'tostr': 'filter_eq { all_rows ; visitor ; hornets }'}], 'result': '8', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; visitor ; hornets } }', 'tointer': 'select the rows whose visitor record fuzzily matches to hornets . the number of such rows is 8 .'}, '8'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; visitor ; hornets } } ; 8 } = true', 'tointer': 'select the rows whose visitor record fuzzily matches to hornets . the number of such rows is 8 .'}
eq { count { filter_eq { all_rows ; visitor ; hornets } } ; 8 } = true
select the rows whose visitor record fuzzily matches to hornets . the number of such rows is 8 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'visitor_5': 5, 'hornets_6': 6, '8_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'visitor_5': 'visitor', 'hornets_6': 'hornets', '8_7': '8'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'visitor_5': [0], 'hornets_6': [0], '8_7': [2]}
['date', 'visitor', 'score', 'home', 'leading scorer', 'attendance', 'record']
[['2 march 2008', 'hornets', 'l 84 - 101 ( ot )', 'wizards', 'peja stojakovic ( 17 )', '20173', '39 - 19'], ['3 march 2008', 'hornets', 'w 100 - 88 ( ot )', 'knicks', 'chris paul ( 27 )', '18467', '40 - 19'], ['5 march 2008', 'hawks', 'w 116 - 101 ( ot )', 'hornets', 'peja stojakovic ( 29 )', '17430', '41 - 19'], ['7 march 2008', 'nets', 'w 107 - 96 ( ot )', 'hornets', 'chris paul ( 25 )', '17225', '42 - 19'], ['8 march 2008', 'hornets', 'l 96 - 106 ( ot )', 'rockets', 'chris paul ( 37 )', '18279', '42 - 20'], ['12 march 2008', 'spurs', 'w 100 - 75 ( ot )', 'hornets', 'david west ( 29 )', '17419', '43 - 20'], ['14 march 2008', 'lakers', 'w 108 - 98 ( ot )', 'hornets', 'chris paul ( 27 )', '18299', '44 - 20'], ['16 march 2008', 'hornets', 'l 84 - 105 ( ot )', 'pistons', 'peja stojakovic ( 21 )', '22076', '44 - 21'], ['17 march 2008', 'bulls', 'w 108 - 97 ( ot )', 'hornets', 'chris paul ( 37 )', '17337', '45 - 21'], ['19 march 2008', 'rockets', 'w 90 - 69 ( ot )', 'hornets', 'bonzi wells ( 25 )', '18056', '46 - 21'], ['22 march 2008', 'celtics', 'w 113 - 106 ( ot )', 'hornets', 'david west ( 37 )', '18380', '47 - 21'], ['25 march 2008', 'hornets', 'w 114 - 106 ( ot )', 'pacers', 'david west ( 35 )', '10829', '48 - 21'], ['26 march 2008', 'hornets', 'w 100 - 99 ( ot )', 'cavaliers', 'peja stojakovic ( 25 )', '20562', '49 - 21'], ['28 march 2008', 'hornets', 'l 92 - 112 ( ot )', 'celtics', 'chris paul ( 22 )', '18624', '49 - 22'], ['30 march 2008', 'hornets', 'w 118 - 111 ( ot )', 'raptors', 'david west ( 32 )', '19800', '50 - 22']]
united states house of representatives elections , 1954
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1954
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1342013-34.html.csv
aggregation
the winners of the 1954 us house of representatives elections won by an average of 57 % of the vote .
{'scope': 'all', 'col': '6', 'type': 'average', 'result': '57 %', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'candidates'], 'result': '57 %', 'ind': 0, 'tostr': 'avg { all_rows ; candidates }'}, '57 %'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; candidates } ; 57 % } = true', 'tointer': 'the average of the candidates record of all rows is 57 % .'}
round_eq { avg { all_rows ; candidates } ; 57 % } = true
the average of the candidates record of all rows is 57 % .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'candidates_4': 4, '57%_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'candidates_4': 'candidates', '57%_5': '57 %'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'candidates_4': [0], '57%_5': [1]}
['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']
[['ohio 2', 'william e hess', 'republican', '1950', 're - elected', 'william e hess ( r ) 58.4 % earl t wagner ( d ) 41.6 %'], ['ohio 6', 'james g polk', 'democratic', '1948', 're - elected', 'james g polk ( d ) 52.2 % leo blackburn ( r ) 47.8 %'], ['ohio 12', 'john m vorys', 'republican', '1938', 're - elected', 'john m vorys ( r ) 61.5 % jacob f myers ( d ) 38.5 %'], ['ohio 14', 'william h ayres', 'republican', '1950', 're - elected', 'william h ayres ( r ) 54.6 % john l smith ( d ) 45.4 %'], ['ohio 16', 'frank t bow', 'republican', '1950', 're - elected', 'frank t bow ( r ) 58.3 % thomas h nichols ( d ) 41.7 %']]
2010 - 11 tff first league
https://en.wikipedia.org/wiki/2010%E2%80%9311_TFF_First_League
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-27091128-2.html.csv
majority
most of the managers in the 2010-2011 tff first league that left did so because their contract ended .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'contract ended', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'manner of departure', 'contract ended'], 'result': True, 'ind': 0, 'tointer': 'for the manner of departure records of all rows , most of them fuzzily match to contract ended .', 'tostr': 'most_eq { all_rows ; manner of departure ; contract ended } = true'}
most_eq { all_rows ; manner of departure ; contract ended } = true
for the manner of departure records of all rows , most of them fuzzily match to contract ended .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'manner of departure_3': 3, 'contract ended_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'manner of departure_3': 'manner of departure', 'contract ended_4': 'contract ended'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'manner of departure_3': [0], 'contract ended_4': [0]}
['team', 'outgoing manager', 'manner of departure', 'date of vacancy', 'replaced by', 'date of appointment']
[['ankaraspor', 'jürgen röber', 'contract cancelled', '07.12.2009', 'önder özen', '09.07.2010'], ['boluspor', 'cüneyt karakuş', 'contract ended', '31.05.2010', 'levent eriş', '02.06.2010'], ['mersin idmanyurdu', 'ergün penbe', 'contract ended', '31.05.2010', 'yüksel yeşilova', '03.06.2010'], ['kartalspor', 'kadir özcan', 'contract ended', '31.05.2010', 'ergün penbe', '08.06.2010'], ['orduspor', 'ahmet akcan', 'contract ended', '31.05.2010', 'uğur tütüneker', '10.06.2010'], ['altay', 'güvenç kurtar', 'contract ended', '31.05.2010', 'ercan ertemçöz', '12.06.2010'], ['giresunspor', 'levent eriş', 'contract ended', '31.05.2010', 'hüsnü özkara', '18.06.2010'], ['diyarbakırspor', 'mehmet budakın', 'contract ended', '31.05.2010', 'suat kaya', '06.07.2010']]
1971 new york jets season
https://en.wikipedia.org/wiki/1971_New_York_Jets_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-13963486-2.html.csv
ordinal
in the 1971 new york jets season , the 1st game they won was against the opponent miami dolphins .
{'scope': 'subset', 'row': '3', 'col': '2', 'order': '1', 'col_other': '3', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'subset': {'col': '4', 'criterion': 'fuzzily_match', 'value': 'w'}}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'result', 'w'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; result ; w }', 'tointer': 'select the rows whose result record fuzzily matches to w .'}, 'date', '1'], 'result': None, 'ind': 1, 'tostr': 'nth_argmin { filter_eq { all_rows ; result ; w } ; date ; 1 }'}, 'opponent'], 'result': 'miami dolphins', 'ind': 2, 'tostr': 'hop { nth_argmin { filter_eq { all_rows ; result ; w } ; date ; 1 } ; opponent }'}, 'miami dolphins'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { nth_argmin { filter_eq { all_rows ; result ; w } ; date ; 1 } ; opponent } ; miami dolphins } = true', 'tointer': 'select the rows whose result record fuzzily matches to w . select the row whose date record of these rows is 1st minimum . the opponent record of this row is miami dolphins .'}
eq { hop { nth_argmin { filter_eq { all_rows ; result ; w } ; date ; 1 } ; opponent } ; miami dolphins } = true
select the rows whose result record fuzzily matches to w . select the row whose date record of these rows is 1st minimum . the opponent record of this row is miami dolphins .
4
4
{'str_eq_3': 3, 'result_4': 4, 'str_hop_2': 2, 'nth_argmin_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'result_6': 6, 'w_7': 7, 'date_8': 8, '1_9': 9, 'opponent_10': 10, 'miami dolphins_11': 11}
{'str_eq_3': 'str_eq', 'result_4': 'true', 'str_hop_2': 'str_hop', 'nth_argmin_1': 'nth_argmin', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'result_6': 'result', 'w_7': 'w', 'date_8': 'date', '1_9': '1', 'opponent_10': 'opponent', 'miami dolphins_11': 'miami dolphins'}
{'str_eq_3': [4], 'result_4': [], 'str_hop_2': [3], 'nth_argmin_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'result_6': [0], 'w_7': [0], 'date_8': [1], '1_9': [1], 'opponent_10': [2], 'miami dolphins_11': [3]}
['week', 'date', 'opponent', 'result', 'game site', 'attendance']
[['1', '1971 - 09 - 19', 'baltimore colts', 'l 22 - 0', 'memorial stadium', '56458'], ['2', '1971 - 09 - 27', 'st louis cardinals', 'l 17 - 10', 'busch memorial stadium', '50358'], ['3', '1971 - 10 - 03', 'miami dolphins', 'w 14 - 10', 'miami orange bowl', '70670'], ['4', '1971 - 10 - 10', 'new england patriots', 'l 20 - 0', 'schafer stadium', '61357'], ['5', '1971 - 10 - 17', 'buffalo bills', 'w 28 - 17', 'shea stadium', '61948'], ['6', '1971 - 10 - 24', 'miami dolphins', 'l 30 - 14', 'shea stadium', '62130'], ['7', '1971 - 10 - 31', 'san diego chargers', 'l 49 - 21', 'san diego stadium', '44786'], ['8', '1971 - 11 - 07', 'kansas city chiefs', 'w 13 - 10', 'shea stadium', '62812'], ['9', '1971 - 11 - 14', 'baltimore colts', 'l 14 - 13', 'shea stadium', '63947'], ['10', '1971 - 11 - 21', 'buffalo bills', 'w 20 - 7', 'war memorial stadium', '41577'], ['11', '1971 - 11 - 28', 'san francisco 49ers', 'l 24 - 21', 'shea stadium', '63936'], ['12', '1971 - 12 - 04', 'dallas cowboys', 'l 52 - 10', 'texas stadium', '66689'], ['13', '1971 - 12 - 12', 'new england patriots', 'w 13 - 6', 'shea stadium', '63175'], ['14', '1971 - 12 - 19', 'cincinnati bengals', 'w 35 - 21', 'shea stadium', '63151']]
1988 open championship
https://en.wikipedia.org/wiki/1988_Open_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18139254-4.html.csv
count
11 players had a score of 71 in the 1988 open championship .
{'scope': 'all', 'criterion': 'equal', 'value': '71', 'result': '11', 'col': '4', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'score', '71'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose score record is equal to 71 .', 'tostr': 'filter_eq { all_rows ; score ; 71 }'}], 'result': '11', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; score ; 71 } }', 'tointer': 'select the rows whose score record is equal to 71 . the number of such rows is 11 .'}, '11'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; score ; 71 } } ; 11 } = true', 'tointer': 'select the rows whose score record is equal to 71 . the number of such rows is 11 .'}
eq { count { filter_eq { all_rows ; score ; 71 } } ; 11 } = true
select the rows whose score record is equal to 71 . the number of such rows is 11 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'score_5': 5, '71_6': 6, '11_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'score_5': 'score', '71_6': '71', '11_7': '11'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'score_5': [0], '71_6': [0], '11_7': [2]}
['place', 'player', 'country', 'score', 'to par']
[['1', 'seve ballesteros', 'spain', '67', '4'], ['t2', 'brad faxon', 'united states', '69', '2'], ['t2', 'wayne grady', 'australia', '69', '2'], ['t4', 'don pooley', 'united states', '70', '1'], ['t4', 'nick price', 'zimbabwe', '70', '1'], ['t4', 'noel ratcliffe', 'australia', '70', '1'], ['t4', 'peter senior', 'australia', '70', '1'], ['t8', 'andy bean', 'united states', '71', 'e'], ['t8', 'bob charles', 'new zealand', '71', 'e'], ['t8', 'howard clark', 'england', '71', 'e'], ['t8', 'nick faldo', 'england', '71', 'e'], ['t8', 'david frost', 'south africa', '71', 'e'], ['t8', 'jay haas', 'united states', '71', 'e'], ['t8', 'mark james', 'england', '71', 'e'], ['t8', 'gary koch', 'united states', '71', 'e'], ['t8', 'david j russell', 'england', '71', 'e'], ['t8', 'andrew sherborne', 'england', '71', 'e'], ['t8', 'bob tway', 'united states', '71', 'e']]
list of government schools in new south wales : q - z
https://en.wikipedia.org/wiki/List_of_Government_schools_in_New_South_Wales%3A_Q%E2%80%93Z
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18155481-6.html.csv
superlative
the government school in vincentia , new south wales , that was founded the earliest is vincentia public school .
{'scope': 'subset', 'col_superlative': '4', 'row_superlative': '10', 'value_mentioned': 'no', 'max_or_min': 'min', 'other_col': '1,2', 'subset': {'col': '2', 'criterion': 'equal', 'value': 'vincentia'}}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'suburb / town', 'vincentia'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; suburb / town ; vincentia }', 'tointer': 'select the rows whose suburb / town record fuzzily matches to vincentia .'}, 'founded'], 'result': None, 'ind': 1, 'tostr': 'argmin { filter_eq { all_rows ; suburb / town ; vincentia } ; founded }'}, 'school'], 'result': 'vincentia public school', 'ind': 2, 'tostr': 'hop { argmin { filter_eq { all_rows ; suburb / town ; vincentia } ; founded } ; school }'}, 'vincentia public school'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { argmin { filter_eq { all_rows ; suburb / town ; vincentia } ; founded } ; school } ; vincentia public school } = true', 'tointer': 'select the rows whose suburb / town record fuzzily matches to vincentia . select the row whose founded record of these rows is minimum . the school record of this row is vincentia public school .'}
eq { hop { argmin { filter_eq { all_rows ; suburb / town ; vincentia } ; founded } ; school } ; vincentia public school } = true
select the rows whose suburb / town record fuzzily matches to vincentia . select the row whose founded record of these rows is minimum . the school record of this row is vincentia public school .
4
4
{'str_eq_3': 3, 'result_4': 4, 'str_hop_2': 2, 'argmin_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'suburb / town_6': 6, 'vincentia_7': 7, 'founded_8': 8, 'school_9': 9, 'vincentia public school_10': 10}
{'str_eq_3': 'str_eq', 'result_4': 'true', 'str_hop_2': 'str_hop', 'argmin_1': 'argmin', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'suburb / town_6': 'suburb / town', 'vincentia_7': 'vincentia', 'founded_8': 'founded', 'school_9': 'school', 'vincentia public school_10': 'vincentia public school'}
{'str_eq_3': [4], 'result_4': [], 'str_hop_2': [3], 'argmin_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'suburb / town_6': [0], 'vincentia_7': [0], 'founded_8': [1], 'school_9': [2], 'vincentia public school_10': [3]}
['school', 'suburb / town', 'years', 'founded', 'website']
[['vacy public school', 'vacy', 'k - 6', '1859', 'website'], ['valentine public school', 'valentine', 'k - 6', '1958', 'website'], ['valley view public school', 'wyoming', 'k - 6', '1980', 'website'], ['vardys road public school', 'seven hills', 'k - 6', '1960', 'website'], ['vaucluse public school', 'vaucluse', 'k - 6', '1858', 'website'], ['verona school', 'fairfield east', 'k - 6', '1882', 'website'], ['villawood east public school', 'villawood', 'k - 6', '1955', 'website'], ['villawood north public school', 'fairfield east', 'k - 6', '1953', 'website'], ['vincentia high school', 'vincentia', '712', '1993', 'website'], ['vincentia public school', 'vincentia', 'k - 6', '1992', 'website'], ['vineyard public school', 'vineyard', 'k - 6', '1872', 'website']]
seattle supersonics all - time roster
https://en.wikipedia.org/wiki/Seattle_SuperSonics_all-time_roster
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16772687-15.html.csv
superlative
on the seattle supersonics all-time roster , of the players from the united states , the one with the highest jersey number was frank oleynick .
{'scope': 'subset', 'col_superlative': '3', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': {'col': '2', 'criterion': 'equal', 'value': 'united states'}}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'nationality', 'united states'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; nationality ; united states }', 'tointer': 'select the rows whose nationality record fuzzily matches to united states .'}, 'jersey number ( s )'], 'result': None, 'ind': 1, 'tostr': 'argmax { filter_eq { all_rows ; nationality ; united states } ; jersey number ( s ) }'}, 'player'], 'result': 'frank oleynick', 'ind': 2, 'tostr': 'hop { argmax { filter_eq { all_rows ; nationality ; united states } ; jersey number ( s ) } ; player }'}, 'frank oleynick'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { argmax { filter_eq { all_rows ; nationality ; united states } ; jersey number ( s ) } ; player } ; frank oleynick } = true', 'tointer': 'select the rows whose nationality record fuzzily matches to united states . select the row whose jersey number ( s ) record of these rows is maximum . the player record of this row is frank oleynick .'}
eq { hop { argmax { filter_eq { all_rows ; nationality ; united states } ; jersey number ( s ) } ; player } ; frank oleynick } = true
select the rows whose nationality record fuzzily matches to united states . select the row whose jersey number ( s ) record of these rows is maximum . the player record of this row is frank oleynick .
4
4
{'str_eq_3': 3, 'result_4': 4, 'str_hop_2': 2, 'argmax_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'nationality_6': 6, 'united states_7': 7, 'jersey number (s)_8': 8, 'player_9': 9, 'frank oleynick_10': 10}
{'str_eq_3': 'str_eq', 'result_4': 'true', 'str_hop_2': 'str_hop', 'argmax_1': 'argmax', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'nationality_6': 'nationality', 'united states_7': 'united states', 'jersey number (s)_8': 'jersey number ( s )', 'player_9': 'player', 'frank oleynick_10': 'frank oleynick'}
{'str_eq_3': [4], 'result_4': [], 'str_hop_2': [3], 'argmax_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'nationality_6': [0], 'united states_7': [0], 'jersey number (s)_8': [1], 'player_9': [2], 'frank oleynick_10': [3]}
['player', 'nationality', 'jersey number ( s )', 'position', 'years', 'from']
[['frank oleynick', 'united states', '44', 'pg', '1975 - 1977', 'seattle'], ['kevin ollie', 'united states', '8', 'pg', '2003', 'connecticut'], ['bud olsen', 'united states', '24', 'pf / c', '1967 - 1968', 'louisville'], ['billy owens', 'united states', '30', 'sf / sg', '1999', 'syracuse'], ['olumide oyedeji', 'nigeria', '00', 'c', '2000 - 2002', 'djk würzburg']]
mike beuttler
https://en.wikipedia.org/wiki/Mike_Beuttler
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1226504-1.html.csv
majority
the majority of of mike beuttler 's entries were on the clarke-mordaunt-guthrie platform .
{'scope': 'all', 'col': '2', 'most_or_all': 'most', 'criterion': 'fuzzily_match', 'value': 'clarke - mordaunt - guthrie', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'entrant', 'clarke - mordaunt - guthrie'], 'result': True, 'ind': 0, 'tointer': 'for the entrant records of all rows , most of them fuzzily match to clarke - mordaunt - guthrie .', 'tostr': 'most_eq { all_rows ; entrant ; clarke - mordaunt - guthrie } = true'}
most_eq { all_rows ; entrant ; clarke - mordaunt - guthrie } = true
for the entrant records of all rows , most of them fuzzily match to clarke - mordaunt - guthrie .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'entrant_3': 3, 'clarke - mordaunt - guthrie_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'entrant_3': 'entrant', 'clarke - mordaunt - guthrie_4': 'clarke - mordaunt - guthrie'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'entrant_3': [0], 'clarke - mordaunt - guthrie_4': [0]}
['year', 'entrant', 'chassis', 'engine', 'points']
[['1971', 'clarke - mordaunt - guthrie racing', 'march 711', 'cosworth v8', '0'], ['1971', 'stp march', 'march 711', 'cosworth v8', '0'], ['1972', 'clarke - mordaunt - guthrie racing', 'march 721 g', 'cosworth v8', '0'], ['1973', 'clarke - mordaunt - guthrie - durlacher', 'march 721 g', 'cosworth v8', '0'], ['1973', 'clarke - mordaunt - guthrie - durlacher', 'march 721 g / 731', 'cosworth v8', '0']]
united states house of representatives elections , 1988
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1988
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1341577-22.html.csv
majority
the majority of the united states house of representatives incumbents were from the democratic party .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'democratic', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'party', 'democratic'], 'result': True, 'ind': 0, 'tointer': 'for the party records of all rows , most of them fuzzily match to democratic .', 'tostr': 'most_eq { all_rows ; party ; democratic } = true'}
most_eq { all_rows ; party ; democratic } = true
for the party records of all rows , most of them fuzzily match to democratic .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'party_3': 3, 'democratic_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'party_3': 'party', 'democratic_4': 'democratic'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'party_3': [0], 'democratic_4': [0]}
['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']
[['massachusetts 1', 'silvio conte', 'republican', '1958', 're - elected', 'silvio conte ( r ) 82.7 % john r arden ( d ) 17.3 %'], ['massachusetts 2', 'edward boland', 'democratic', '1952', 'retired democratic hold', 'richard neal ( d ) 80.3 % louis r godena ( i ) 19.7 %'], ['massachusetts 3', 'joseph d early', 'democratic', '1974', 're - elected', 'joseph d early ( d ) unopposed'], ['massachusetts 4', 'barney frank', 'democratic', '1980', 're - elected', 'barney frank ( d ) 70.3 % debra r tucker ( r ) 29.7 %'], ['massachusetts 7', 'ed markey', 'democratic', '1976', 're - elected', 'ed markey ( d ) unopposed'], ['massachusetts 9', 'joe moakley', 'democratic', '1972', 're - elected', 'joe moakley ( d ) unopposed']]
2008 - 09 celtic f.c. season
https://en.wikipedia.org/wiki/2008%E2%80%9309_Celtic_F.C._season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18254488-2.html.csv
ordinal
in the 2008 - 09 celtic f.c. season , the player that scored second highest number of goals won 2 league cups .
{'scope': 'all', 'row': '2', 'col': '6', 'order': '2', 'col_other': '3', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'subset': None}
{'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'total', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; total ; 2 }'}, 'league cup'], 'result': '2', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; total ; 2 } ; league cup }'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; total ; 2 } ; league cup } ; 2 } = true', 'tointer': 'select the row whose total record of all rows is 2nd maximum . the league cup record of this row is 2 .'}
eq { hop { nth_argmax { all_rows ; total ; 2 } ; league cup } ; 2 } = true
select the row whose total record of all rows is 2nd maximum . the league cup record of this row is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'num_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'total_5': 5, '2_6': 6, 'league cup_7': 7, '2_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'num_hop_1': 'num_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'total_5': 'total', '2_6': '2', 'league cup_7': 'league cup', '2_8': '2'}
{'eq_2': [3], 'result_3': [], 'num_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'total_5': [0], '2_6': [0], 'league cup_7': [1], '2_8': [2]}
['player', 'position', 'league cup', 'scottish cup', 'uefa champions league', 'total']
[['scott mcdonald', 'forward', '1', '1', '1', '19'], ['georgios samaras', 'forward', '2', '0', '0', '17'], ['shunsuke nakamura', 'midfielder', '1', '0', '0', '9'], ['scott brown', 'midfielder', '1', '1', '0', '7'], ['aiden mcgeady', 'midfielder', '2', '1', '1', '7'], ['jan vennegoor of hesselink', 'forward', '0', '0', '0', '6'], ['shaun maloney', 'midfielder', '0', '0', '1', '5'], ['cillian sheridan', 'forward', '0', '0', '0', '4'], ['stephen mcmanus', 'defender', '0', '0', '0', '4'], ['glenn loovens', 'defender', '1', '0', '0', '4'], ['paul hartley', 'midfielder', '0', '0', '0', '3'], ['gary caldwell', 'defender', '0', '1', '0', '3'], ['barry robson', 'midfielder', '0', '0', '1', '2'], ["darren o'dea", 'defender', '1', '0', '0', '2'], ['koki mizuno', 'defender', '0', '0', '0', '1'], ['marc crosas', 'defender', '0', '0', '0', '1'], ['lee naylor', 'defender', '0', '0', '0', '1']]
harald ertl
https://en.wikipedia.org/wiki/Harald_Ertl
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1226456-2.html.csv
unique
1978 was the only year he drove an ensign chassis .
{'scope': 'all', 'row': '4', 'col': '3', 'col_other': '1', 'criterion': 'fuzzily_match', 'value': 'ensign', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'chassis', 'ensign'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose chassis record fuzzily matches to ensign .', 'tostr': 'filter_eq { all_rows ; chassis ; ensign }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; chassis ; ensign } }', 'tointer': 'select the rows whose chassis record fuzzily matches to ensign . there is only one such row in the table .'}, {'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'chassis', 'ensign'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose chassis record fuzzily matches to ensign .', 'tostr': 'filter_eq { all_rows ; chassis ; ensign }'}, 'year'], 'result': '1978', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; chassis ; ensign } ; year }'}, '1978'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; chassis ; ensign } ; year } ; 1978 }', 'tointer': 'the year record of this unqiue row is 1978 .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; chassis ; ensign } } ; eq { hop { filter_eq { all_rows ; chassis ; ensign } ; year } ; 1978 } } = true', 'tointer': 'select the rows whose chassis record fuzzily matches to ensign . there is only one such row in the table . the year record of this unqiue row is 1978 .'}
and { only { filter_eq { all_rows ; chassis ; ensign } } ; eq { hop { filter_eq { all_rows ; chassis ; ensign } ; year } ; 1978 } } = true
select the rows whose chassis record fuzzily matches to ensign . there is only one such row in the table . the year record of this unqiue row is 1978 .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'chassis_7': 7, 'ensign_8': 8, 'eq_3': 3, 'num_hop_2': 2, 'year_9': 9, '1978_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'chassis_7': 'chassis', 'ensign_8': 'ensign', 'eq_3': 'eq', 'num_hop_2': 'num_hop', 'year_9': 'year', '1978_10': '1978'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'chassis_7': [0], 'ensign_8': [0], 'eq_3': [4], 'num_hop_2': [3], 'year_9': [2], '1978_10': [3]}
['year', 'entrant', 'chassis', 'engine', 'points']
[['1975', 'warsteiner brewery', 'hesketh 308', 'cosworth v8', '0'], ['1976', 'hesketh racing', 'hesketh 308d', 'cosworth v8', '0'], ['1977', 'hesketh racing', 'hesketh 308e', 'cosworth v8', '0'], ['1978', 'sachs racing', 'ensign n177', 'cosworth v8', '0'], ['1978', 'ats engineering', 'ats hs1', 'cosworth v8', '0'], ['1980', 'team ats', 'ats d4', 'cosworth v8', '0']]
1985 u.s. open ( golf )
https://en.wikipedia.org/wiki/1985_U.S._Open_%28golf%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17231246-4.html.csv
superlative
tze - chung chen had the best score in the 1985 u.s. open golf tournament .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'min', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': ['all_rows', 'score'], 'result': None, 'ind': 0, 'tostr': 'argmin { all_rows ; score }'}, 'player'], 'result': 'tze - chung chen', 'ind': 1, 'tostr': 'hop { argmin { all_rows ; score } ; player }'}, 'tze - chung chen'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmin { all_rows ; score } ; player } ; tze - chung chen } = true', 'tointer': 'select the row whose score record of all rows is minimum . the player record of this row is tze - chung chen .'}
eq { hop { argmin { all_rows ; score } ; player } ; tze - chung chen } = true
select the row whose score record of all rows is minimum . the player record of this row is tze - chung chen .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmin_0': 0, 'all_rows_4': 4, 'score_5': 5, 'player_6': 6, 'tze - chung chen_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmin_0': 'argmin', 'all_rows_4': 'all_rows', 'score_5': 'score', 'player_6': 'player', 'tze - chung chen_7': 'tze - chung chen'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmin_0': [1], 'all_rows_4': [0], 'score_5': [0], 'player_6': [1], 'tze - chung chen_7': [2]}
['place', 'player', 'country', 'score', 'to par']
[['1', 'tze - chung chen', 'taiwan', '65', '- 5'], ['2', 'fred couples', 'united states', '66', '- 4'], ['t3', 'andy bean', 'united states', '69', '- 1'], ['t3', 'rick fehr', 'united states', '69', '- 1'], ['t3', 'jay haas', 'united states', '69', '- 1'], ['t3', 'tom kite', 'united states', '69', '- 1'], ['t3', 'mike reid', 'united states', '69', '- 1'], ['t8', 'dave barr', 'canada', '70', 'e'], ['t8', 'bill glasson', 'united states', '70', 'e'], ['t8', 'skeeter heath', 'united states', '70', 'e'], ['t8', 'andy north', 'united states', '70', 'e'], ['t8', 'gene sauers', 'united states', '70', 'e'], ['t8', 'payne stewart', 'united states', '70', 'e'], ['t8', 'lanny wadkins', 'united states', '70', 'e']]
1992 open championship
https://en.wikipedia.org/wiki/1992_Open_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18122130-4.html.csv
unique
per - ulrik johansson was the only player that originated from sweden in the 1992 open championship .
{'scope': 'all', 'row': '9', 'col': '3', 'col_other': '2', 'criterion': 'fuzzily_match', 'value': 'sweden', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'country', 'sweden'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose country record fuzzily matches to sweden .', 'tostr': 'filter_eq { all_rows ; country ; sweden }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; country ; sweden } }', 'tointer': 'select the rows whose country record fuzzily matches to sweden . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'country', 'sweden'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose country record fuzzily matches to sweden .', 'tostr': 'filter_eq { all_rows ; country ; sweden }'}, 'player'], 'result': 'per - ulrik johansson', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; country ; sweden } ; player }'}, 'per - ulrik johansson'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; country ; sweden } ; player } ; per - ulrik johansson }', 'tointer': 'the player record of this unqiue row is per - ulrik johansson .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; country ; sweden } } ; eq { hop { filter_eq { all_rows ; country ; sweden } ; player } ; per - ulrik johansson } } = true', 'tointer': 'select the rows whose country record fuzzily matches to sweden . there is only one such row in the table . the player record of this unqiue row is per - ulrik johansson .'}
and { only { filter_eq { all_rows ; country ; sweden } } ; eq { hop { filter_eq { all_rows ; country ; sweden } ; player } ; per - ulrik johansson } } = true
select the rows whose country record fuzzily matches to sweden . there is only one such row in the table . the player record of this unqiue row is per - ulrik johansson .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'country_7': 7, 'sweden_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'player_9': 9, 'per - ulrik johansson_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'country_7': 'country', 'sweden_8': 'sweden', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'player_9': 'player', 'per - ulrik johansson_10': 'per - ulrik johansson'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'country_7': [0], 'sweden_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'player_9': [2], 'per - ulrik johansson_10': [3]}
['place', 'player', 'country', 'score', 'to par']
[['t1', 'raymond floyd', 'united states', '64', '- 7'], ['t1', 'steve pate', 'united states', '64', '- 7'], ['t3', 'gordon brand , jnr', 'scotland', '65', '- 6'], ['t3', 'ian woosnam', 'wales', '65', '- 6'], ['t5', 'john cook', 'united states', '66', '- 5'], ['t5', 'ernie els', 'south africa', '66', '- 5'], ['t5', 'nick faldo', 'england', '66', '- 5'], ['t5', 'lee janzen', 'united states', '66', '- 5'], ['t9', 'per - ulrik johansson', 'sweden', '67', '- 4'], ['t9', 'andrew magee', 'united states', '67', '- 4'], ['t9', 'rocco mediate', 'united states', '67', '- 4'], ['t9', 'craig parry', 'australia', '67', '- 4'], ['t9', 'costantino rocca', 'italy', '67', '- 4'], ['t9', 'orrin vincent iii', 'united states', '67', '- 4']]
jason leffler
https://en.wikipedia.org/wiki/Jason_Leffler
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1637041-4.html.csv
comparative
jason leffler had more pole positions in the year 2000 than he did in the year 2004 .
{'row_1': '2', 'row_2': '4', 'col': '10', 'col_other': '1', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'year', '2000'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose year record fuzzily matches to 2000 .', 'tostr': 'filter_eq { all_rows ; year ; 2000 }'}, 'position'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; year ; 2000 } ; position }', 'tointer': 'select the rows whose year record fuzzily matches to 2000 . take the position record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'year', '2004'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose year record fuzzily matches to 2004 .', 'tostr': 'filter_eq { all_rows ; year ; 2004 }'}, 'position'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; year ; 2004 } ; position }', 'tointer': 'select the rows whose year record fuzzily matches to 2004 . take the position record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; year ; 2000 } ; position } ; hop { filter_eq { all_rows ; year ; 2004 } ; position } } = true', 'tointer': 'select the rows whose year record fuzzily matches to 2000 . take the position record of this row . select the rows whose year record fuzzily matches to 2004 . take the position record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; year ; 2000 } ; position } ; hop { filter_eq { all_rows ; year ; 2004 } ; position } } = true
select the rows whose year record fuzzily matches to 2000 . take the position record of this row . select the rows whose year record fuzzily matches to 2004 . take the position record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'year_7': 7, '2000_8': 8, 'position_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'year_11': 11, '2004_12': 12, 'position_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'year_7': 'year', '2000_8': '2000', 'position_9': 'position', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'year_11': 'year', '2004_12': '2004', 'position_13': 'position'}
{'greater_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'year_7': [0], '2000_8': [0], 'position_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'year_11': [1], '2004_12': [1], 'position_13': [3]}
['year', 'starts', 'wins', 'top 5', 'top 10', 'poles', 'avg start', 'avg finish', 'winnings', 'position', 'team ( s )']
[['1999', '4', '0', '0', '0', '0', '28.0', '26.8', '36400', '74th', '18 joe gibbs racing'], ['2000', '31', '0', '2', '4', '3', '24.3', '23.0', '513068', '20th', '18 joe gibbs racing'], ['2003', '6', '0', '1', '1', '0', '15.0', '14.3', '113345', '52nd', '00 haas cnc racing'], ['2004', '27', '1', '8', '17', '1', '9.4', '11.0', '1168779', '12th', '00 haas cnc racing'], ['2005', '15', '0', '2', '7', '0', '19.0', '14.6', '400883', '30th', '32 braun racing'], ['2006', '35', '0', '3', '7', '2', '20.2', '21.2', '1182579', '13th', '32 / 38 braun racing'], ['2007', '35', '1', '7', '11', '2', '17.6', '17.5', '1691099', '3rd', '38 braun racing'], ['2008', '35', '0', '3', '13', '0', '14.5', '16.2', '1350927', '9th', '38 braun racing'], ['2009', '35', '0', '8', '20', '0', '15.9', '12.4', '1699080', '4th', '38 braun racing'], ['2010', '35', '0', '6', '14', '0', '16.1', '17.5', '1272165', '9th', '10 / 38 braun racing'], ['2011', '34', '0', '2', '12', '0', '13.0', '13.9', '1131158', '6th', '30 / 38 turner motorsports'], ['2012', '2', '0', '0', '1', '0', '6.5', '10.0', '56388', '120th 1', '30 turner motorsports']]
1982 vfl season
https://en.wikipedia.org/wiki/1982_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10824095-4.html.csv
count
in the 1982 vfl season , among the games where away team scored above 13.00 , 2 of them had an attendance greater than 19,000 .
{'scope': 'subset', 'criterion': 'greater_than', 'value': '19000', 'result': '2', 'col': '6', 'subset': {'col': '4', 'criterion': 'greater_than', 'value': '13.0'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_greater', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'away team score', '13.0'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; away team score ; 13.0 }', 'tointer': 'select the rows whose away team score record is greater than 13.0 .'}, 'crowd', '19000'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose away team score record is greater than 13.0 . among these rows , select the rows whose crowd record is greater than 19000 .', 'tostr': 'filter_greater { filter_greater { all_rows ; away team score ; 13.0 } ; crowd ; 19000 }'}], 'result': '2', 'ind': 2, 'tostr': 'count { filter_greater { filter_greater { all_rows ; away team score ; 13.0 } ; crowd ; 19000 } }', 'tointer': 'select the rows whose away team score record is greater than 13.0 . among these rows , select the rows whose crowd record is greater than 19000 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_greater { filter_greater { all_rows ; away team score ; 13.0 } ; crowd ; 19000 } } ; 2 } = true', 'tointer': 'select the rows whose away team score record is greater than 13.0 . among these rows , select the rows whose crowd record is greater than 19000 . the number of such rows is 2 .'}
eq { count { filter_greater { filter_greater { all_rows ; away team score ; 13.0 } ; crowd ; 19000 } } ; 2 } = true
select the rows whose away team score record is greater than 13.0 . among these rows , select the rows whose crowd record is greater than 19000 . the number of such rows is 2 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_greater_1': 1, 'filter_greater_0': 0, 'all_rows_5': 5, 'away team score_6': 6, '13.0_7': 7, 'crowd_8': 8, '19000_9': 9, '2_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_greater_1': 'filter_greater', 'filter_greater_0': 'filter_greater', 'all_rows_5': 'all_rows', 'away team score_6': 'away team score', '13.0_7': '13.0', 'crowd_8': 'crowd', '19000_9': '19000', '2_10': '2'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_greater_1': [2], 'filter_greater_0': [1], 'all_rows_5': [0], 'away team score_6': [0], '13.0_7': [0], 'crowd_8': [1], '19000_9': [1], '2_10': [3]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['essendon', '12.19 ( 91 )', 'north melbourne', '14.24 ( 108 )', 'windy hill', '27183', '17 april 1982'], ['carlton', '21.22 ( 148 )', 'hawthorn', '12.15 ( 87 )', 'princes park', '29698', '17 april 1982'], ['st kilda', '16.9 ( 105 )', 'geelong', '13.14 ( 92 )', 'moorabbin oval', '17148', '17 april 1982'], ['melbourne', '19.12 ( 126 )', 'footscray', '19.19 ( 133 )', 'mcg', '19832', '17 april 1982'], ['richmond', '15.17 ( 107 )', 'collingwood', '10.15 ( 75 )', 'vfl park', '59472', '17 april 1982'], ['swans', '24.18 ( 162 )', 'fitzroy', '14.22 ( 106 )', 'scg', '13617', '18 april 1982']]
washington redskins draft history
https://en.wikipedia.org/wiki/Washington_Redskins_draft_history
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17100961-35.html.csv
comparative
willie adams was a higher overall pick than bob reed in the washington redskins draft .
{'row_1': '6', 'row_2': '11', 'col': '2', 'col_other': '4', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'name', 'willie adams'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose name record fuzzily matches to willie adams .', 'tostr': 'filter_eq { all_rows ; name ; willie adams }'}, 'pick'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; name ; willie adams } ; pick }', 'tointer': 'select the rows whose name record fuzzily matches to willie adams . take the pick record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'name', 'bob reed'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose name record fuzzily matches to bob reed .', 'tostr': 'filter_eq { all_rows ; name ; bob reed }'}, 'pick'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; name ; bob reed } ; pick }', 'tointer': 'select the rows whose name record fuzzily matches to bob reed . take the pick record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; name ; willie adams } ; pick } ; hop { filter_eq { all_rows ; name ; bob reed } ; pick } } = true', 'tointer': 'select the rows whose name record fuzzily matches to willie adams . take the pick record of this row . select the rows whose name record fuzzily matches to bob reed . take the pick record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; name ; willie adams } ; pick } ; hop { filter_eq { all_rows ; name ; bob reed } ; pick } } = true
select the rows whose name record fuzzily matches to willie adams . take the pick record of this row . select the rows whose name record fuzzily matches to bob reed . take the pick record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'name_7': 7, 'willie adams_8': 8, 'pick_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'name_11': 11, 'bob reed_12': 12, 'pick_13': 13}
{'less_4': 'less', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'name_7': 'name', 'willie adams_8': 'willie adams', 'pick_9': 'pick', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'name_11': 'name', 'bob reed_12': 'bob reed', 'pick_13': 'pick'}
{'less_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'name_7': [0], 'willie adams_8': [0], 'pick_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'name_11': [1], 'bob reed_12': [1], 'pick_13': [3]}
['round', 'pick', 'overall', 'name', 'position', 'college']
[['2', '7', '21', 'bob breitenstein', 'ot', 'tulsa'], ['3', '6', '34', 'kent mccloughan', 'cb', 'nebraska'], ['8', '7', '105', 'don croftcheck', 'g', 'indiana'], ['9', '6', '118', 'jerry smith', 'te', 'arizona state'], ['10', '7', '133', 'bob briggs', 'fb', 'central state'], ['11', '6', '146', 'willie adams', 'de', 'new mexico state'], ['12', '6', '160', 'john strohmeyer', 'ot', 'michigan'], ['13', '6', '174', 'biff bracy', 'hb', 'duke'], ['14', '7', '189', 'dave estrada', 'hb', 'arizona state'], ['15', '6', '202', 'ben baldwin', 'rb', 'vanderbilt'], ['16', '7', '217', 'bob reed', 'g', 'tennessee a & i'], ['17', '6', '230', 'gary hart', 'e', 'vanderbilt'], ['18', '7', '245', 'chris hanburger', 'lb', 'north carolina'], ['19', '6', '258', 'roosevelt ellerbe', 'rb', 'iowa state']]
1948 vfl season
https://en.wikipedia.org/wiki/1948_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10809529-1.html.csv
superlative
the biggest recorded crowd was 29000 at the 1948 vfl season .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '4', 'value_mentioned': 'yes', 'max_or_min': 'max', 'other_col': 'n/a', 'subset': None}
{'func': 'eq', 'args': [{'func': 'max', 'args': ['all_rows', 'crowd'], 'result': '29000', 'ind': 0, 'tostr': 'max { all_rows ; crowd }', 'tointer': 'the maximum crowd record of all rows is 29000 .'}, '29000'], 'result': True, 'ind': 1, 'tostr': 'eq { max { all_rows ; crowd } ; 29000 } = true', 'tointer': 'the maximum crowd record of all rows is 29000 .'}
eq { max { all_rows ; crowd } ; 29000 } = true
the maximum crowd record of all rows is 29000 .
2
2
{'eq_1': 1, 'result_2': 2, 'max_0': 0, 'all_rows_3': 3, 'crowd_4': 4, '29000_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'max_0': 'max', 'all_rows_3': 'all_rows', 'crowd_4': 'crowd', '29000_5': '29000'}
{'eq_1': [2], 'result_2': [], 'max_0': [1], 'all_rows_3': [0], 'crowd_4': [0], '29000_5': [1]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['footscray', '21.19 ( 145 )', 'st kilda', '9.11 ( 65 )', 'western oval', '14000', '17 april 1948'], ['fitzroy', '13.14 ( 92 )', 'geelong', '9.16 ( 70 )', 'brunswick street oval', '17000', '17 april 1948'], ['south melbourne', '18.15 ( 123 )', 'richmond', '17.6 ( 108 )', 'lake oval', '28000', '17 april 1948'], ['melbourne', '12.5 ( 77 )', 'essendon', '13.18 ( 96 )', 'mcg', '29000', '17 april 1948'], ['north melbourne', '9.12 ( 66 )', 'collingwood', '11.20 ( 86 )', 'arden street oval', '20000', '17 april 1948'], ['hawthorn', '11.10 ( 76 )', 'carlton', '17.15 ( 117 )', 'glenferrie oval', '16000', '17 april 1948']]
eurovision dance contest 2007
https://en.wikipedia.org/wiki/Eurovision_Dance_Contest_2007
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10530468-1.html.csv
superlative
in eurovision dance contest 2007 , the team of katja koukkula and jussi väänänen place highest .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '16', 'value_mentioned': 'yes', 'max_or_min': 'min', 'other_col': '2', 'subset': None}
{'func': 'and', 'args': [{'func': 'eq', 'args': [{'func': 'min', 'args': ['all_rows', 'place'], 'result': '1', 'ind': 0, 'tostr': 'min { all_rows ; place }', 'tointer': 'the minimum place record of all rows is 1 .'}, '1'], 'result': True, 'ind': 1, 'tostr': 'eq { min { all_rows ; place } ; 1 }', 'tointer': 'the minimum place record of all rows is 1 .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': ['all_rows', 'place'], 'result': None, 'ind': 2, 'tostr': 'argmin { all_rows ; place }'}, 'dancers'], 'result': 'katja koukkula & jussi väänänen', 'ind': 3, 'tostr': 'hop { argmin { all_rows ; place } ; dancers }'}, 'katja koukkula & jussi väänänen'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { argmin { all_rows ; place } ; dancers } ; katja koukkula & jussi väänänen }', 'tointer': 'the dancers record of the row with superlative place record is katja koukkula & jussi väänänen .'}], 'result': True, 'ind': 5, 'tostr': 'and { eq { min { all_rows ; place } ; 1 } ; eq { hop { argmin { all_rows ; place } ; dancers } ; katja koukkula & jussi väänänen } } = true', 'tointer': 'the minimum place record of all rows is 1 . the dancers record of the row with superlative place record is katja koukkula & jussi väänänen .'}
and { eq { min { all_rows ; place } ; 1 } ; eq { hop { argmin { all_rows ; place } ; dancers } ; katja koukkula & jussi väänänen } } = true
the minimum place record of all rows is 1 . the dancers record of the row with superlative place record is katja koukkula & jussi väänänen .
6
6
{'and_5': 5, 'result_6': 6, 'eq_1': 1, 'min_0': 0, 'all_rows_7': 7, 'place_8': 8, '1_9': 9, 'str_eq_4': 4, 'str_hop_3': 3, 'argmin_2': 2, 'all_rows_10': 10, 'place_11': 11, 'dancers_12': 12, 'katja koukkula & jussi väänänen_13': 13}
{'and_5': 'and', 'result_6': 'true', 'eq_1': 'eq', 'min_0': 'min', 'all_rows_7': 'all_rows', 'place_8': 'place', '1_9': '1', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'argmin_2': 'argmin', 'all_rows_10': 'all_rows', 'place_11': 'place', 'dancers_12': 'dancers', 'katja koukkula & jussi väänänen_13': 'katja koukkula & jussi väänänen'}
{'and_5': [6], 'result_6': [], 'eq_1': [5], 'min_0': [1], 'all_rows_7': [0], 'place_8': [0], '1_9': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'argmin_2': [3], 'all_rows_10': [2], 'place_11': [2], 'dancers_12': [3], 'katja koukkula & jussi väänänen_13': [4]}
['draw', 'dancers', 'dance styles', 'place', 'points']
[['01', 'denise biellmann & sven ninnemann', 'paso doble and swing', '16', '0'], ['02', 'mariya sittel & vladislav borodinov', 'rumba and paso doble', '7', '72'], ['03', 'alexandra matteman & redmond valk', 'cha - cha - cha and rumba', '12', '34'], ['04', 'camilla dallerup & brendan cole', 'rumba and freestyle', '15', '18'], ['05', 'kelly & andy kainz', 'jive and paso doble', '5', '74'], ['06', 'wolke hegenbarth & oliver seefeldt', 'samba dance and freestyle', '8', '59'], ['07', 'ourania kolliou & spiros pavlidis', 'jive and sirtaki', '13', '31'], ['08', 'gabrielė valiukaitė & gintaras svistunavičius', 'paso doble and traditional lithuanian folk dance', '11', '35'], ['09', 'amagoya benlloch & abraham martinez', 'cha - cha - cha and paso doble', '10', '38'], ['10', 'nicola byrne & mick donegan', 'jive and fandango', '3', '95'], ['11', 'katarzyna cichopek & marcin hakiel', 'cha - cha - cha and showdance', '4', '84'], ['12', 'mette skou elkjær & david jørgensen', 'rumba and showdance', '9', '38'], ['13', 'sónia araújo & ricardo silva', 'jive and tango', '5', '74'], ['14', 'yulia okropiridze & illya sydorenko', 'quickstep and showdance', '2', '121'], ['15', 'cecilia ehrling & martin lidberg', 'paso doble and disco fusion', '14', '23'], ['16', 'katja koukkula & jussi väänänen', 'rumba and paso doble', '1', '132']]
indianapolis colts draft history
https://en.wikipedia.org/wiki/Indianapolis_Colts_draft_history
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-13312898-54.html.csv
count
the indianapolis colts drafted a total of two players in the cornerback position .
{'scope': 'all', 'criterion': 'fuzzily_match', 'value': 'cornerback', 'result': '2', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'position', 'cornerback'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose position record fuzzily matches to cornerback .', 'tostr': 'filter_eq { all_rows ; position ; cornerback }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; position ; cornerback } }', 'tointer': 'select the rows whose position record fuzzily matches to cornerback . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; position ; cornerback } } ; 2 } = true', 'tointer': 'select the rows whose position record fuzzily matches to cornerback . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; position ; cornerback } } ; 2 } = true
select the rows whose position record fuzzily matches to cornerback . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'position_5': 5, 'cornerback_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'position_5': 'position', 'cornerback_6': 'cornerback', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'position_5': [0], 'cornerback_6': [0], '2_7': [2]}
['round', 'pick', 'overall', 'name', 'position', 'college']
[['1', '30', '30', 'joseph addai', 'running back', 'lsu'], ['2', '30', '62', 'tim jennings', 'cornerback', 'georgia'], ['3', '30', '94', 'freddie keiaho', 'linebacker', 'san diego state'], ['5', '29', '162', 'michael toudouze', 'guard', 'tcu'], ['6', '30', '199', 'charlie johnson', 'offensive tackle', 'oklahoma state'], ['6', '38', '207', 'antoine bethea', 'safety', 'howard'], ['7', '30', '238', 'tj rushing', 'cornerback', 'stanford']]
b " united states men 's national water polo team "
https://en.wikipedia.org/wiki/United_States_men%27s_national_water_polo_team
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18961052-1.html.csv
count
there is a total of 13 men in the united states men ´ s national water polo team .
{'scope': 'all', 'criterion': 'all', 'value': 'n/a', 'result': '13', 'col': '1', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_all', 'args': ['all_rows', 'name'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose name record is arbitrary .', 'tostr': 'filter_all { all_rows ; name }'}], 'result': '13', 'ind': 1, 'tostr': 'count { filter_all { all_rows ; name } }', 'tointer': 'select the rows whose name record is arbitrary . the number of such rows is 13 .'}, '13'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_all { all_rows ; name } } ; 13 } = true', 'tointer': 'select the rows whose name record is arbitrary . the number of such rows is 13 .'}
eq { count { filter_all { all_rows ; name } } ; 13 } = true
select the rows whose name record is arbitrary . the number of such rows is 13 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_all_0': 0, 'all_rows_4': 4, 'name_5': 5, '13_6': 6}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_all_0': 'filter_all', 'all_rows_4': 'all_rows', 'name_5': 'name', '13_6': '13'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_all_0': [1], 'all_rows_4': [0], 'name_5': [0], '13_6': [2]}
['name', 'pos', 'height', 'weight', '2012 club']
[['merrill moses', 'gk', 'm', '-', 'new york athletic club'], ['peter varellas', 'd', 'm', '-', 'the olympic club'], ['peter hudnut', 'cb', 'm', '-', 'los angeles wp club'], ['jeff powers', 'cf', 'm', '-', 'newport wp foundation'], ['adam wright', 'd', 'm', '-', 'new york athletic club'], ['shea buckner', 'd', 'm', '-', 'new york athletic club'], ['layne beaubien', 'd', 'm', '-', 'new york athletic club'], ['tony azevedo', 'd', 'm', '-', 'new york athletic club'], ['ryan bailey', 'cf', 'm', '-', 'newport wp foundation'], ['tim hutten', 'cb', 'm', '-', 'newport wp foundation'], ['jesse smith', 'cb', 'm', '-', 'new york athletic club'], ['john mann', 'cf', 'm', '-', 'new york athletic club'], ['chay lapin', 'gk', 'm', '-', 'long beach shore aquatics']]
sport in queensland
https://en.wikipedia.org/wiki/Sport_in_Queensland
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10909383-1.html.csv
aggregation
in total , brisbane-based teams from the state of queensland have won more than 30 premierships .
{'scope': 'all', 'col': '5', 'type': 'sum', 'result': '30', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': ['all_rows', 'premierships'], 'result': '30', 'ind': 0, 'tostr': 'sum { all_rows ; premierships }'}, '30'], 'result': True, 'ind': 1, 'tostr': 'round_eq { sum { all_rows ; premierships } ; 30 } = true', 'tointer': 'the sum of the premierships record of all rows is 30 .'}
round_eq { sum { all_rows ; premierships } ; 30 } = true
the sum of the premierships record of all rows is 30 .
2
2
{'eq_1': 1, 'result_2': 2, 'sum_0': 0, 'all_rows_3': 3, 'premierships_4': 4, '30_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'sum_0': 'sum', 'all_rows_3': 'all_rows', 'premierships_4': 'premierships', '30_5': '30'}
{'eq_1': [2], 'result_2': [], 'sum_0': [1], 'all_rows_3': [0], 'premierships_4': [0], '30_5': [1]}
['club / team', 'league', 'venue', 'established', 'premierships']
[['brisbane bandits', 'australian baseball league', 'brisbane exhibition ground', '1989', '1'], ['brisbane broncos', 'national rugby league', 'suncorp stadium', '1988', '6'], ['brisbane lions', 'australian football league', 'brisbane cricket ground', '1997', '3'], ['brisbane roar', 'a - league / w - league', 'suncorp stadium', '2004', '1 / 2'], ['queensland blades', 'australian hockey league', 'queensland state hockey centre', '1991', '5'], ['queensland bulls', 'pura cup / ford ranger cup', 'brisbane cricket ground', '1892', '13'], ['queensland firebirds', 'commonwealth bank trophy', 'chandler arena', '1997', 'nil'], ['queensland reds', 'super rugby', 'suncorp stadium', '1996', '1'], ['triple eight race engineering', 'international v8 supercars championship', 'queensland raceway', '2003', '4']]
swimming at the 2007 world aquatics championships - women 's 200 metre individual medley
https://en.wikipedia.org/wiki/Swimming_at_the_2007_World_Aquatics_Championships_%E2%80%93_Women%27s_200_metre_individual_medley
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10331421-1.html.csv
unique
in swimming at the 2007 world aquatics championships , in the women 's 200 metre individual medley , of the athletes with a 50 m split under 29.0 , the only one from zimbabwe is kirsty coventry .
{'scope': 'subset', 'row': '2', 'col': '4', 'col_other': '3', 'criterion': 'equal', 'value': 'zimbabwe', 'subset': {'col': '5', 'criterion': 'less_than', 'value': '29.0'}}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_less', 'args': ['all_rows', '50 m split', '29.0'], 'result': None, 'ind': 0, 'tostr': 'filter_less { all_rows ; 50 m split ; 29.0 }', 'tointer': 'select the rows whose 50 m split record is less than 29.0 .'}, 'nationality', 'zimbabwe'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose 50 m split record is less than 29.0 . among these rows , select the rows whose nationality record fuzzily matches to zimbabwe .', 'tostr': 'filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe }'}], 'result': True, 'ind': 2, 'tostr': 'only { filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe } }', 'tointer': 'select the rows whose 50 m split record is less than 29.0 . among these rows , select the rows whose nationality record fuzzily matches to zimbabwe . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_less', 'args': ['all_rows', '50 m split', '29.0'], 'result': None, 'ind': 0, 'tostr': 'filter_less { all_rows ; 50 m split ; 29.0 }', 'tointer': 'select the rows whose 50 m split record is less than 29.0 .'}, 'nationality', 'zimbabwe'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose 50 m split record is less than 29.0 . among these rows , select the rows whose nationality record fuzzily matches to zimbabwe .', 'tostr': 'filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe }'}, 'name'], 'result': 'kirsty coventry', 'ind': 3, 'tostr': 'hop { filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe } ; name }'}, 'kirsty coventry'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe } ; name } ; kirsty coventry }', 'tointer': 'the name record of this unqiue row is kirsty coventry .'}], 'result': True, 'ind': 5, 'tostr': 'and { only { filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe } } ; eq { hop { filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe } ; name } ; kirsty coventry } } = true', 'tointer': 'select the rows whose 50 m split record is less than 29.0 . among these rows , select the rows whose nationality record fuzzily matches to zimbabwe . there is only one such row in the table . the name record of this unqiue row is kirsty coventry .'}
and { only { filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe } } ; eq { hop { filter_eq { filter_less { all_rows ; 50 m split ; 29.0 } ; nationality ; zimbabwe } ; name } ; kirsty coventry } } = true
select the rows whose 50 m split record is less than 29.0 . among these rows , select the rows whose nationality record fuzzily matches to zimbabwe . there is only one such row in the table . the name record of this unqiue row is kirsty coventry .
8
6
{'and_5': 5, 'result_6': 6, 'only_2': 2, 'filter_str_eq_1': 1, 'filter_less_0': 0, 'all_rows_7': 7, '50 m split_8': 8, '29.0_9': 9, 'nationality_10': 10, 'zimbabwe_11': 11, 'str_eq_4': 4, 'str_hop_3': 3, 'name_12': 12, 'kirsty coventry_13': 13}
{'and_5': 'and', 'result_6': 'true', 'only_2': 'only', 'filter_str_eq_1': 'filter_str_eq', 'filter_less_0': 'filter_less', 'all_rows_7': 'all_rows', '50 m split_8': '50 m split', '29.0_9': '29.0', 'nationality_10': 'nationality', 'zimbabwe_11': 'zimbabwe', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'name_12': 'name', 'kirsty coventry_13': 'kirsty coventry'}
{'and_5': [6], 'result_6': [], 'only_2': [5], 'filter_str_eq_1': [2, 3], 'filter_less_0': [1], 'all_rows_7': [0], '50 m split_8': [0], '29.0_9': [0], 'nationality_10': [1], 'zimbabwe_11': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'name_12': [3], 'kirsty coventry_13': [4]}
['place', 'lane', 'name', 'nationality', '50 m split', '100 m split', '150 m split', 'time']
[['1', '4', 'katie hoff', 'usa', '28.35', '1:01.96', '1:39.06', '2:10.13'], ['2', '5', 'kirsty coventry', 'zimbabwe', '28.73', '1:01.92', '1:40.00', '2:10.76'], ['3', '3', 'stephanie rice', 'australia', '28.45', '1:02.03', '1:40.39', '2:11.42'], ['4', '2', 'whitney myers', 'usa', '28.59', '1:01.72', '1:41.79', '2:13.73'], ['5', '6', 'julie hjorth - hansen', 'denmark', '28.96', '1:03.59', '1:42.09', '2:14.05'], ['6', '7', 'shayne reese', 'australia', '28.33', '1:03.03', '1:42.24', '2:14.89'], ['7', '8', 'georgina bardach', 'argentina', '29.76', '1:05.21', '1:43.83', '2:15.26'], ['8', '1', 'julia wilkinson', 'canada', '29.51', '1:03.82', '1:43.87', '2:15.28']]
miss mundo dominicana 2004
https://en.wikipedia.org/wiki/Miss_Mundo_Dominicana_2004
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-21346767-3.html.csv
ordinal
cindy guerrero reynoso was the oldest of the contestants in the miss mundo dominicana 2004 peagant .
{'row': '19', 'col': '3', 'order': '1', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'age', '1'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; age ; 1 }'}, 'contestant'], 'result': 'cindy guerrero reynoso', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; age ; 1 } ; contestant }'}, 'cindy guerrero reynoso'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; age ; 1 } ; contestant } ; cindy guerrero reynoso } = true', 'tointer': 'select the row whose age record of all rows is 1st maximum . the contestant record of this row is cindy guerrero reynoso .'}
eq { hop { nth_argmax { all_rows ; age ; 1 } ; contestant } ; cindy guerrero reynoso } = true
select the row whose age record of all rows is 1st maximum . the contestant record of this row is cindy guerrero reynoso .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'age_5': 5, '1_6': 6, 'contestant_7': 7, 'cindy guerrero reynoso_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'age_5': 'age', '1_6': '1', 'contestant_7': 'contestant', 'cindy guerrero reynoso_8': 'cindy guerrero reynoso'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'age_5': [0], '1_6': [0], 'contestant_7': [1], 'cindy guerrero reynoso_8': [2]}
['province , community', 'contestant', 'age', 'height', 'hometown', 'geographical regions']
[['azua', 'julissa alcantara de fiallo', '22', 'm ( ft 9in )', 'santo domingo', 'sur occidente'], ['barahona', 'desireé álvarez lama', '19', 'm ( ft 9\xa03⁄4 in )', 'santa cruz de barahona', 'sur occidente'], ['com dom en california', 'mónica angulo pucheaux', '18', 'm ( ft 9\xa01⁄4 in )', 'los angeles', 'exterior'], ['com dom en miami', 'onidys reynosa espinal', '21', 'm ( ft 8in )', 'miami', 'exterior'], ['com dom en nueva york', 'joslyn cabrera ruiz', '18', 'm ( ft 11\xa01⁄4 in )', 'new york', 'exterior'], ['distrito nacional', 'katherine germania almos rey', '24', 'm ( ft 10\xa01⁄2 in )', 'villa juana', 'sur oriente'], ['duarte', 'lissette abreu ynoa', '22', 'm ( ft 7\xa01⁄4 in )', 'constanza', 'cibao oriental'], ['independencia', 'nathalie venecia gutiérrez arias', '20', 'm ( ft 11\xa03⁄4 in )', 'santo domingo', 'sur occidente'], ['la altagracia', 'patrizia karina gagg jiménez', '20', 'm ( ft 11\xa01⁄4 in )', 'villa hermosa', 'sur oriente'], ['la romana', 'anna karina toledo espinoza', '22', 'm ( ft 6\xa01⁄4 in )', 'la romana', 'sur oriente'], ['la vega', 'cindy magdalena torrealba cruz', '17', 'm ( ft 10\xa01⁄2 in )', 'jarabacoa', 'cibao central'], ['maría trinidad sánchez', 'massiel javier cañizarez', '19', 'm ( ft 10\xa03⁄4 in )', 'cabrera', 'cibao oriental'], ['monseñor nouel', 'claudia julissa cruz rodríguez', '18', 'm ( ft 9in )', 'bonao', 'cibao central'], ['monte cristi', 'hareld ellien mossle casado', '17', 'm ( ft 7in )', 'santiago de los caballeros', 'cibao occidental'], ['puerto plata', 'wilma joana abreu nazario', '20', 'm ( ft 6\xa01⁄2 in )', 'santiago de los caballeros', 'cibao occidental'], ['salcedo', 'josefina de arias camacho', '24', 'm ( ft 5\xa01⁄4 in )', 'santo domingo', 'cibao central'], ['samaná', 'genevet nicol gutiérrez kourie', '18', 'm ( ft 7\xa03⁄4 in )', 'santa bárbara de samaná', 'cibao oriental'], ['san pedro de macorís', 'natascha forestieri de los santos', '23', 'm ( ft 0in )', 'san pedro de macorís', 'sur oriente'], ['santiago', 'cindy guerrero reynoso', '26', 'm ( ft 10in )', 'santiago de los caballeros', 'cibao occidental']]
national technical university of athens
https://en.wikipedia.org/wiki/National_Technical_University_of_Athens
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1064216-1.html.csv
aggregation
the average number of lecturers for schools at the national technical university of athens is 7.5 .
{'scope': 'all', 'col': '1', 'type': 'average', 'result': '7.5', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'lecturers'], 'result': '7.5', 'ind': 0, 'tostr': 'avg { all_rows ; lecturers }'}, '7.5'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; lecturers } ; 7.5 } = true', 'tointer': 'the average of the lecturers record of all rows is 7.5 .'}
round_eq { avg { all_rows ; lecturers } ; 7.5 } = true
the average of the lecturers record of all rows is 7.5 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'lecturers_4': 4, '7.5_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'lecturers_4': 'lecturers', '7.5_5': '7.5'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'lecturers_4': [0], '7.5_5': [1]}
['lecturers', 'associate professors', 'assistant professors', 'professors', 'total']
[['5', '35', '27', '40', '120'], ['9', '10', '8', '58', '96'], ['12', '16', '17', '23', '81'], ['5', '12', '8', '20', '55'], ['18', '20', '9', '34', '119'], ['6', '13', '10', '48', '78'], ['7', '14', '5', '15', '49'], ['4', '10', '9', '14', '51'], ['2', '4', '8', '14', '28']]
jack brabham
https://en.wikipedia.org/wiki/Jack_Brabham
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16564-3.html.csv
aggregation
jack brabham on average were ranked at around 20 in his indy 500 career .
{'scope': 'all', 'col': '4', 'type': 'average', 'result': '20', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'rank'], 'result': '20', 'ind': 0, 'tostr': 'avg { all_rows ; rank }'}, '20'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; rank } ; 20 } = true', 'tointer': 'the average of the rank record of all rows is 20 .'}
round_eq { avg { all_rows ; rank } ; 20 } = true
the average of the rank record of all rows is 20 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'rank_4': 4, '20_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'rank_4': 'rank', '20_5': '20'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'rank_4': [0], '20_5': [1]}
['year', 'start', 'qual', 'rank', 'finish', 'laps']
[['1961', '13', '145.144', '17', '9', '200'], ['1964', '25', '152.504', '15', '20', '77'], ['1969', '29', '163.875', '29', '24', '58'], ['1970', '26', '166.397', '22', '13', '175']]
2007 detroit lions season
https://en.wikipedia.org/wiki/2007_Detroit_Lions_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10147486-2.html.csv
majority
there were more than 60000 people in attendance for most of the games in the detroit lions 2007 season .
{'scope': 'all', 'col': '5', 'most_or_all': 'most', 'criterion': 'greater_than', 'value': '60000', 'subset': None}
{'func': 'most_greater', 'args': ['all_rows', 'attendance', '60000'], 'result': True, 'ind': 0, 'tointer': 'for the attendance records of all rows , most of them are greater than 60000 .', 'tostr': 'most_greater { all_rows ; attendance ; 60000 } = true'}
most_greater { all_rows ; attendance ; 60000 } = true
for the attendance records of all rows , most of them are greater than 60000 .
1
1
{'most_greater_0': 0, 'result_1': 1, 'all_rows_2': 2, 'attendance_3': 3, '60000_4': 4}
{'most_greater_0': 'most_greater', 'result_1': 'true', 'all_rows_2': 'all_rows', 'attendance_3': 'attendance', '60000_4': '60000'}
{'most_greater_0': [1], 'result_1': [], 'all_rows_2': [0], 'attendance_3': [0], '60000_4': [0]}
['week', 'date', 'opponent', 'result', 'attendance']
[['1', 'september 9 , 2007', 'oakland raiders', 'w 36 - 21', '61547'], ['2', 'september 16 , 2007', 'minnesota vikings', 'w 20 - 17 ( ot )', '61771'], ['3', 'september 23 , 2007', 'philadelphia eagles', 'l 21 - 56', '67570'], ['4', 'september 30 , 2007', 'chicago bears', 'w 37 - 27', '60811'], ['5', 'october 7 , 2007', 'washington redskins', 'l 3 - 34', '88944'], ['7', 'october 21 , 2007', 'tampa bay buccaneers', 'w 23 - 16', '60442'], ['8', 'october 28 , 2007', 'chicago bears', 'w 16 - 7', '62171'], ['9', 'november 4 , 2007', 'denver broncos', 'w 44 - 7', '60783'], ['10', 'november 11 , 2007', 'arizona cardinals', 'l 21 - 31', '64753'], ['11', 'november 18 , 2007', 'new york giants', 'l 10 - 16', '60675'], ['12', 'november 22 , 2007', 'green bay packers', 'l 26 - 37', '63257'], ['13', 'december 2 , 2007', 'minnesota vikings', 'l 10 - 42', '62996'], ['14', 'december 9 , 2007', 'dallas cowboys', 'l 27 - 28', '62759'], ['15', 'december 16 , 2007', 'san diego chargers', 'l 14 - 51', '66505'], ['16', 'december 23 , 2007', 'kansas city chiefs', 'w 25 - 20', '59938'], ['17', 'december 30 , 2007', 'green bay packers', 'l 13 - 34', '70869']]
1998 australian touring car championship
https://en.wikipedia.org/wiki/1998_Australian_Touring_Car_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15284222-2.html.csv
unique
winton was the only race in the 1998 australian touring car championship that john bow won .
{'scope': 'all', 'row': '5', 'col': '5', 'col_other': '1', 'criterion': 'equal', 'value': 'john bowe', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'john bowe'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose winner record fuzzily matches to john bowe .', 'tostr': 'filter_eq { all_rows ; winner ; john bowe }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; winner ; john bowe } }', 'tointer': 'select the rows whose winner record fuzzily matches to john bowe . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'john bowe'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose winner record fuzzily matches to john bowe .', 'tostr': 'filter_eq { all_rows ; winner ; john bowe }'}, 'race title'], 'result': 'winton', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; winner ; john bowe } ; race title }'}, 'winton'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; winner ; john bowe } ; race title } ; winton }', 'tointer': 'the race title record of this unqiue row is winton .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; winner ; john bowe } } ; eq { hop { filter_eq { all_rows ; winner ; john bowe } ; race title } ; winton } } = true', 'tointer': 'select the rows whose winner record fuzzily matches to john bowe . there is only one such row in the table . the race title record of this unqiue row is winton .'}
and { only { filter_eq { all_rows ; winner ; john bowe } } ; eq { hop { filter_eq { all_rows ; winner ; john bowe } ; race title } ; winton } } = true
select the rows whose winner record fuzzily matches to john bowe . there is only one such row in the table . the race title record of this unqiue row is winton .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'winner_7': 7, 'john bowe_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'race title_9': 9, 'winton_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'winner_7': 'winner', 'john bowe_8': 'john bowe', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'race title_9': 'race title', 'winton_10': 'winton'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'winner_7': [0], 'john bowe_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'race title_9': [2], 'winton_10': [3]}
['race title', 'circuit', 'location / state', 'date', 'winner', 'team']
[['sandown', 'sandown international motor raceway', 'melbourne , victoria', '30 jan - 1 feb', 'craig lowndes', 'holden racing team'], ['launceston', 'symmons plains international raceway', 'launceston , tasmania', '6 - 8 feb', 'craig lowndes', 'holden racing team'], ['lakeside', 'lakeside international raceway', 'brisbane , queensland', '27 - 29 mar', 'russell ingall', 'castrol perkins motorsport'], ['phillip island', 'phillip island grand prix circuit', 'phillip island , victoria', '17 - 19 apr', 'craig lowndes', 'holden racing team'], ['winton', 'winton motor raceway', 'benalla , victoria', '1 - 3 may', 'john bowe', 'dick johnson racing'], ['mallala', 'mallala motor sport park', 'mallala , south australia', '22 - 24 may', 'russell ingall', 'castrol perkins motorsport'], ['vb 300', 'barbagallo raceway', 'perth , western australia', '29 - 31 may', 'craig lowndes', 'holden racing team'], ['calder', 'calder park raceway', 'melbourne , victoria', '19 - 21 jun', 'craig lowndes', 'holden racing team'], ['hidden valley', 'hidden valley raceway', 'darwin , northern territory', '17 - 19 jul', 'russell ingall', 'castrol perkins motorsport'], ['oran park', 'oran park international raceway', 'sydney , new south wales', '31 jul - 2 aug', 'craig lowndes', 'holden racing team']]
1979 seattle seahawks season
https://en.wikipedia.org/wiki/1979_Seattle_Seahawks_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-13259009-2.html.csv
majority
most of the games in 1979 seattle sea-hawks season were held in kingdome .
{'scope': 'all', 'col': '5', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'kingdome', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'game site', 'kingdome'], 'result': True, 'ind': 0, 'tointer': 'for the game site records of all rows , most of them fuzzily match to kingdome .', 'tostr': 'most_eq { all_rows ; game site ; kingdome } = true'}
most_eq { all_rows ; game site ; kingdome } = true
for the game site records of all rows , most of them fuzzily match to kingdome .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'game site_3': 3, 'kingdome_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'game site_3': 'game site', 'kingdome_4': 'kingdome'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'game site_3': [0], 'kingdome_4': [0]}
['week', 'date', 'opponent', 'result', 'game site', 'record', 'attendance']
[['1', 'september 2 , 1979', 'san diego chargers', 'l 16 - 33', 'kingdome', '0 - 1', '62887'], ['2', 'september 9 , 1979', 'miami dolphins', 'l 10 - 19', 'miami orange bowl', '0 - 2', '56233'], ['3', 'september 16 , 1979', 'oakland raiders', 'w 27 - 10', 'kingdome', '1 - 2', '61602'], ['4', 'september 23 , 1979', 'denver broncos', 'l 34 - 37', 'mile high stadium', '1 - 3', '74879'], ['5', 'september 30 , 1979', 'kansas city chiefs', 'l 6 - 24', 'kingdome', '1 - 4', '61169'], ['6', 'october 7 , 1979', 'san francisco 49ers', 'w 35 - 24', 'candlestick park', '2 - 4', '44592'], ['7', 'october 14 , 1979', 'san diego chargers', 'l 10 - 20', 'san diego stadium', '2 - 5', '50077'], ['8', 'october 21 , 1979', 'houston oilers', 'w 34 - 14', 'kingdome', '3 - 5', '60705'], ['9', 'october 29 , 1979', 'atlanta falcons', 'w 31 - 28', 'atlanta - fulton county stadium', '4 - 5', '52566'], ['10', 'november 4 , 1979', 'los angeles rams', 'l 0 - 24', 'kingdome', '4 - 6', '62048'], ['11', 'november 11 , 1979', 'cleveland browns', 'w 29 - 24', 'cleveland stadium', '5 - 6', '72440'], ['12', 'november 18 , 1979', 'new orleans saints', 'w 38 - 24', 'kingdome', '6 - 6', '60055'], ['13', 'november 26 , 1979', 'new york jets', 'w 30 - 7', 'kingdome', '7 - 6', '59977'], ['14', 'december 2 , 1979', 'kansas city chiefs', 'l 21 - 37', 'arrowhead stadium', '7 - 7', '42160'], ['15', 'december 8 , 1979', 'denver broncos', 'w 28 - 23', 'kingdome', '8 - 7', '60038']]
1956 syracuse orangemen football team
https://en.wikipedia.org/wiki/1956_Syracuse_Orangemen_football_team
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-23346983-1.html.csv
majority
for the 1956 syracuse orangemen football team , most of the results were a win .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'win', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'result', 'win'], 'result': True, 'ind': 0, 'tointer': 'for the result records of all rows , most of them fuzzily match to win .', 'tostr': 'most_eq { all_rows ; result ; win } = true'}
most_eq { all_rows ; result ; win } = true
for the result records of all rows , most of them fuzzily match to win .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'result_3': 3, 'win_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'result_3': 'result', 'win_4': 'win'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'result_3': [0], 'win_4': [0]}
['game', 'date', 'opponent', 'result', 'orangemen points', 'opponents', 'record']
[['1', 'sept 22', 'maryland', 'win', '26', '12', '1 - 0'], ['2', 'sept 29', 'pittsburgh', 'loss', '7', '14', '1 - 1'], ['3', 'oct 13', 'west virginia', 'win', '27', '20', '2 - 1'], ['4', 'oct 20', 'army', 'win', '7', '0', '3 - 1'], ['5', 'oct 27', 'boston university', 'win', '21', '7', '4 - 1'], ['6', 'nov 3', 'penn state', 'win', '13', '9', '5 - 1'], ['7', 'nov 10', 'holy cross', 'win', '41', '20', '6 - 1']]
2007 detroit indy grand prix
https://en.wikipedia.org/wiki/2007_Detroit_Indy_Grand_Prix
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17242268-2.html.csv
majority
the majority of drivers in the 2007 detroit indy grand prix led 0 laps .
{'scope': 'all', 'col': '6', 'most_or_all': 'most', 'criterion': 'equal', 'value': '0', 'subset': None}
{'func': 'most_eq', 'args': ['all_rows', 'laps led', '0'], 'result': True, 'ind': 0, 'tointer': 'for the laps led records of all rows , most of them are equal to 0 .', 'tostr': 'most_eq { all_rows ; laps led ; 0 } = true'}
most_eq { all_rows ; laps led ; 0 } = true
for the laps led records of all rows , most of them are equal to 0 .
1
1
{'most_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'laps led_3': 3, '0_4': 4}
{'most_eq_0': 'most_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'laps led_3': 'laps led', '0_4': '0'}
{'most_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'laps led_3': [0], '0_4': [0]}
['driver', 'team', 'laps', 'time / retired', 'grid', 'laps led', 'points']
[['tony kanaan', 'andretti green', '89', '2:11:50.5097', '4', '20', '50'], ['danica patrick', 'andretti green', '89', '+ 0.4865', '11', '9', '40'], ['dan wheldon', 'target chip ganassi', '89', '+ 1.2207', '16', '0', '35'], ['darren manning', 'aj foyt racing', '89', '+ 1.9217', '8', '0', '32'], ['kosuke matsuura', 'panther racing', '88', '+ 1 lap', '14', '0', '30'], ['dario franchitti', 'andretti green', '88', '+ 1 lap', '2', '27', '31'], ['buddy rice', 'dreyer & reinbold racing', '87', 'contact', '15', '7', '26'], ['scott dixon', 'target chip ganassi', '87', 'contact', '3', '0', '24'], ['a j foyt iv', 'vision racing', '87', 'mechanical', '13', '0', '22'], ['ed carpenter', 'vision racing', '86', '+ 3 laps', '12', '0', '20'], ['scott sharp', 'rahal letterman', '82', '+ 7 laps', '17', '0', '19'], ['sam hornish , jr', 'team penske', '75', '+ 14 laps', '7', '0', '18'], ['tomas scheckter', 'vision racing', '67', 'contact', '9', '0', '17'], ['hãlio castroneves', 'team penske', '67', 'contact', '1', '26', '16'], ['vitor meira', 'panther racing', '31', 'contact', '10', '0', '15'], ['sarah fisher', 'dreyer & reinbold racing', '29', 'contact', '18', '0', '14'], ['marco andretti', 'andretti green', '27', 'mechanical', '6', '0', '13'], ['ryan hunter - reay', 'rahal letterman', '24', 'mechanical', '5', '0', '12']]
$ 40 a day
https://en.wikipedia.org/wiki/%2440_a_Day
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1137274-3.html.csv
unique
the hamptons was the only title that had an air date in the month of april .
{'scope': 'all', 'row': '13', 'col': '4', 'col_other': '1', 'criterion': 'fuzzily_match', 'value': 'april', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'original air date', 'april'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose original air date record fuzzily matches to april .', 'tostr': 'filter_eq { all_rows ; original air date ; april }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; original air date ; april } }', 'tointer': 'select the rows whose original air date record fuzzily matches to april . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'original air date', 'april'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose original air date record fuzzily matches to april .', 'tostr': 'filter_eq { all_rows ; original air date ; april }'}, 'title'], 'result': 'the hamptons', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; original air date ; april } ; title }'}, 'the hamptons'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; original air date ; april } ; title } ; the hamptons }', 'tointer': 'the title record of this unqiue row is the hamptons .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; original air date ; april } } ; eq { hop { filter_eq { all_rows ; original air date ; april } ; title } ; the hamptons } } = true', 'tointer': 'select the rows whose original air date record fuzzily matches to april . there is only one such row in the table . the title record of this unqiue row is the hamptons .'}
and { only { filter_eq { all_rows ; original air date ; april } } ; eq { hop { filter_eq { all_rows ; original air date ; april } ; title } ; the hamptons } } = true
select the rows whose original air date record fuzzily matches to april . there is only one such row in the table . the title record of this unqiue row is the hamptons .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'original air date_7': 7, 'april_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'title_9': 9, 'the hamptons_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'original air date_7': 'original air date', 'april_8': 'april', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'title_9': 'title', 'the hamptons_10': 'the hamptons'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'original air date_7': [0], 'april_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'title_9': [2], 'the hamptons_10': [3]}
['title', 'directed by', 'written by', 'original air date', 'production code']
[['park city', 'don colliver', 'peter field rachael ray', 'august 20 , 2004', 'ad1c02'], ['grand canyon', 'don colliver', 'peter field rachael ray', 'august 27 , 2004', 'ad1c04'], ['durham', 'don colliver', 'peter field rachael ray', 'august 29 , 2004', 'ad1c08'], ['las vegas', 'don colliver', 'peter field rachael ray', 'september 10 , 2004', 'ad1c05'], ['bermuda', 'don colliver', 'peter field rachael ray', 'september 24 , 2004', 'ad1c06'], ['sun valley', 'don colliver', 'peter field rachael ray', 'october 15 , 2004', 'ad1c01'], ['chattanooga', 'don colliver', 'peter field rachael ray', 'october 29 , 2004', 'ad1c10'], ['hilton head', 'don colliver', 'peter field rachael ray', 'november 12 , 2004', 'ad1c07'], ['asheville', 'don colliver', 'peter field rachael ray', 'november 19 , 2004', 'ad1c09'], ['telluride', 'don colliver', 'peter field rachael ray', 'november 26 , 2004', 'ad1c03'], ['newport', 'don colliver', 'peter field rachael ray', 'december 17 , 2004', 'ad1c12'], ["martha 's vineyard", 'don colliver', 'peter field rachael ray', 'january 7 , 2005', 'ad1c13'], ['the hamptons', 'don colliver', 'peter field rachael ray', 'april 22 , 2005', 'ad1c11']]
1992 tampa bay buccaneers season
https://en.wikipedia.org/wiki/1992_Tampa_Bay_Buccaneers_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11465246-2.html.csv
superlative
the game played on week 11 drew the highest crowd attendance during the 1992 tampa bay buccaneers season .
{'scope': 'all', 'col_superlative': '7', 'row_superlative': '12', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'attendance'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; attendance }'}, 'week'], 'result': '11', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; attendance } ; week }'}, '11'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; attendance } ; week } ; 11 } = true', 'tointer': 'select the row whose attendance record of all rows is maximum . the week record of this row is 11 .'}
eq { hop { argmax { all_rows ; attendance } ; week } ; 11 } = true
select the row whose attendance record of all rows is maximum . the week record of this row is 11 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'attendance_5': 5, 'week_6': 6, '11_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'attendance_5': 'attendance', 'week_6': 'week', '11_7': '11'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'attendance_5': [0], 'week_6': [1], '11_7': [2]}
['week', 'date', 'opponent', 'result', 'kickoff', 'game site', 'attendance', 'record']
[['week', 'date', 'opponent', 'result', 'kickoff', 'game site', 'attendance', 'record'], ['1', 'september 6 , 1992', 'phoenix cardinals', 'w 23 - 7', '4:00', 'tampa stadium', '41315', '1 - 0'], ['2', 'september 13 , 1992', 'green bay packers', 'w 31 - 3', '1:00', 'tampa stadium', '50051', '2 - 0'], ['3', 'september 20 , 1992', 'minnesota vikings', 'l 26 - 20', '1:00', 'hubert h humphrey metrodome', '48113', '2 - 1'], ['4', 'september 27 , 1992', 'detroit lions', 'w 27 - 23', '1:00', 'pontiac silverdome', '51374', '3 - 1'], ['5', 'october 4 , 1992', 'indianapolis colts', 'l 24 - 14', '1:00', 'tampa stadium', '56585', '3 - 2'], ['6', '-', '-', '-', '-', '-', '-', ''], ['7', 'october 18 , 1992', 'chicago bears', 'l 31 - 14', '1:00', 'soldier field', '61412', '3 - 3'], ['8', 'october 25 , 1992', 'detroit lions', 'l 38 - 7', '1:00', 'tampa stadium', '53995', '3 - 4'], ['9', 'november 1 , 1992', 'new orleans saints', 'l 23 - 21', '1:00', 'louisiana superdome', '68591', '3 - 5'], ['10', 'november 8 , 1992', 'minnesota vikings', 'l 35 - 7', '1:00', 'tampa stadium', '49095', '3 - 6'], ['11', 'november 15 , 1992', 'chicago bears', 'w 20 - 17', '4:00', 'tampa stadium', '69102', '4 - 6'], ['12', 'november 22 , 1992', 'san diego chargers', 'l 29 - 14', '4:00', 'jack murphy stadium', '43197', '4 - 7'], ['13', 'november 29 , 1992', 'green bay packers', 'l 19 - 14', '1:00', 'milwaukee county stadium', '52347', '4 - 8'], ['14', 'december 6 , 1992', 'los angeles rams', 'l 31 - 27', '1:00', 'tampa stadium', '38387', '4 - 9'], ['15', 'december 13 , 1992', 'atlanta falcons', 'l 35 - 7', '1:00', 'tampa stadium', '39056', '4 - 10'], ['16', 'december 19 , 1992', 'san francisco 49ers', 'l 21 - 14', '4:00', 'candlestick park', '60519', '4 - 11'], ['17', 'december 27 , 1992', 'phoenix cardinals', 'w 7 - 3', '5:00', 'sun devil stadium', '29645', '5 - 11']]
larry mize
https://en.wikipedia.org/wiki/Larry_Mize
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1584996-5.html.csv
count
mize finished in the top 5 in two different tournaments .
{'scope': 'all', 'criterion': 'greater_than', 'value': '0', 'result': '2', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'top - 5', '0'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose top - 5 record is greater than 0 .', 'tostr': 'filter_greater { all_rows ; top - 5 ; 0 }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_greater { all_rows ; top - 5 ; 0 } }', 'tointer': 'select the rows whose top - 5 record is greater than 0 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_greater { all_rows ; top - 5 ; 0 } } ; 2 } = true', 'tointer': 'select the rows whose top - 5 record is greater than 0 . the number of such rows is 2 .'}
eq { count { filter_greater { all_rows ; top - 5 ; 0 } } ; 2 } = true
select the rows whose top - 5 record is greater than 0 . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_greater_0': 0, 'all_rows_4': 4, 'top - 5_5': 5, '0_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_greater_0': 'filter_greater', 'all_rows_4': 'all_rows', 'top - 5_5': 'top - 5', '0_6': '0', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_greater_0': [1], 'all_rows_4': [0], 'top - 5_5': [0], '0_6': [0], '2_7': [2]}
['tournament', 'wins', 'top - 5', 'top - 10', 'top - 25', 'events', 'cuts made']
[['masters tournament', '1', '2', '3', '11', '30', '17'], ['us open', '0', '1', '1', '4', '18', '10'], ['the open championship', '0', '0', '0', '2', '12', '7'], ['pga championship', '0', '0', '2', '6', '16', '10'], ['totals', '1', '3', '6', '23', '76', '44']]
1987 200 miles of norisring
https://en.wikipedia.org/wiki/1987_200_Miles_of_Norisring
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16861730-2.html.csv
superlative
mike wilds was the driver who drove the least amount of laps in the 1987 200 miles of norisring race .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '16', 'value_mentioned': 'no', 'max_or_min': 'min', 'other_col': '3', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': ['all_rows', 'laps'], 'result': None, 'ind': 0, 'tostr': 'argmin { all_rows ; laps }'}, 'driver'], 'result': 'mike wilds', 'ind': 1, 'tostr': 'hop { argmin { all_rows ; laps } ; driver }'}, 'mike wilds'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmin { all_rows ; laps } ; driver } ; mike wilds } = true', 'tointer': 'select the row whose laps record of all rows is minimum . the driver record of this row is mike wilds .'}
eq { hop { argmin { all_rows ; laps } ; driver } ; mike wilds } = true
select the row whose laps record of all rows is minimum . the driver record of this row is mike wilds .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmin_0': 0, 'all_rows_4': 4, 'laps_5': 5, 'driver_6': 6, 'mike wilds_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmin_0': 'argmin', 'all_rows_4': 'all_rows', 'laps_5': 'laps', 'driver_6': 'driver', 'mike wilds_7': 'mike wilds'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmin_0': [1], 'all_rows_4': [0], 'laps_5': [0], 'driver_6': [1], 'mike wilds_7': [2]}
['class', 'team', 'driver', 'chassis - engine', 'laps']
[['c1', 'silk cut jaguar', 'raul boesel', 'jaguar xjr - 8', '77'], ['c1', 'liqui moly equipe', 'jonathan palmer', 'porsche 962 c', '77'], ['c1', 'brun motorsport', 'jochen mass', 'porsche 962 c', '76'], ['c1', 'joest racing', 'stanley dickens', 'porsche 962 c', '75'], ['c1', 'primagaz competition', 'pierre yver', 'porsche 962 c', '72'], ['c2', 'swiftair ecurie ecosse', 'david leslie', 'ecosse c286 - ford', '72'], ['c2', 'spice engineering', 'gordon spice', 'spice se86c - ford', '71'], ['c2', 'tiga ford denmark', 'john sheldon', 'tiga gc287 - ford', '70'], ['c2', 'spice engineering', 'nick adams', 'spice se87c - ford', '70'], ['c1', 'brun motorsport', 'jésus pareja', 'porsche 962 c', '70'], ['c2', 'kelmar racing', 'ranieri randaccio', 'tiga gc85 - ford', '69'], ['c2', 'schanche racing', 'martin schanche', 'argo jm19b - zakspeed', '64'], ['c1', 'porsche kremer racing', 'kris nissen', 'porsche 962 c', '75'], ['c1', 'blaupunkt joest racing', 'klaus ludwig', 'porsche 962 c', '77'], ['c1', 'porsche ag', 'derek bell', 'porsche 962 c', '61'], ['c2', 'swiftair ecurie ecosse', 'mike wilds', 'ecosse c286 - ford', '25']]
1954 vfl season
https://en.wikipedia.org/wiki/1954_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10773616-4.html.csv
superlative
carlton recorded the highest home team score at the 1954 vfl season .
{'scope': 'all', 'col_superlative': '2', 'row_superlative': '3', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'home team score'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; home team score }'}, 'home team'], 'result': 'carlton', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; home team score } ; home team }'}, 'carlton'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; home team score } ; home team } ; carlton } = true', 'tointer': 'select the row whose home team score record of all rows is maximum . the home team record of this row is carlton .'}
eq { hop { argmax { all_rows ; home team score } ; home team } ; carlton } = true
select the row whose home team score record of all rows is maximum . the home team record of this row is carlton .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'home team score_5': 5, 'home team_6': 6, 'carlton_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'home team score_5': 'home team score', 'home team_6': 'home team', 'carlton_7': 'carlton'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'home team score_5': [0], 'home team_6': [1], 'carlton_7': [2]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['geelong', '13.17 ( 95 )', 'st kilda', '8.5 ( 53 )', 'kardinia park', '18000', '8 may 1954'], ['collingwood', '10.17 ( 77 )', 'essendon', '9.10 ( 64 )', 'victoria park', '37000', '8 may 1954'], ['carlton', '17.21 ( 123 )', 'footscray', '20.14 ( 134 )', 'princes park', '22000', '8 may 1954'], ['south melbourne', '12.9 ( 81 )', 'richmond', '10.16 ( 76 )', 'lake oval', '23000', '8 may 1954'], ['north melbourne', '11.10 ( 76 )', 'hawthorn', '10.13 ( 73 )', 'arden street oval', '16000', '8 may 1954'], ['melbourne', '14.12 ( 96 )', 'fitzroy', '7.12 ( 54 )', 'mcg', '17500', '8 may 1954']]
1977 vfl season
https://en.wikipedia.org/wiki/1977_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10887379-17.html.csv
aggregation
the average home team score for these football teams is approximately 14.27 .
{'scope': 'all', 'col': '2', 'type': 'average', 'result': '14.27', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'home team score'], 'result': '14.27', 'ind': 0, 'tostr': 'avg { all_rows ; home team score }'}, '14.27'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; home team score } ; 14.27 } = true', 'tointer': 'the average of the home team score record of all rows is 14.27 .'}
round_eq { avg { all_rows ; home team score } ; 14.27 } = true
the average of the home team score record of all rows is 14.27 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'home team score_4': 4, '14.27_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'home team score_4': 'home team score', '14.27_5': '14.27'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'home team score_4': [0], '14.27_5': [1]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['north melbourne', '15.11 ( 101 )', 'richmond', '14.14 ( 98 )', 'arden street oval', '15359', '23 july 1977'], ['fitzroy', '7.13 ( 55 )', 'south melbourne', '16.21 ( 117 )', 'junction oval', '10220', '23 july 1977'], ['carlton', '11.8 ( 74 )', 'collingwood', '15.16 ( 106 )', 'princes park', '38220', '23 july 1977'], ['melbourne', '15.18 ( 108 )', 'geelong', '20.14 ( 134 )', 'mcg', '15890', '23 july 1977'], ['footscray', '12.21 ( 93 )', 'essendon', '11.10 ( 76 )', 'western oval', '17834', '23 july 1977'], ['hawthorn', '24.19 ( 163 )', 'st kilda', '11.11 ( 77 )', 'vfl park', '20469', '23 july 1977']]
united states presidential election in nevada , 2000
https://en.wikipedia.org/wiki/United_States_presidential_election_in_Nevada%2C_2000
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-23014476-1.html.csv
superlative
al gore was the most successful in clark county in terms of vote percentage .
{'scope': 'all', 'col_superlative': '2', 'row_superlative': '2', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'gore %'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; gore % }'}, 'county'], 'result': 'clark', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; gore % } ; county }'}, 'clark'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; gore % } ; county } ; clark } = true', 'tointer': 'select the row whose gore % record of all rows is maximum . the county record of this row is clark .'}
eq { hop { argmax { all_rows ; gore % } ; county } ; clark } = true
select the row whose gore % record of all rows is maximum . the county record of this row is clark .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'gore %_5': 5, 'county_6': 6, 'clark_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'gore %_5': 'gore %', 'county_6': 'county', 'clark_7': 'clark'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'gore %_5': [0], 'county_6': [1], 'clark_7': [2]}
['county', 'gore %', 'gore', 'bush %', 'bush', 'others %', 'others']
[['churchill', '24.8 %', '2191', '70.7 %', '6237', '4.5 %', '395'], ['clark', '51.3 %', '196100', '44.7 %', '170932', '4.0 %', '15166'], ['douglas', '32.5 %', '5837', '62.3 %', '11193', '5.2 %', '944'], ['elko', '17.9 %', '2542', '77.8 %', '11025', '4.3 %', '613'], ['esmeralda', '23.6 %', '116', '67.8 %', '333', '8.6 %', '42'], ['eureka', '17.9 %', '150', '75.5 %', '632', '3.1 %', '6.6 %'], ['humboldt', '22.4 %', '1128', '72.3 %', '3638', '5.3 %', '264'], ['lander', '18.6 %', '395', '76.4 %', '1619', '5.0 %', '105'], ['lincoln', '23.6 %', '461', '70.2 %', '1372', '6.2 %', '123'], ['lyon', '33.0 %', '3955', '60.6 %', '7270', '6.4 %', '767'], ['mineral', '40.0 %', '916', '53.5 %', '1227', '6.5 %', '150'], ['nye', '37.2 %', '4525', '56.7 %', '6904', '6.1 %', '752'], ['pershing', '26.4 %', '476', '67.8 %', '1221', '5.8', '105'], ['storey', '37.0 %', '666', '56.4 %', '1014', '6.6 %', '118'], ['washoe', '42.6 %', '52097', '52.0 %', '63640', '5.4', '6564']]
roberta vinci
https://en.wikipedia.org/wiki/Roberta_Vinci
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1818978-1.html.csv
unique
only the 2013 australian open championship featured ashleigh barty casey dellacqua as an opponent .
{'scope': 'all', 'row': '4', 'col': '6', 'col_other': '2,3', 'criterion': 'equal', 'value': 'ashleigh barty casey dellacqua', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponents', 'ashleigh barty casey dellacqua'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose opponents record fuzzily matches to ashleigh barty casey dellacqua .', 'tostr': 'filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } }', 'tointer': 'select the rows whose opponents record fuzzily matches to ashleigh barty casey dellacqua . there is only one such row in the table .'}, {'func': 'and', 'args': [{'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponents', 'ashleigh barty casey dellacqua'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose opponents record fuzzily matches to ashleigh barty casey dellacqua .', 'tostr': 'filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua }'}, 'year'], 'result': '2013', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; year }'}, '2013'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; year } ; 2013 }', 'tointer': 'the year record of this unqiue row is 2013 .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponents', 'ashleigh barty casey dellacqua'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose opponents record fuzzily matches to ashleigh barty casey dellacqua .', 'tostr': 'filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua }'}, 'championship'], 'result': 'australian open', 'ind': 4, 'tostr': 'hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; championship }'}, 'australian open'], 'result': True, 'ind': 5, 'tostr': 'eq { hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; championship } ; australian open }', 'tointer': 'the championship record of this unqiue row is australian open .'}], 'result': True, 'ind': 6, 'tostr': 'and { eq { hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; year } ; 2013 } ; eq { hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; championship } ; australian open } }', 'tointer': 'the year record of this unqiue row is 2013 . the championship record of this unqiue row is australian open .'}], 'result': True, 'ind': 7, 'tostr': 'and { only { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } } ; and { eq { hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; year } ; 2013 } ; eq { hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; championship } ; australian open } } } = true', 'tointer': 'select the rows whose opponents record fuzzily matches to ashleigh barty casey dellacqua . there is only one such row in the table . the year record of this unqiue row is 2013 . the championship record of this unqiue row is australian open .'}
and { only { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } } ; and { eq { hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; year } ; 2013 } ; eq { hop { filter_eq { all_rows ; opponents ; ashleigh barty casey dellacqua } ; championship } ; australian open } } } = true
select the rows whose opponents record fuzzily matches to ashleigh barty casey dellacqua . there is only one such row in the table . the year record of this unqiue row is 2013 . the championship record of this unqiue row is australian open .
10
8
{'and_7': 7, 'result_8': 8, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_9': 9, 'opponents_10': 10, 'ashleigh barty casey dellacqua_11': 11, 'and_6': 6, 'eq_3': 3, 'num_hop_2': 2, 'year_12': 12, '2013_13': 13, 'str_eq_5': 5, 'str_hop_4': 4, 'championship_14': 14, 'australian open_15': 15}
{'and_7': 'and', 'result_8': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_9': 'all_rows', 'opponents_10': 'opponents', 'ashleigh barty casey dellacqua_11': 'ashleigh barty casey dellacqua', 'and_6': 'and', 'eq_3': 'eq', 'num_hop_2': 'num_hop', 'year_12': 'year', '2013_13': '2013', 'str_eq_5': 'str_eq', 'str_hop_4': 'str_hop', 'championship_14': 'championship', 'australian open_15': 'australian open'}
{'and_7': [8], 'result_8': [], 'only_1': [7], 'filter_str_eq_0': [1, 2, 4], 'all_rows_9': [0], 'opponents_10': [0], 'ashleigh barty casey dellacqua_11': [0], 'and_6': [7], 'eq_3': [6], 'num_hop_2': [3], 'year_12': [2], '2013_13': [3], 'str_eq_5': [6], 'str_hop_4': [5], 'championship_14': [4], 'australian open_15': [5]}
['outcome', 'year', 'championship', 'surface', 'partner', 'opponents', 'score']
[['runner - up', '2012', 'australian open', 'hard', 'sara errani', 'svetlana kuznetsova vera zvonareva', '5 - 7 , 6 - 4 , 6 - 3'], ['winner', '2012', 'french open', 'clay', 'sara errani', 'maria kirilenko nadia petrova', '4 - 6 , 6 - 4 , 6 - 2'], ['winner', '2012', 'us open', 'hard', 'sara errani', 'andrea hlaváčková lucie hradecká', '6 - 4 , 6 - 2'], ['winner', '2013', 'australian open', 'hard', 'sara errani', 'ashleigh barty casey dellacqua', '6 - 2 , 3 - 6 , 6 - 2'], ['runner - up', '2013', 'french open', 'clay', 'sara errani', 'ekaterina makarova elena vesnina', '5 - 7 , 2 - 6']]
conservative party of canada candidates , 2008 canadian federal election
https://en.wikipedia.org/wiki/Conservative_Party_of_Canada_candidates%2C_2008_Canadian_federal_election
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12890271-1.html.csv
superlative
the highest number of votes received by a male candidate for the conservative party of canada in the 2008 canadian federal election was 11542 .
{'scope': 'subset', 'col_superlative': '6', 'row_superlative': '1', 'value_mentioned': 'yes', 'max_or_min': 'max', 'other_col': '3', 'subset': {'col': '3', 'criterion': 'equal', 'value': 'm'}}
{'func': 'eq', 'args': [{'func': 'max', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'gender', 'm'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; gender ; m }', 'tointer': 'select the rows whose gender record fuzzily matches to m .'}, 'votes'], 'result': '11542', 'ind': 1, 'tostr': 'max { filter_eq { all_rows ; gender ; m } ; votes }', 'tointer': 'select the rows whose gender record fuzzily matches to m . the maximum votes record of these rows is 11542 .'}, '11542'], 'result': True, 'ind': 2, 'tostr': 'eq { max { filter_eq { all_rows ; gender ; m } ; votes } ; 11542 } = true', 'tointer': 'select the rows whose gender record fuzzily matches to m . the maximum votes record of these rows is 11542 .'}
eq { max { filter_eq { all_rows ; gender ; m } ; votes } ; 11542 } = true
select the rows whose gender record fuzzily matches to m . the maximum votes record of these rows is 11542 .
3
3
{'eq_2': 2, 'result_3': 3, 'max_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'gender_5': 5, 'm_6': 6, 'votes_7': 7, '11542_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'max_1': 'max', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'gender_5': 'gender', 'm_6': 'm', 'votes_7': 'votes', '11542_8': '11542'}
{'eq_2': [3], 'result_3': [], 'max_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'gender_5': [0], 'm_6': [0], 'votes_7': [1], '11542_8': [2]}
['riding', "candidate 's name", 'gender', 'residence', 'occupation', 'votes', 'rank']
[['avalon', 'fabian manning', 'm', "st bride 's", 'parliamentarian', '11542', '2nd'], ['bonavista-gander-grand falls-windsor', 'andrew house', 'm', 'gander', 'lawyer', '4354', '2nd'], ['humber-st barbe-baie verte', 'lorne robinson', 'm', 'pasadena', 'financial planner', '2799', '3rd'], ['labrador', 'lacey lewis', 'f', 'ottawa', 'office assistant', '615', '3rd'], ["random-burin-st george 's", 'herb davis', 'm', 'gatineau', 'policy advisor', '4791', '3rd'], ["st john 's east", 'craig westcott', 'm', 'conception bay south', 'journalist', '3836', '3rd'], ["st john 's south-mount pearl", 'merv wiseman', 'm', 'north harbour', 'maritime search & rescue coordinator', '4324', '3rd']]
83rd united states congress
https://en.wikipedia.org/wiki/83rd_United_States_Congress
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1652224-5.html.csv
count
two of the vacated seats were not filled during the term of the 83rd congress .
{'scope': 'all', 'criterion': 'equal', 'value': 'vacant', 'result': '2', 'col': '4', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'successor', 'vacant'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose successor record fuzzily matches to vacant .', 'tostr': 'filter_eq { all_rows ; successor ; vacant }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; successor ; vacant } }', 'tointer': 'select the rows whose successor record fuzzily matches to vacant . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; successor ; vacant } } ; 2 } = true', 'tointer': 'select the rows whose successor record fuzzily matches to vacant . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; successor ; vacant } } ; 2 } = true
select the rows whose successor record fuzzily matches to vacant . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'successor_5': 5, 'vacant_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'successor_5': 'successor', 'vacant_6': 'vacant', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'successor_5': [0], 'vacant_6': [0], '2_7': [2]}
['district', 'vacator', 'reason for change', 'successor', 'date successor seated']
[['georgia 2nd', 'vacant', 'rep edward e cox died during previous congress', 'j l pilcher ( d )', 'february 4 , 1953'], ['south carolina 4th', 'joseph r bryson ( d )', 'died march 10 , 1953', 'robert t ashmore ( d )', 'june 2 , 1953'], ['kentucky 2nd', 'garrett l withers ( d )', 'died april 30 , 1953', 'william h natcher ( d )', 'august 1 , 1953'], ['wisconsin 9th', 'merlin hull ( r )', 'died may 17 , 1953', 'lester johnson ( d )', 'october 13 , 1953'], ['new jersey 6th', 'clifford p case ( r )', 'resigned august 16 , 1953', 'harrison a williams ( d )', 'november 3 , 1953'], ['hawaii territory at - large', 'joseph r farrington ( r )', 'resigned june 19 , 1954', 'elizabeth p farrington ( r )', 'july 31 , 1954'], ['georgia 4th', 'a sidney camp ( d )', 'died july 24 , 1954', 'john j flynt , jr ( d )', 'november 2 , 1954'], ['michigan 3rd', 'paul w shafer ( r )', 'died august 17 , 1954', 'vacant', 'not filled this term'], ['ohio 15th', 'robert t secrest ( d )', 'resigned september 26 , 1954', 'vacant', 'not filled this term']]
1969 buffalo bills season
https://en.wikipedia.org/wiki/1969_Buffalo_Bills_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16351004-2.html.csv
superlative
in 1969 , the buffalo bills ' highest attended game was the november 9 game against the new york jets .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '9', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1,2', 'subset': None}
{'func': 'and', 'args': [{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'attendance'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; attendance }'}, 'date'], 'result': 'november 9', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; attendance } ; date }'}, 'november 9'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; attendance } ; date } ; november 9 }', 'tointer': 'select the row whose attendance record of all rows is maximum . the date record of this row is november 9 .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'attendance'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; attendance }'}, 'opponent'], 'result': 'new york jets', 'ind': 3, 'tostr': 'hop { argmax { all_rows ; attendance } ; opponent }'}, 'new york jets'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { argmax { all_rows ; attendance } ; opponent } ; new york jets }', 'tointer': 'the opponent record of this row is new york jets .'}], 'result': True, 'ind': 5, 'tostr': 'and { eq { hop { argmax { all_rows ; attendance } ; date } ; november 9 } ; eq { hop { argmax { all_rows ; attendance } ; opponent } ; new york jets } } = true', 'tointer': 'select the row whose attendance record of all rows is maximum . the date record of this row is november 9 . the opponent record of this row is new york jets .'}
and { eq { hop { argmax { all_rows ; attendance } ; date } ; november 9 } ; eq { hop { argmax { all_rows ; attendance } ; opponent } ; new york jets } } = true
select the row whose attendance record of all rows is maximum . the date record of this row is november 9 . the opponent record of this row is new york jets .
7
6
{'and_5': 5, 'result_6': 6, 'str_eq_2': 2, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_7': 7, 'attendance_8': 8, 'date_9': 9, 'november 9_10': 10, 'str_eq_4': 4, 'str_hop_3': 3, 'opponent_11': 11, 'new york jets_12': 12}
{'and_5': 'and', 'result_6': 'true', 'str_eq_2': 'str_eq', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_7': 'all_rows', 'attendance_8': 'attendance', 'date_9': 'date', 'november 9_10': 'november 9', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'opponent_11': 'opponent', 'new york jets_12': 'new york jets'}
{'and_5': [6], 'result_6': [], 'str_eq_2': [5], 'str_hop_1': [2], 'argmax_0': [1, 3], 'all_rows_7': [0], 'attendance_8': [0], 'date_9': [1], 'november 9_10': [2], 'str_eq_4': [5], 'str_hop_3': [4], 'opponent_11': [3], 'new york jets_12': [4]}
['date', 'opponent', 'score', 'result', 'record', 'attendance']
[['september 14', 'new york jets', '33 - 19', 'loss', '0 - 1', '46165'], ['september 21', 'houston oilers', '21 - 17', 'loss', '0 - 2', '40146'], ['september 28', 'denver broncos', '41 - 28', 'win', '1 - 2', '40302'], ['october 5', 'houston oilers', '28 - 14', 'loss', '1 - 3', '46485'], ['october 11', 'boston patriots', '23 - 16', 'win', '2 - 3', '46201'], ['october 19', 'oakland raiders', '50 - 21', 'loss', '2 - 4', '54418'], ['october 26', 'miami dolphins', '24 - 6', 'loss', '2 - 5', '39837'], ['november 2', 'kansas city chiefs', '29 - 7', 'loss', '2 - 6', '45844'], ['november 9', 'new york jets', '16 - 6', 'loss', '2 - 7', '62680'], ['november 16', 'miami dolphins', '28 - 3', 'win', '3 - 7', '32686'], ['november 23', 'boston patriots', '35 - 21', 'loss', '3 - 8', '25584'], ['november 30', 'cincinnati bengals', '16 - 13', 'win', '4 - 8', '35122'], ['december 7', 'kansas city chiefs', '22 - 19', 'loss', '4 - 9', '47112'], ['december 14', 'san diego chargers', '45 - 6', 'loss', '4 - 10', '47582']]
2009 world championships in athletics - men 's 1500 metres
https://en.wikipedia.org/wiki/2009_World_Championships_in_Athletics_%E2%80%93_Men%27s_1500_metres
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-23987362-2.html.csv
count
two of the 2009 events took place on 28 august 2005 .
{'scope': 'all', 'criterion': 'equal', 'value': '28 august 2005', 'result': '2', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', '14 july 1998', '28 august 2005'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose 14 july 1998 record fuzzily matches to 28 august 2005 .', 'tostr': 'filter_eq { all_rows ; 14 july 1998 ; 28 august 2005 }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; 14 july 1998 ; 28 august 2005 } }', 'tointer': 'select the rows whose 14 july 1998 record fuzzily matches to 28 august 2005 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; 14 july 1998 ; 28 august 2005 } } ; 2 } = true', 'tointer': 'select the rows whose 14 july 1998 record fuzzily matches to 28 august 2005 . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; 14 july 1998 ; 28 august 2005 } } ; 2 } = true
select the rows whose 14 july 1998 record fuzzily matches to 28 august 2005 . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, '14 july 1998_5': 5, '28 august 2005_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', '14 july 1998_5': '14 july 1998', '28 august 2005_6': '28 august 2005', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], '14 july 1998_5': [0], '28 august 2005_6': [0], '2_7': [2]}
['world record', 'hicham el guerrouj ( mar )', '3:26.00', 'rome , italy', '14 july 1998']
[['championship record', 'hicham el guerrouj ( mar )', '3:27.65', 'seville , spain', '14 august 1999'], ['world leading', 'augustine choge ( ken )', '3:29.47', 'berlin , germany', '14 june 2009'], ['african record', 'hicham el guerrouj ( mar )', '3:26.00', 'rome , italy', '14 july 1998'], ['asian record', 'rashid ramzi ( bhr )', '3:29.14', 'rome , italy', '14 july 2006'], ['north american record', 'bernard lagat ( usa )', '3:29.30', 'rieti , italy', '28 august 2005'], ['south american record', 'hudson de souza ( bra )', '3:33.25', 'rieti , italy', '28 august 2005'], ['european record', 'fermín cacho ( esp )', '3:28.95', 'zürich , switzerland', '13 august 1997']]
television in china
https://en.wikipedia.org/wiki/Television_in_China
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15147453-3.html.csv
aggregation
the average year for the launch of a television channel in china was around the year 2001-2002 / .
{'scope': 'all', 'col': '4', 'type': 'average', 'result': '2001-2002', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'launch'], 'result': '2001-2002', 'ind': 0, 'tostr': 'avg { all_rows ; launch }'}, '2001-2002'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; launch } ; 2001-2002 } = true', 'tointer': 'the average of the launch record of all rows is 2001-2002 .'}
round_eq { avg { all_rows ; launch } ; 2001-2002 } = true
the average of the launch record of all rows is 2001-2002 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'launch_4': 4, '2001-2002_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'launch_4': 'launch', '2001-2002_5': '2001-2002'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'launch_4': [0], '2001-2002_5': [1]}
['name', 'hanzi', 'language', 'launch', 'owner']
[['kangba satellite television', '康巴卫视', 'tibetan', '2009', 'sichuan radio and television'], ['nmtv mongolian satellite television', '内蒙古蒙语卫视', 'mongolian', '1997', 'nei mongol television ( nmtv )'], ['television southern', '南方卫视', 'cantonese', '2000', 'southern media corporation ( smc )'], ['xjtv uyghur satellite television', '新疆电视台维吾尔语新闻综合频道', 'uyghur', '1997', 'xinjiang television ( xjtv )'], ['xjtv kazakh satellite television', '新疆电视台哈萨克语新闻综合频道', 'kazakh', '1997', 'xinjiang television ( xjtv )'], ['xztv tibetan satellite television', '西藏藏语卫视', 'tibetan', '2002', 'xizang television ( xztv )'], ['yanbian satellite television', '延边卫视', 'korean', '2006', 'yanbian television ( ybtv )'], ['qinghai tibetian general channel', '青海电视台藏语综合频道', 'tibetan', '2006', 'qinghai radio and tv station']]
churchill downs debutante stakes
https://en.wikipedia.org/wiki/Churchill_Downs_Debutante_Stakes
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12168673-1.html.csv
aggregation
all the winners of the churchill downs debutante stakes had an average time of around 1:09.00 .
{'scope': 'all', 'col': '6', 'type': 'average', 'result': '1:09.00', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'time'], 'result': '1:09.00', 'ind': 0, 'tostr': 'avg { all_rows ; time }'}, '1:09.00'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; time } ; 1:09.00 } = true', 'tointer': 'the average of the time record of all rows is 1:09.00 .'}
round_eq { avg { all_rows ; time } ; 1:09.00 } = true
the average of the time record of all rows is 1:09.00 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'time_4': 4, '1:09.00_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'time_4': 'time', '1:09.00_5': '1:09.00'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'time_4': [0], '1:09.00_5': [1]}
['year', 'winner', 'jockey', 'trainer', 'owner', 'time']
[['2012', 'blueeyesintherein', 'leandro goncalves', 'gary simms', 'self / king / morgenson / travis , et al', '1:11.71'], ['2011', 'flashy lassie', 'kent desormeaux', 'gary simms', 'barry l king', '1:10.89'], ['2010', 'just louise', 'robby albarado', 'dale romans', 'eldon farm equine', '1:11.85'], ['2009', 'decelerator', 'julien leparoux', 'd wayne lukas', 'westrock stables', '1:11.28'], ['2008', 'garden district', 'robby albarado', 'todd a pletcher', 'twin creeks racing stable', '1:11.07'], ['2007', 'rated fiesty', 'shaun bridgmohan', 'steve asmussen', 'heiligbrodt racing et al', '1:09.27'], ['2006', 'richwoman', 'shaun bridgmohan', 'steve asmussen', 'heiligbrodt racing', '1:10.50'], ['2005', 'effectual', 'robby albarado', 'steve asmussen', 'gainesway / george bolton', '1:03.95'], ['2004', 'classic elegance', 'pat day', 'd wayne lukas', 'bob & beverly lewis', '1:04.18'], ['2003', 'be gentle', 'cornelio velasquez', 'd wayne lukas', 'thomas f van meter ii', '1:03.96'], ['2002', 'awesome humor', 'pat day', 'w elliott walden', 'winstar farm', '1:03.45'], ['2001', "cashier 's dream", 'donnie meche', 'steve asmussen', 'team valor', '1:02.52'], ['2000', 'gold mover', 'craig perret', 'mark a hennig', 'edward p evans', '1:03.79'], ['1999', 'chilukki', 'willie martinez', 'bob baffert', 'stonerside stable', '1:03.66'], ['1998', 'silverbulletday', 'gary stevens', 'bob baffert', 'michael e pegram', '1:04.70'], ['1997', 'love lock', 'pat day', 'd wayne lukas', 'michael tabor', '1:03.84'], ['1996', 'move', 'pat day', 'frank l brothers', 'cherry valley farm', '1:05.66'], ['1995', 'golden attraction', 'donna barton', 'd wayne lukas', 'overbrook farm', '1:04.19']]
comme j' ai mal
https://en.wikipedia.org/wiki/Comme_j%27ai_mal
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14978398-2.html.csv
ordinal
of the releases of comme j' ai mal , the 3rd longest version is the live version recorded in 1996 .
{'row': '8', 'col': '2', 'order': '3', 'col_other': '5', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'length', '3'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; length ; 3 }'}, 'year'], 'result': '1996', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; length ; 3 } ; year }'}, '1996'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; length ; 3 } ; year } ; 1996 } = true', 'tointer': 'select the row whose length record of all rows is 3rd maximum . the year record of this row is 1996 .'}
eq { hop { nth_argmax { all_rows ; length ; 3 } ; year } ; 1996 } = true
select the row whose length record of all rows is 3rd maximum . the year record of this row is 1996 .
3
3
{'eq_2': 2, 'result_3': 3, 'num_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'length_5': 5, '3_6': 6, 'year_7': 7, '1996_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'num_hop_1': 'num_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'length_5': 'length', '3_6': '3', 'year_7': 'year', '1996_8': '1996'}
{'eq_2': [3], 'result_3': [], 'num_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'length_5': [0], '3_6': [0], 'year_7': [1], '1996_8': [2]}
['version', 'length', 'album', 'remixed by', 'year']
[['album version', '3:53', 'anamorphosée , les mots', '-', '1995'], ['single version', '3:50', '-', '-', '1996'], ['instrumental', '3:50', '-', 'laurent boutonnat', '1996'], ['aches remix', '3:58', '-', 'laurent boutonnat , bertrand chtenet', '1996'], ['pain killer mix', '6:20', '-', 'laurent boutonnat , bertrand chtenet', '1996'], ['upside down remix', '6:45', '-', 'laurent boutonnat , bertrand chtenet', '1996'], ['music video', '4:00', 'music videos ii , music videos ii & iii', '-', '1996'], ['live version ( recorded in 1996 )', '4:35 ( audio ) 4:18 ( video )', 'live à bercy', '-', '1996']]
2000 in paraguayan football
https://en.wikipedia.org/wiki/2000_in_Paraguayan_football
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18594107-2.html.csv
unique
in 2000 in paraguayan football , of the teams that had 4 draws , tbh only one that conceded 6 was olimpia .
{'scope': 'subset', 'row': '1', 'col': '8', 'col_other': '2,5', 'criterion': 'equal', 'value': '6', 'subset': {'col': '5', 'criterion': 'equal', 'value': '4'}}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'draws', '4'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; draws ; 4 }', 'tointer': 'select the rows whose draws record is equal to 4 .'}, 'conceded', '6'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose draws record is equal to 4 . among these rows , select the rows whose conceded record is equal to 6 .', 'tostr': 'filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 }'}], 'result': True, 'ind': 2, 'tostr': 'only { filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 } }', 'tointer': 'select the rows whose draws record is equal to 4 . among these rows , select the rows whose conceded record is equal to 6 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'draws', '4'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; draws ; 4 }', 'tointer': 'select the rows whose draws record is equal to 4 .'}, 'conceded', '6'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose draws record is equal to 4 . among these rows , select the rows whose conceded record is equal to 6 .', 'tostr': 'filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 }'}, 'team'], 'result': 'olimpia', 'ind': 3, 'tostr': 'hop { filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 } ; team }'}, 'olimpia'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 } ; team } ; olimpia }', 'tointer': 'the team record of this unqiue row is olimpia .'}], 'result': True, 'ind': 5, 'tostr': 'and { only { filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 } } ; eq { hop { filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 } ; team } ; olimpia } } = true', 'tointer': 'select the rows whose draws record is equal to 4 . among these rows , select the rows whose conceded record is equal to 6 . there is only one such row in the table . the team record of this unqiue row is olimpia .'}
and { only { filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 } } ; eq { hop { filter_eq { filter_eq { all_rows ; draws ; 4 } ; conceded ; 6 } ; team } ; olimpia } } = true
select the rows whose draws record is equal to 4 . among these rows , select the rows whose conceded record is equal to 6 . there is only one such row in the table . the team record of this unqiue row is olimpia .
8
6
{'and_5': 5, 'result_6': 6, 'only_2': 2, 'filter_eq_1': 1, 'filter_eq_0': 0, 'all_rows_7': 7, 'draws_8': 8, '4_9': 9, 'conceded_10': 10, '6_11': 11, 'str_eq_4': 4, 'str_hop_3': 3, 'team_12': 12, 'olimpia_13': 13}
{'and_5': 'and', 'result_6': 'true', 'only_2': 'only', 'filter_eq_1': 'filter_eq', 'filter_eq_0': 'filter_eq', 'all_rows_7': 'all_rows', 'draws_8': 'draws', '4_9': '4', 'conceded_10': 'conceded', '6_11': '6', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'team_12': 'team', 'olimpia_13': 'olimpia'}
{'and_5': [6], 'result_6': [], 'only_2': [5], 'filter_eq_1': [2, 3], 'filter_eq_0': [1], 'all_rows_7': [0], 'draws_8': [0], '4_9': [0], 'conceded_10': [1], '6_11': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'team_12': [3], 'olimpia_13': [4]}
['position', 'team', 'played', 'wins', 'draws', 'losses', 'scored', 'conceded', 'points']
[['1', 'olimpia', '9', '4', '4', '1', '14', '6', '16'], ['2', '12 de octubre', '9', '3', '6', '0', '14', '8', '15'], ['3', 'cerro porteño', '9', '3', '5', '1', '16', '10', '14'], ['4', 'guaraní', '9', '3', '5', '1', '8', '6', '14'], ['5', 'cerro corá', '9', '3', '4', '2', '9', '8', '13'], ['6', 'atl colegiales', '9', '3', '4', '2', '9', '9', '13'], ['7', 'sol de américa', '9', '2', '5', '2', '11', '10', '11'], ['8', 'san lorenzo', '9', '3', '1', '5', '13', '18', '10'], ['9', 'universal', '9', '1', '3', '5', '9', '17', '6'], ['10', 'sportivo luqueño', '9', '0', '3', '6', '8', '19', '3']]
united states house of representatives elections , 1942
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1942
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1342256-18.html.csv
comparative
newt mills was first elected to the louisiana house of representatives before jared sanders was .
{'row_1': '5', 'row_2': '6', 'col': '4', 'col_other': '2', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'incumbent', 'newt v mills'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose incumbent record fuzzily matches to newt v mills .', 'tostr': 'filter_eq { all_rows ; incumbent ; newt v mills }'}, 'first elected'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; incumbent ; newt v mills } ; first elected }', 'tointer': 'select the rows whose incumbent record fuzzily matches to newt v mills . take the first elected record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'incumbent', 'jared y sanders , jr'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose incumbent record fuzzily matches to jared y sanders , jr .', 'tostr': 'filter_eq { all_rows ; incumbent ; jared y sanders , jr }'}, 'first elected'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; incumbent ; jared y sanders , jr } ; first elected }', 'tointer': 'select the rows whose incumbent record fuzzily matches to jared y sanders , jr . take the first elected record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; incumbent ; newt v mills } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; jared y sanders , jr } ; first elected } } = true', 'tointer': 'select the rows whose incumbent record fuzzily matches to newt v mills . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to jared y sanders , jr . take the first elected record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; incumbent ; newt v mills } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; jared y sanders , jr } ; first elected } } = true
select the rows whose incumbent record fuzzily matches to newt v mills . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to jared y sanders , jr . take the first elected record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'incumbent_7': 7, 'newt v mills_8': 8, 'first elected_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'incumbent_11': 11, 'jared y sanders , jr_12': 12, 'first elected_13': 13}
{'less_4': 'less', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'incumbent_7': 'incumbent', 'newt v mills_8': 'newt v mills', 'first elected_9': 'first elected', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'incumbent_11': 'incumbent', 'jared y sanders , jr_12': 'jared y sanders , jr', 'first elected_13': 'first elected'}
{'less_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'incumbent_7': [0], 'newt v mills_8': [0], 'first elected_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'incumbent_11': [1], 'jared y sanders , jr_12': [1], 'first elected_13': [3]}
['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']
[['louisiana 1', 'f edward hebert', 'democratic', '1940', 're - elected', 'f edward hebert ( d ) unopposed'], ['louisiana 2', 'hale boggs', 'democratic', '1940', 'lost renomination democratic hold', 'paul h maloney ( d ) unopposed'], ['louisiana 3', 'james r domengeaux', 'democratic', '1940', 're - elected', 'james r domengeaux ( d ) unopposed'], ['louisiana 4', 'overton brooks', 'democratic', '1936', 're - elected', 'overton brooks ( d ) unopposed'], ['louisiana 5', 'newt v mills', 'democratic', '1936', 'lost renomination democratic hold', 'charles e mckenzie ( d ) unopposed'], ['louisiana 6', 'jared y sanders , jr', 'democratic', '1940', 'lost renomination democratic hold', 'james h morrison ( d ) unopposed'], ['louisiana 7', 'vance plauche', 'democratic', '1940', 'retired democratic hold', 'henry d larcade , jr ( d ) unopposed']]
2007 - 08 new york islanders season
https://en.wikipedia.org/wiki/2007%E2%80%9308_New_York_Islanders_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11902440-6.html.csv
majority
all games of the 2007 - 08 new york islanders ' season were scheduled for the month of january .
{'scope': 'all', 'col': '1', 'most_or_all': 'all', 'criterion': 'equal', 'value': 'january', 'subset': None}
{'func': 'all_str_eq', 'args': ['all_rows', 'date', 'january'], 'result': True, 'ind': 0, 'tointer': 'for the date records of all rows , all of them fuzzily match to january .', 'tostr': 'all_eq { all_rows ; date ; january } = true'}
all_eq { all_rows ; date ; january } = true
for the date records of all rows , all of them fuzzily match to january .
1
1
{'all_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'date_3': 3, 'january_4': 4}
{'all_str_eq_0': 'all_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'date_3': 'date', 'january_4': 'january'}
{'all_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'date_3': [0], 'january_4': [0]}
['date', 'visitor', 'score', 'home', 'decision', 'attendance', 'record']
[['january 3', 'florida', '4 - 3', 'ny islanders', 'dipietro', '11428', '20 - 16 - 3'], ['january 5', 'ny islanders', '1 - 2', 'colorado', 'dipietro', '17154', '20 - 16 - 4'], ['january 7', 'ny islanders', '0 - 4', 'edmonton', 'dipietro', '16839', '20 - 17 - 4'], ['january 8', 'ny islanders', '2 - 3', 'vancouver', 'dipietro', '18630', '20 - 17 - 5'], ['january 11', 'ny islanders', '5 - 4', 'calgary', 'dipietro', '19289', '21 - 17 - 5'], ['january 13', 'ny islanders', '3 - 1', 'ottawa', 'dipietro', '19804', '22 - 17 - 5'], ['january 15', 'montreal', '3 - 1', 'ny islanders', 'dipietro', '11439', '22 - 18 - 5'], ['january 16', 'ny islanders', '3 - 1', 'new jersey', 'dipietro', '15975', '23 - 18 - 5'], ['january 19', 'philadelphia', '5 - 3', 'ny islanders', 'dipietro', '16234', '23 - 19 - 5'], ['january 21', 'carolina', '3 - 2', 'ny islanders', 'dipietro', '16234', '23 - 19 - 6'], ['january 22', 'ny islanders', '6 - 3', 'carolina', 'dubielewicz', '15675', '24 - 19 - 6'], ['january 24', 'ny islanders', '1 - 4', 'boston', 'dipietro', '13461', '24 - 20 - 6'], ['january 29', 'ottawa', '5 - 2', 'ny islanders', 'dipietro', '9546', '24 - 21 - 6'], ['january 31', 'los angeles', '3 - 1', 'ny islanders', 'dubielewicz', '10148', '24 - 22 - 6']]
list of open - source films
https://en.wikipedia.org/wiki/List_of_open-source_films
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10597959-2.html.csv
ordinal
' moon dog ' is the open-source film that has the second earliest planned release date .
{'row': '9', 'col': '3', 'order': '2', 'col_other': '1', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'planned release', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; planned release ; 2 }'}, 'name'], 'result': 'moon dog', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; planned release ; 2 } ; name }'}, 'moon dog'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; planned release ; 2 } ; name } ; moon dog } = true', 'tointer': 'select the row whose planned release record of all rows is 2nd minimum . the name record of this row is moon dog .'}
eq { hop { nth_argmin { all_rows ; planned release ; 2 } ; name } ; moon dog } = true
select the row whose planned release record of all rows is 2nd minimum . the name record of this row is moon dog .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'planned release_5': 5, '2_6': 6, 'name_7': 7, 'moon dog_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'planned release_5': 'planned release', '2_6': '2', 'name_7': 'name', 'moon dog_8': 'moon dog'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'planned release_5': [0], '2_6': [0], 'name_7': [1], 'moon dog_8': [2]}
['name', 'type', 'planned release', 'cc license', 'sources available', 'open source movie']
[['the last drug', 'full feature', '2009', 'by - sa 3.0', 'with the release', 'yes'], ['a swarm of angels', 'full feature', 'not yet', 'by - nc - sa 2.0', 'intended', 'partially'], ['sanctuary', 'short', 'not yet', 'by - nc - sa 2.5', 'no', 'no'], ['the digital tipping point', 'documentary', 'not yet released', 'by - sa', 'yes', 'yes'], ['collision', 'short', 'not yet', 'by - sa 3.0', 'yes', 'yes'], ['the green sight', 'documentary', 'not yet', 'tbd', 'yes', 'yes'], ['the beautiful queen marya morevna - underground', 'animated feature', 'not yet', 'by 3.0', 'yes', 'yes'], ['lunatics ! - no children in space', 'animated series pilot', '2012', 'by - sa 3.0', 'yes', 'yes'], ['moon dog', 'feature film', '2011', 'by 3.0', 'no', 'no'], ['tomã', 'documentary', '2012', 'by 3.0', 'intended - looking for hosting', 'yes'], ['this way to denmark hill', 'feature film', '2013', 'by 3.0', 'no', 'no']]
list of macedonian submissions for the academy award for best foreign language film
https://en.wikipedia.org/wiki/List_of_Macedonian_submissions_for_the_Academy_Award_for_Best_Foreign_Language_Film
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-14928423-1.html.csv
majority
most of the macedonian submissions for best foreign language film were in the macedonian language .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'macedonian', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'language ( s )', 'macedonian'], 'result': True, 'ind': 0, 'tointer': 'for the language ( s ) records of all rows , most of them fuzzily match to macedonian .', 'tostr': 'most_eq { all_rows ; language ( s ) ; macedonian } = true'}
most_eq { all_rows ; language ( s ) ; macedonian } = true
for the language ( s ) records of all rows , most of them fuzzily match to macedonian .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'language (s)_3': 3, 'macedonian_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'language (s)_3': 'language ( s )', 'macedonian_4': 'macedonian'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'language (s)_3': [0], 'macedonian_4': [0]}
['year ( ceremony )', 'film title used in nomination', 'original title', 'language ( s )', 'director ( s )', 'result']
[['1994 ( 67th )', 'before the rain', 'пред дождот', 'macedonian , albanian , english', 'milčo mančevski', 'nominee'], ['1997 ( 70th )', 'gypsy magic', 'џипси меџик', 'macedonian , romany', 'stole popov', 'not nominated'], ['2004 ( 77th )', 'the great water', 'γолемата вода', 'macedonian', 'ivo trajkov', 'not nominated'], ['2006 ( 79th )', 'kontakt', 'контакт', 'macedonian , german', 'sergej stanojkovski', 'not nominated'], ['2007 ( 80th )', 'shadows', 'сенки', 'macedonian', 'milčo mančevski', 'not nominated'], ['2009 ( 82nd )', 'wingless', 'ocas ještěrky', 'czech', 'ivo trajkov', 'not nominated'], ['2010 ( 83rd )', 'mothers', 'мајки', 'macedonian', 'milčo mančevski', 'not nominated'], ['2011 ( 84th )', "punk 's not dead", 'панкот не е мртов', 'macedonian', 'vladimir blazevski', 'not nominated']]
1995 - 96 colorado avalanche season
https://en.wikipedia.org/wiki/1995%E2%80%9396_Colorado_Avalanche_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11945691-4.html.csv
unique
the game on december 1st was the only game where the ny rangers were the home team .
{'scope': 'all', 'row': '1', 'col': '4', 'col_other': '1', 'criterion': 'equal', 'value': 'ny rangers', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'home', 'ny rangers'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose home record fuzzily matches to ny rangers .', 'tostr': 'filter_eq { all_rows ; home ; ny rangers }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; home ; ny rangers } }', 'tointer': 'select the rows whose home record fuzzily matches to ny rangers . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'home', 'ny rangers'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose home record fuzzily matches to ny rangers .', 'tostr': 'filter_eq { all_rows ; home ; ny rangers }'}, 'date'], 'result': 'december 1', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; home ; ny rangers } ; date }'}, 'december 1'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; home ; ny rangers } ; date } ; december 1 }', 'tointer': 'the date record of this unqiue row is december 1 .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; home ; ny rangers } } ; eq { hop { filter_eq { all_rows ; home ; ny rangers } ; date } ; december 1 } } = true', 'tointer': 'select the rows whose home record fuzzily matches to ny rangers . there is only one such row in the table . the date record of this unqiue row is december 1 .'}
and { only { filter_eq { all_rows ; home ; ny rangers } } ; eq { hop { filter_eq { all_rows ; home ; ny rangers } ; date } ; december 1 } } = true
select the rows whose home record fuzzily matches to ny rangers . there is only one such row in the table . the date record of this unqiue row is december 1 .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'home_7': 7, 'ny rangers_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'date_9': 9, 'december 1_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'home_7': 'home', 'ny rangers_8': 'ny rangers', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'date_9': 'date', 'december 1_10': 'december 1'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'home_7': [0], 'ny rangers_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'date_9': [2], 'december 1_10': [3]}
['date', 'visitor', 'score', 'home', 'record']
[['december 1', 'colorado', '3 - 5', 'ny rangers', '15 - 6 - 4'], ['december 3', 'dallas', '7 - 6', 'colorado', '15 - 7 - 4'], ['december 5', 'san jose', '2 - 12', 'colorado', '16 - 7 - 4'], ['december 7', 'edmonton', '5 - 3', 'colorado', '16 - 8 - 4'], ['december 9', 'colorado', '7 - 3', 'ottawa', '17 - 8 - 4'], ['december 11', 'colorado', '5 - 1', 'toronto', '18 - 8 - 4'], ['december 13', 'colorado', '3 - 4', 'buffalo', '18 - 9 - 4'], ['december 15', 'colorado', '2 - 4', 'hartford', '18 - 10 - 4'], ['december 18', 'vancouver', '4 - 2', 'colorado', '18 - 11 - 4'], ['december 20', 'colorado', '4 - 1', 'edmonton', '19 - 11 - 4'], ['december 22', 'st louis', '1 - 2', 'colorado', '20 - 11 - 4'], ['december 23', 'colorado', '2 - 2', 'los angeles', '20 - 11 - 5'], ['december 26', 'colorado', '5 - 1', 'san jose', '21 - 11 - 5'], ['december 29', 'toronto', '2 - 3', 'colorado', '22 - 11 - 5']]
2009 australian drivers ' championship
https://en.wikipedia.org/wiki/2009_Australian_Drivers%27_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-22083044-2.html.csv
ordinal
the third race of the 2009 australian drivers ' championship took place at wakefield park .
{'row': '3', 'col': '1', 'order': '3', 'col_other': '3', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'event', '3'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; event ; 3 }'}, 'circuit'], 'result': 'wakefield park', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; event ; 3 } ; circuit }'}, 'wakefield park'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; event ; 3 } ; circuit } ; wakefield park } = true', 'tointer': 'select the row whose event record of all rows is 3rd minimum . the circuit record of this row is wakefield park .'}
eq { hop { nth_argmin { all_rows ; event ; 3 } ; circuit } ; wakefield park } = true
select the row whose event record of all rows is 3rd minimum . the circuit record of this row is wakefield park .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'event_5': 5, '3_6': 6, 'circuit_7': 7, 'wakefield park_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'event_5': 'event', '3_6': '3', 'circuit_7': 'circuit', 'wakefield park_8': 'wakefield park'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'event_5': [0], '3_6': [0], 'circuit_7': [1], 'wakefield park_8': [2]}
['event', 'round', 'circuit', 'date', 'pole position', 'fastest lap', 'winning driver', 'winning team']
[['1', '1', 'adelaide street circuit', '21 march', 'joey foster', 'joey foster', 'joey foster', 'team brm'], ['1', '2', 'adelaide street circuit', '22 march', 'joey foster', 'joey foster', 'joey foster', 'team brm'], ['2', '3', 'wakefield park', '26 april', 'joey foster', 'joey foster', 'tim macrow', 'scud racing'], ['2', '4', 'wakefield park', '26 april', 'joey foster', 'joey foster', 'joey foster', 'team brm'], ['3', '5', 'phillip island', '17 may', 'tim macrow', 'joey foster', 'joey foster', 'team brm'], ['3', '6', 'phillip island', '17 may', 'tim macrow', 'tim macrow', 'tim macrow', 'scud racing'], ['4', '7', 'winton motor raceway', '28 june', 'tim macrow', 'joey foster', 'tim macrow', 'scud racing'], ['4', '8', 'winton motor raceway', '28 june', 'joey foster', 'joey foster', 'joey foster', 'team brm'], ['5', '9', 'eastern creek raceway', '19 july', 'tim macrow', 'tim macrow', 'mat sofi', 'transwest racing'], ['5', '10', 'eastern creek raceway', '19 july', 'tim macrow', 'joey foster', 'tim macrow', 'scud racing'], ['6', '11', 'queensland raceway', '21 august', 'joey foster', 'tim macrow', 'tim macrow', 'scud racing'], ['6', '12', 'queensland raceway', '21 august', 'tim macrow', 'mat sofi', 'tim macrow', 'scud racing'], ['7', '13', 'oran park raceway', '30 august', 'tim macrow', 'mat sofi', 'joey foster', 'team brm'], ['7', '14', 'oran park raceway', '30 august', 'mat sofi', 'mat sofi', 'tim macrow', 'scud racing'], ['8', '15', 'sandown raceway', '29 november', 'joey foster', 'ben crighton', 'joey foster', 'team brm']]
cass technical high school
https://en.wikipedia.org/wiki/Cass_Technical_High_School
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1198175-1.html.csv
aggregation
at cass technical high school , the average weight was 238.05 .
{'scope': 'all', 'col': '4', 'type': 'average', 'result': '238.05', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'weight ( lbs )'], 'result': '238.05', 'ind': 0, 'tostr': 'avg { all_rows ; weight ( lbs ) }'}, '238.05'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; weight ( lbs ) } ; 238.05 } = true', 'tointer': 'the average of the weight ( lbs ) record of all rows is 238.05 .'}
round_eq { avg { all_rows ; weight ( lbs ) } ; 238.05 } = true
the average of the weight ( lbs ) record of all rows is 238.05 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'weight (lbs)_4': 4, '238.05_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'weight (lbs)_4': 'weight ( lbs )', '238.05_5': '238.05'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'weight (lbs)_4': [0], '238.05_5': [1]}
['name', 'position', 'height', 'weight ( lbs )', 'born', 'college', 'drafted']
[['walter clago', 'e', "6 ' 0", '195', '6 / / 1899 detroit , mi', 'detroit', 'undrafted'], ['darris mccord', 'de / dt / oe', "6 ' 6", '250', 'january 4 , 1933 detroit , mi', 'tennessee', '1955 , r3 , p11'], ['ben john paolucci', 'dt', "6 ' 2", '240', 'march 5 , 1937 cleveland , oh', 'wayne state', 'undrafted'], ['arnie simkus', 'de / dt', "6 ' 4", '245', 'march 25 , 1943 schlava , ger', 'michigan', '1965 , r6 , p2'], ['david boone , jr', 'de', "6 ' 3", '248', 'october 30 , 1951 detroit , mi', 'eastern mich', '1974 , r11 , p11'], ['aaron kyle', 'cb / s', "5 ' 11", '185', 'april 6 , 1954 detroit , mi', 'wyoming', '1976 , r1 , p26'], ['tom seabron', 'lb', "6 ' 3", '215', 'may 24 , 1957 baltimore , md', 'michigan', '1979 , r5 , p1'], ['harlan huckleby', 'rb', "6 ' 1", '200', 'december 30 , 1957 detroit , mi', 'michigan', '1979 , r5 , p1'], ['curtis greer', 'de', "6 ' 4", '256', 'november 10 , 1957 detroit , mi', 'michigan', '1976 , r1 , p6'], ['guy frazier', 'lb', "6 ' 2", '217', 'july 20 , 1959 detroit , mi', 'wyoming', '1981 , r4 , p10'], ['thomas sidney sims', 'dt / nt', "6 ' 2", '288', 'april 18 , 1967 detroit , mi', 'pittsburgh', '1990 , r6 , p14'], ['pat ivey', 'de', "6 ' 4", '255', 'december 27 , 1972 detroit , mi', 'mizzou', 'undrafted'], ['a j ofodile', 'te', "6 ' 7", '260', 'october 9 , 1973 detroit , mi', 'mizzou', '1994 , r5 , p25'], ['clarence williams', 'rb', "5 ' 9", '193', 'may 16 , 1977 detroit , mi', 'michigan', 'undrafted'], ['vernon gholston', 'de', "6 ' 3", '264', 'june 5 , 1986 detroit , mi', 'ohio state', '2008 , r1 , p6'], ['joseph barksdale', 'ot', "6 ' 4", '325', 'january 1 , 1989 detroit , mi', 'lsu', '2011 , r3 , p12'], ['will campbell', 'og', "6 ' 4", '311', 'july 6 , 1991 detroit , mi', 'michigan', '2013 , r6 , p10']]
telmex grand prix of monterrey
https://en.wikipedia.org/wiki/2004_Tecate/Telmex_Grand_Prix_of_Monterrey
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16326318-1.html.csv
comparative
mario domínguez had a faster time in the second qualifying race of the telmex grand prix of monterrey than alex sperafico .
{'row_1': '2', 'row_2': '18', 'col': '4', 'col_other': '1', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'name', 'mario domínguez'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose name record fuzzily matches to mario domínguez .', 'tostr': 'filter_eq { all_rows ; name ; mario domínguez }'}, 'qual 2'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; name ; mario domínguez } ; qual 2 }', 'tointer': 'select the rows whose name record fuzzily matches to mario domínguez . take the qual 2 record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'name', 'alex sperafico'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose name record fuzzily matches to alex sperafico .', 'tostr': 'filter_eq { all_rows ; name ; alex sperafico }'}, 'qual 2'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; name ; alex sperafico } ; qual 2 }', 'tointer': 'select the rows whose name record fuzzily matches to alex sperafico . take the qual 2 record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; name ; mario domínguez } ; qual 2 } ; hop { filter_eq { all_rows ; name ; alex sperafico } ; qual 2 } } = true', 'tointer': 'select the rows whose name record fuzzily matches to mario domínguez . take the qual 2 record of this row . select the rows whose name record fuzzily matches to alex sperafico . take the qual 2 record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; name ; mario domínguez } ; qual 2 } ; hop { filter_eq { all_rows ; name ; alex sperafico } ; qual 2 } } = true
select the rows whose name record fuzzily matches to mario domínguez . take the qual 2 record of this row . select the rows whose name record fuzzily matches to alex sperafico . take the qual 2 record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'name_7': 7, 'mario domínguez_8': 8, 'qual 2_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'name_11': 11, 'alex sperafico_12': 12, 'qual 2_13': 13}
{'less_4': 'less', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'name_7': 'name', 'mario domínguez_8': 'mario domínguez', 'qual 2_9': 'qual 2', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'name_11': 'name', 'alex sperafico_12': 'alex sperafico', 'qual 2_13': 'qual 2'}
{'less_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'name_7': [0], 'mario domínguez_8': [0], 'qual 2_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'name_11': [1], 'alex sperafico_12': [1], 'qual 2_13': [3]}
['name', 'team', 'qual 1', 'qual 2', 'best']
[['sébastien bourdais', 'newman / haas racing', '1:15.978', '1:13.915', '1:13.915'], ['mario domínguez', 'herdez competition', '1:16.422', '1:14.343', '1:14.343'], ['justin wilson', 'mi - jack conquest racing', '1:16.087', '1:14.354', '1:14.354'], ['bruno junqueira', 'newman / haas racing', '1:15.834', '1:14.405', '1:14.405'], ['patrick carpentier', 'forsythe racing', '1:16.617', '1:14.625', '1:14.625'], ['paul tracy', 'forsythe racing', '1:16.417', '1:14.723', '1:14.723'], ['jimmy vasser', 'pkv racing', '1:16.620', '1:15.183', '1:15.183'], ['ryan hunter - reay', 'herdez competition', '1:17.637', '1:15.265', '1:15.265'], ['oriol servià', 'dale coyne racing', '1:17.890', '1:15.395', '1:15.395'], ['tarso marques', 'dale coyne racing', '1:18.100', '1:15.582', '1:15.582'], ['a j allmendinger', 'rusport', '1:17.644', '1:15.673', '1:15.673'], ['roberto gonzález', 'pkv racing', '1:18.154', '1:15.791', '1:15.791'], ['michel jourdain , jr', 'rusport', '1:17.873', '1:15.805', '1:15.805'], ['rodolfo lavín', 'forsythe racing', '1:18.553', '1:16.096', '1:16.096'], ['alex tagliani', 'rocketsports racing', '1:16.712', '1:16.103', '1:16.103'], ['mario haberfeld', 'walker racing', '1:16.491', '1:16.691', '1:16.491'], ['nelson philippe', 'rocketsports racing', '1:18.373', '1:17.191', '1:17.191'], ['alex sperafico', 'mi - jack conquest racing', '1:20.139', '1:17.736', '1:17.736']]
umberto maglioli
https://en.wikipedia.org/wiki/Umberto_Maglioli
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1235883-1.html.csv
aggregation
umberto maglioli scored a total of four points in the year of 1954 .
{'scope': 'subset', 'col': '5', 'type': 'sum', 'result': '4', 'subset': {'col': '1', 'criterion': 'equal', 'value': '1954'}}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'year', '1954'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; year ; 1954 }', 'tointer': 'select the rows whose year record is equal to 1954 .'}, 'points'], 'result': '4', 'ind': 1, 'tostr': 'sum { filter_eq { all_rows ; year ; 1954 } ; points }'}, '4'], 'result': True, 'ind': 2, 'tostr': 'round_eq { sum { filter_eq { all_rows ; year ; 1954 } ; points } ; 4 } = true', 'tointer': 'select the rows whose year record is equal to 1954 . the sum of the points record of these rows is 4 .'}
round_eq { sum { filter_eq { all_rows ; year ; 1954 } ; points } ; 4 } = true
select the rows whose year record is equal to 1954 . the sum of the points record of these rows is 4 .
3
3
{'eq_2': 2, 'result_3': 3, 'sum_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'year_5': 5, '1954_6': 6, 'points_7': 7, '4_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'sum_1': 'sum', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'year_5': 'year', '1954_6': '1954', 'points_7': 'points', '4_8': '4'}
{'eq_2': [3], 'result_3': [], 'sum_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'year_5': [0], '1954_6': [0], 'points_7': [1], '4_8': [2]}
['year', 'entrant', 'chassis', 'engine', 'points']
[['1953', 'scuderia ferrari', 'ferrari 553', 'ferrari straight - 4', '0'], ['1954', 'scuderia ferrari', 'ferrari 625', 'ferrari straight - 4', '2'], ['1954', 'scuderia ferrari', 'ferrari 553', 'ferrari straight - 4', '2'], ['1955', 'scuderia ferrari', 'ferrari 625', 'ferrari straight - 4', '1\xa01⁄3'], ['1955', 'scuderia ferrari', 'ferrari 555', 'ferrari straight - 4', '1\xa01⁄3'], ['1956', 'scuderia guastalla', 'maserati 250f', 'maserati straight - 6', '0'], ['1956', 'officine alfieri maserati', 'maserati 250f', 'maserati straight - 6', '0'], ['1957', 'dr ing f porsche kg', 'porsche 550rs f2', 'porsche flat - 4', '0']]
1987 pga tour
https://en.wikipedia.org/wiki/1987_PGA_Tour
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14640069-4.html.csv
ordinal
tom watson recorded the 2nd highest earnings in the 1987 pga tour .
{'row': '2', 'col': '4', 'order': '2', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'earnings', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; earnings ; 2 }'}, 'player'], 'result': 'tom watson', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; earnings ; 2 } ; player }'}, 'tom watson'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; earnings ; 2 } ; player } ; tom watson } = true', 'tointer': 'select the row whose earnings record of all rows is 2nd maximum . the player record of this row is tom watson .'}
eq { hop { nth_argmax { all_rows ; earnings ; 2 } ; player } ; tom watson } = true
select the row whose earnings record of all rows is 2nd maximum . the player record of this row is tom watson .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'earnings_5': 5, '2_6': 6, 'player_7': 7, 'tom watson_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'earnings_5': 'earnings', '2_6': '2', 'player_7': 'player', 'tom watson_8': 'tom watson'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'earnings_5': [0], '2_6': [0], 'player_7': [1], 'tom watson_8': [2]}
['rank', 'player', 'country', 'earnings', 'wins']
[['1', 'jack nicklaus', 'united states', '4976980', '73'], ['2', 'tom watson', 'united states', '4701629', '37'], ['3', 'tom kite', 'united states', '3445007', '10'], ['4', 'raymond floyd', 'united states', '3372339', '21'], ['5', 'lee trevino', 'united states', '3315502', '29']]
forta
https://en.wikipedia.org/wiki/FORTA
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-23143607-1.html.csv
superlative
the radiotelevisión del principado de asturias ( rtpa ) is the newest founded forta organization .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '6', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'foundation'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; foundation }'}, 'organization'], 'result': 'radiotelevisión del principado de asturias ( rtpa )', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; foundation } ; organization }'}, 'radiotelevisión del principado de asturias ( rtpa )'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; foundation } ; organization } ; radiotelevisión del principado de asturias ( rtpa ) } = true', 'tointer': 'select the row whose foundation record of all rows is maximum . the organization record of this row is radiotelevisión del principado de asturias ( rtpa ) .'}
eq { hop { argmax { all_rows ; foundation } ; organization } ; radiotelevisión del principado de asturias ( rtpa ) } = true
select the row whose foundation record of all rows is maximum . the organization record of this row is radiotelevisión del principado de asturias ( rtpa ) .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'foundation_5': 5, 'organization_6': 6, 'radiotelevisión del principado de asturias (rtpa)_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'foundation_5': 'foundation', 'organization_6': 'organization', 'radiotelevisión del principado de asturias (rtpa)_7': 'radiotelevisión del principado de asturias ( rtpa )'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'foundation_5': [0], 'organization_6': [1], 'radiotelevisión del principado de asturias (rtpa)_7': [2]}
['autonomous community', 'organization', 'television channels', 'radio stations', 'foundation']
[['galicia', 'compañía de radio televisión de galicia ( crtvg )', 'tvg g2 tvg europa tvg américa', 'radio galega radio galega música son galicia radio', '1984'], ['valencia', 'ràdio televisió valenciana ( rtvv )', 'canal nou canal nou dos canal nou 24 tvvi', 'radio nou si radio radio nou música', '1988'], ['madrid', 'ente público radio televisión madrid ( eprtvm )', 'telemadrid laotra telemadrid sat', 'onda madrid', '1989'], ['canary islands', 'radio televisión canaria ( rtvc )', 'tv canaria tv canaria dos tv canaria sat', 'canarias radio', '1999'], ['castile - la mancha', 'radiotelevisión de castilla - la mancha ( rtvcm )', 'cmt cmt 2', 'rcm', '2000'], ['asturias', 'radiotelevisión del principado de asturias ( rtpa )', 'tpa tpa2 rtpa internacional', 'rpa', '2005']]
2008 - 09 new york rangers season
https://en.wikipedia.org/wiki/2008%E2%80%9309_New_York_Rangers_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17360905-6.html.csv
comparative
the game against the chicago blackhawks took place before the game with the carolina hurricanes .
{'row_1': '7', 'row_2': '10', 'col': '2', 'col_other': '3', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'chicago blackhawks'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose opponent record fuzzily matches to chicago blackhawks .', 'tostr': 'filter_eq { all_rows ; opponent ; chicago blackhawks }'}, 'january'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; opponent ; chicago blackhawks } ; january }', 'tointer': 'select the rows whose opponent record fuzzily matches to chicago blackhawks . take the january record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'carolina hurricanes'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose opponent record fuzzily matches to carolina hurricanes .', 'tostr': 'filter_eq { all_rows ; opponent ; carolina hurricanes }'}, 'january'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; opponent ; carolina hurricanes } ; january }', 'tointer': 'select the rows whose opponent record fuzzily matches to carolina hurricanes . take the january record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; opponent ; chicago blackhawks } ; january } ; hop { filter_eq { all_rows ; opponent ; carolina hurricanes } ; january } } = true', 'tointer': 'select the rows whose opponent record fuzzily matches to chicago blackhawks . take the january record of this row . select the rows whose opponent record fuzzily matches to carolina hurricanes . take the january record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; opponent ; chicago blackhawks } ; january } ; hop { filter_eq { all_rows ; opponent ; carolina hurricanes } ; january } } = true
select the rows whose opponent record fuzzily matches to chicago blackhawks . take the january record of this row . select the rows whose opponent record fuzzily matches to carolina hurricanes . take the january record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'opponent_7': 7, 'chicago blackhawks_8': 8, 'january_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'opponent_11': 11, 'carolina hurricanes_12': 12, 'january_13': 13}
{'less_4': 'less', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'opponent_7': 'opponent', 'chicago blackhawks_8': 'chicago blackhawks', 'january_9': 'january', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'opponent_11': 'opponent', 'carolina hurricanes_12': 'carolina hurricanes', 'january_13': 'january'}
{'less_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'opponent_7': [0], 'chicago blackhawks_8': [0], 'january_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'opponent_11': [1], 'carolina hurricanes_12': [1], 'january_13': [3]}
['game', 'january', 'opponent', 'score', 'decision', 'record']
[['40', '3', 'washington capitals', '2 - 1', 'valiquette', '23 - 14 - 3'], ['41', '5', 'pittsburgh penguins', '4 - 0', 'lundqvist', '24 - 14 - 3'], ['42', '7', 'montreal canadiens', '6 - 3', 'lundqvist', '24 - 15 - 3'], ['43', '9', 'buffalo sabres', '2 - 1 so', 'valiquette', '24 - 15 - 4'], ['44', '10', 'ottawa senators', '2 - 0', 'lundqvist', '25 - 15 - 4'], ['45', '13', 'new york islanders', '2 - 1', 'lundqvist', '26 - 15 - 4'], ['46', '16', 'chicago blackhawks', '3 - 2 ot', 'lundqvist', '27 - 15 - 4'], ['47', '18', 'pittsburgh penguins', '3 - 0', 'lundqvist', '27 - 16 - 4'], ['48', '20', 'anaheim ducks', '4 - 2', 'lundqvist', '28 - 16 - 4'], ['49', '27', 'carolina hurricanes', '3 - 2', 'valiquette', '29 - 16 - 4'], ['50', '28', 'pittsburgh penguins', '6 - 2', 'lundqvist', '29 - 17 - 4'], ['51', '31', 'boston bruins', '1 - 0', 'lundqvist', '29 - 18 - 4']]
andre roberts ( mixed martial artist )
https://en.wikipedia.org/wiki/Andre_Roberts_%28mixed_martial_artist%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17446451-2.html.csv
unique
the fight against ruben villareal was the only draw result in the career of andre roberts .
{'scope': 'all', 'row': '2', 'col': '1', 'col_other': '3', 'criterion': 'equal', 'value': 'draw', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'res', 'draw'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose res record fuzzily matches to draw .', 'tostr': 'filter_eq { all_rows ; res ; draw }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; res ; draw } }', 'tointer': 'select the rows whose res record fuzzily matches to draw . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'res', 'draw'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose res record fuzzily matches to draw .', 'tostr': 'filter_eq { all_rows ; res ; draw }'}, 'opponent'], 'result': 'ruben villareal', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; res ; draw } ; opponent }'}, 'ruben villareal'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; res ; draw } ; opponent } ; ruben villareal }', 'tointer': 'the opponent record of this unqiue row is ruben villareal .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; res ; draw } } ; eq { hop { filter_eq { all_rows ; res ; draw } ; opponent } ; ruben villareal } } = true', 'tointer': 'select the rows whose res record fuzzily matches to draw . there is only one such row in the table . the opponent record of this unqiue row is ruben villareal .'}
and { only { filter_eq { all_rows ; res ; draw } } ; eq { hop { filter_eq { all_rows ; res ; draw } ; opponent } ; ruben villareal } } = true
select the rows whose res record fuzzily matches to draw . there is only one such row in the table . the opponent record of this unqiue row is ruben villareal .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'res_7': 7, 'draw_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'opponent_9': 9, 'ruben villareal_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'res_7': 'res', 'draw_8': 'draw', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'opponent_9': 'opponent', 'ruben villareal_10': 'ruben villareal'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'res_7': [0], 'draw_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'opponent_9': [2], 'ruben villareal_10': [3]}
['res', 'record', 'opponent', 'method', 'event', 'round', 'time']
[['loss', '14 - 2 - 1', 'dan christison', 'submission ( armbar )', 'wec 13 - heavyweight explosion', '1', '3:26'], ['draw', '14 - 1 - 1', 'ruben villareal', 'draw', 'sb 38 - superbrawl 38', '3', '5:00'], ['win', '14 - 1', 'gabe beauperthy', 'submission ( kimura )', 'ec 57 - extreme challenge 57', '1', '3:34'], ['win', '13 - 1', 'johnathan ivey', 'submission ( bad position )', 'sb 30 - collision course', '1', '1:38'], ['win', '12 - 1', 'ray seraille', 'submission ( neck crank )', 'sb 28 - superbrawl 28', '1', '2:49'], ['win', '11 - 1', 'joe campanella', 'tko', 'ec 27 - extreme challenge 27', '1', '2:07'], ['win', '10 - 1', 'ron waterman', 'ko', 'ufc 21', '1', '2:51'], ['loss', '9 - 1', 'gary goodridge', 'submission ( punches )', 'ufc 19', '1', '0:43'], ['win', '9 - 0', 'jamie schell', 'tko', 'icf 1 - iowa cage fighting 1', '1', '1:25'], ['win', '8 - 0', 'jamie schell', 'tko', 'mfc 1 - midwest fighting 1', '1', '1:35'], ['win', '7 - 0', 'dave kirshman', 'submission', 'mfc 1 - midwest fighting 1', '1', '0:10'], ['win', '6 - 0', 'phil breecher', 'n / a', 'ec 19 - extreme challenge 19', '1', '0:35'], ['win', '5 - 0', 'harry moskowitz', 'ko', 'ufc 17', '1', '3:15'], ['win', '4 - 0', 'jason brewer', 'submission ( strikes )', 'ec 15 - extreme challenge 15', '1', '0:39'], ['win', '3 - 0', 'sam adkins', 'submission', 'ec 11 - extreme challenge 11', '1', '4:02'], ['win', '2 - 0', 'jim axtell', 'submission', 'ec 4 - extreme challenge 4', '1', '5:41'], ['win', '1 - 0', 'trevor thrasher', 'submission', 'ec 2 - extreme challenge 2', '1', '3:59']]
united states house of representatives elections , 1890
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1890
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1431450-5.html.csv
count
2 incumbents were re - elected during the 1890 united states house of representatives elections .
{'scope': 'all', 'criterion': 'equal', 'value': 're-elected', 'result': '2', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'result', 're-elected'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose result record fuzzily matches to re-elected .', 'tostr': 'filter_eq { all_rows ; result ; re-elected }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; result ; re-elected } }', 'tointer': 'select the rows whose result record fuzzily matches to re-elected . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; result ; re-elected } } ; 2 } = true', 'tointer': 'select the rows whose result record fuzzily matches to re-elected . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; result ; re-elected } } ; 2 } = true
select the rows whose result record fuzzily matches to re-elected . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'result_5': 5, 're-elected_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'result_5': 'result', 're-elected_6': 're-elected', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'result_5': [0], 're-elected_6': [0], '2_7': [2]}
['district', 'incumbent', 'party', 'first elected', 'result']
[['south carolina 1', 'samuel dibble', 'democratic', '1882', 'retired democratic hold'], ['south carolina 2', 'george d tillman', 'democratic', '1878', 're - elected'], ['south carolina 3', 'james s cothran', 'democratic', '1886', 'retired democratic hold'], ['south carolina 4', 'william h perry', 'democratic', '1884', 'retired democratic hold'], ['south carolina 5', 'john j hemphill', 'democratic', '1882', 're - elected'], ['south carolina 6', 'george w dargan', 'democratic', '1882', 'retired democratic hold'], ['south carolina 7', 'thomas e miller', 'republican', '1888', 'lost re - election democratic gain']]
mike skinner ( racing driver )
https://en.wikipedia.org/wiki/Mike_Skinner_%28racing_driver%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1640715-2.html.csv
comparative
mike skinner had the same average finish , 28 , in 1992 and 1994 .
{'row_1': '2', 'row_2': '3', 'col': '8', 'col_other': '1', 'relation': 'equal', 'record_mentioned': 'yes', 'diff_result': None}
{'func': 'and', 'args': [{'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'year', '1992'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose year record fuzzily matches to 1992 .', 'tostr': 'filter_eq { all_rows ; year ; 1992 }'}, 'avg finish'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; year ; 1992 } ; avg finish }', 'tointer': 'select the rows whose year record fuzzily matches to 1992 . take the avg finish record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'year', '1994'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose year record fuzzily matches to 1994 .', 'tostr': 'filter_eq { all_rows ; year ; 1994 }'}, 'avg finish'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; year ; 1994 } ; avg finish }', 'tointer': 'select the rows whose year record fuzzily matches to 1994 . take the avg finish record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_eq { all_rows ; year ; 1992 } ; avg finish } ; hop { filter_eq { all_rows ; year ; 1994 } ; avg finish } }', 'tointer': 'select the rows whose year record fuzzily matches to 1992 . take the avg finish record of this row . select the rows whose year record fuzzily matches to 1994 . take the avg finish record of this row . the first record is equal to the second record .'}, {'func': 'and', 'args': [{'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'year', '1992'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose year record fuzzily matches to 1992 .', 'tostr': 'filter_eq { all_rows ; year ; 1992 }'}, 'avg finish'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; year ; 1992 } ; avg finish }', 'tointer': 'select the rows whose year record fuzzily matches to 1992 . take the avg finish record of this row .'}, '28.0'], 'result': True, 'ind': 5, 'tostr': 'eq { hop { filter_eq { all_rows ; year ; 1992 } ; avg finish } ; 28.0 }', 'tointer': 'the avg finish record of the first row is 28.0 .'}, {'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'year', '1994'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose year record fuzzily matches to 1994 .', 'tostr': 'filter_eq { all_rows ; year ; 1994 }'}, 'avg finish'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; year ; 1994 } ; avg finish }', 'tointer': 'select the rows whose year record fuzzily matches to 1994 . take the avg finish record of this row .'}, '28.0'], 'result': True, 'ind': 6, 'tostr': 'eq { hop { filter_eq { all_rows ; year ; 1994 } ; avg finish } ; 28.0 }', 'tointer': 'the avg finish record of the second row is 28.0 .'}], 'result': True, 'ind': 7, 'tostr': 'and { eq { hop { filter_eq { all_rows ; year ; 1992 } ; avg finish } ; 28.0 } ; eq { hop { filter_eq { all_rows ; year ; 1994 } ; avg finish } ; 28.0 } }', 'tointer': 'the avg finish record of the first row is 28.0 . the avg finish record of the second row is 28.0 .'}], 'result': True, 'ind': 8, 'tostr': 'and { eq { hop { filter_eq { all_rows ; year ; 1992 } ; avg finish } ; hop { filter_eq { all_rows ; year ; 1994 } ; avg finish } } ; and { eq { hop { filter_eq { all_rows ; year ; 1992 } ; avg finish } ; 28.0 } ; eq { hop { filter_eq { all_rows ; year ; 1994 } ; avg finish } ; 28.0 } } } = true', 'tointer': 'select the rows whose year record fuzzily matches to 1992 . take the avg finish record of this row . select the rows whose year record fuzzily matches to 1994 . take the avg finish record of this row . the first record is equal to the second record . the avg finish record of the first row is 28.0 . the avg finish record of the second row is 28.0 .'}
and { eq { hop { filter_eq { all_rows ; year ; 1992 } ; avg finish } ; hop { filter_eq { all_rows ; year ; 1994 } ; avg finish } } ; and { eq { hop { filter_eq { all_rows ; year ; 1992 } ; avg finish } ; 28.0 } ; eq { hop { filter_eq { all_rows ; year ; 1994 } ; avg finish } ; 28.0 } } } = true
select the rows whose year record fuzzily matches to 1992 . take the avg finish record of this row . select the rows whose year record fuzzily matches to 1994 . take the avg finish record of this row . the first record is equal to the second record . the avg finish record of the first row is 28.0 . the avg finish record of the second row is 28.0 .
13
9
{'and_8': 8, 'result_9': 9, 'eq_4': 4, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_10': 10, 'year_11': 11, '1992_12': 12, 'avg finish_13': 13, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_14': 14, 'year_15': 15, '1994_16': 16, 'avg finish_17': 17, 'and_7': 7, 'eq_5': 5, '28.0_18': 18, 'eq_6': 6, '28.0_19': 19}
{'and_8': 'and', 'result_9': 'true', 'eq_4': 'eq', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_10': 'all_rows', 'year_11': 'year', '1992_12': '1992', 'avg finish_13': 'avg finish', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_14': 'all_rows', 'year_15': 'year', '1994_16': '1994', 'avg finish_17': 'avg finish', 'and_7': 'and', 'eq_5': 'eq', '28.0_18': '28.0', 'eq_6': 'eq', '28.0_19': '28.0'}
{'and_8': [9], 'result_9': [], 'eq_4': [8], 'num_hop_2': [4, 5], 'filter_str_eq_0': [2], 'all_rows_10': [0], 'year_11': [0], '1992_12': [0], 'avg finish_13': [2], 'num_hop_3': [4, 6], 'filter_str_eq_1': [3], 'all_rows_14': [1], 'year_15': [1], '1994_16': [1], 'avg finish_17': [3], 'and_7': [8], 'eq_5': [7], '28.0_18': [5], 'eq_6': [7], '28.0_19': [6]}
['year', 'starts', 'wins', 'top 5', 'top 10', 'poles', 'avg start', 'avg finish', 'winnings', 'position', 'team ( s )']
[['1987', '1', '0', '0', '0', '0', '35.0', '27.0', '470', '66th', '0'], ['1992', '1', '0', '0', '0', '0', '12.0', '28.0', '5800', '119th', '91 barry owen racing'], ['1994', '5', '0', '0', '0', '1', '11.4', '28.0', '18750', '57th', '88 gene petty motorsports'], ['1999', '13', '1', '1', '3', '0', '23.7', '24.5', '138405', '44th', '19 team yellow racing'], ['2000', '8', '0', '1', '2', '1', '18.0', '20.5', '117240', '52nd', '19 team yellow racing 15 andy petree racing'], ['2001', '14', '0', '6', '9', '1', '7.3', '9.4', '359798', '27th', '21 richard childress racing'], ['2003', '1', '0', '0', '1', '0', '9.0', '7.0', '15892', '106th', '7 evans motorsports'], ['2006', '9', '0', '0', '1', '0', '18.0', '22.0', '170795', '46th', '12 fitzbradshaw racing']]
1989 phoenix cardinals season
https://en.wikipedia.org/wiki/1989_Phoenix_Cardinals_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16642092-1.html.csv
unique
in the 1989 phoenix cardinals season , the only player to be picked from wisconsin , is todd nelson .
{'scope': 'all', 'row': '14', 'col': '5', 'col_other': '3', 'criterion': 'equal', 'value': 'wisconsin', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'school / club team', 'wisconsin'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose school / club team record fuzzily matches to wisconsin .', 'tostr': 'filter_eq { all_rows ; school / club team ; wisconsin }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; school / club team ; wisconsin } }', 'tointer': 'select the rows whose school / club team record fuzzily matches to wisconsin . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'school / club team', 'wisconsin'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose school / club team record fuzzily matches to wisconsin .', 'tostr': 'filter_eq { all_rows ; school / club team ; wisconsin }'}, 'player'], 'result': 'todd nelson', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; school / club team ; wisconsin } ; player }'}, 'todd nelson'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; school / club team ; wisconsin } ; player } ; todd nelson }', 'tointer': 'the player record of this unqiue row is todd nelson .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; school / club team ; wisconsin } } ; eq { hop { filter_eq { all_rows ; school / club team ; wisconsin } ; player } ; todd nelson } } = true', 'tointer': 'select the rows whose school / club team record fuzzily matches to wisconsin . there is only one such row in the table . the player record of this unqiue row is todd nelson .'}
and { only { filter_eq { all_rows ; school / club team ; wisconsin } } ; eq { hop { filter_eq { all_rows ; school / club team ; wisconsin } ; player } ; todd nelson } } = true
select the rows whose school / club team record fuzzily matches to wisconsin . there is only one such row in the table . the player record of this unqiue row is todd nelson .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'school / club team_7': 7, 'wisconsin_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'player_9': 9, 'todd nelson_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'school / club team_7': 'school / club team', 'wisconsin_8': 'wisconsin', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'player_9': 'player', 'todd nelson_10': 'todd nelson'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'school / club team_7': [0], 'wisconsin_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'player_9': [2], 'todd nelson_10': [3]}
['round', 'pick', 'player', 'position', 'school / club team']
[['1', '10', 'eric hill', 'linebacker', 'louisiana state'], ['1', '17', 'joe wolf', 'offensive guard', 'boston college'], ['2', '40', 'walter reeves', 'tight end', 'auburn'], ['3', '67', 'mike zandofsky', 'guard', 'washington'], ['4', '94', 'jim wahler', 'defensive tackle', 'ucla'], ['5', '123', 'richard tardits', 'linebacker', 'georgia'], ['5', '128', 'david edeen', 'defensive end', 'wyoming'], ['6', '150', 'jay taylor', 'defensive back', 'san jose state'], ['7', '177', 'rickey royal', 'defensive back', 'sam houston state'], ['8', '207', 'john burch', 'running back', 'tennessee - martin'], ['9', '234', 'kendall trainor', 'kicker', 'arkansas'], ['10', '261', 'chris becker', 'punter', 'texas christian'], ['11', '291', 'jeffrey hunter', 'defensive end', 'albany state'], ['12', '318', 'todd nelson', 'guard', 'wisconsin'], ['1', '2', 'timm rosenbach ( supplemental draft )', 'quarterback', 'washington state']]
mid - states football association
https://en.wikipedia.org/wiki/Mid-States_Football_Association
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-262560-2.html.csv
count
there were 12 institutions in the mid - states football association .
{'scope': 'all', 'criterion': 'all', 'value': 'n/a', 'result': '12', 'col': '1', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_all', 'args': ['all_rows', 'institution'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose institution record is arbitrary .', 'tostr': 'filter_all { all_rows ; institution }'}], 'result': '12', 'ind': 1, 'tostr': 'count { filter_all { all_rows ; institution } }', 'tointer': 'select the rows whose institution record is arbitrary . the number of such rows is 12 .'}, '12'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_all { all_rows ; institution } } ; 12 } = true', 'tointer': 'select the rows whose institution record is arbitrary . the number of such rows is 12 .'}
eq { count { filter_all { all_rows ; institution } } ; 12 } = true
select the rows whose institution record is arbitrary . the number of such rows is 12 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_all_0': 0, 'all_rows_4': 4, 'institution_5': 5, '12_6': 6}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_all_0': 'filter_all', 'all_rows_4': 'all_rows', 'institution_5': 'institution', '12_6': '12'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_all_0': [1], 'all_rows_4': [0], 'institution_5': [0], '12_6': [2]}
['institution', 'location', 'founded', 'type', 'enrollment', 'joined', 'left', 'nickname', 'primary conference when joining the msfa', 'current primary conference']
[['university of findlay', 'findlay , ohio', '1882', 'private', '4600', '1994 - 95', '1997 - 98', 'oilers', 'american mideast', 'gliac ( ncaa division ii )'], ['geneva college', 'beaver falls , pennsylvania', '1848', 'private', '1791', '1994 - 95', '2006 - 07', 'golden tornadoes', 'american mideast', "presidents ' ( pac ) ( ncaa division iii )"], ['iowa wesleyan college', 'mount pleasant , iowa', '1842', 'private', '850', '1996 - 97', '2011 - 12', 'tigers', 'mcc', 'ncaa d - iii independent'], ['lindenwood university', 'st charles , missouri', '1827', 'private', '17351', '1994 - 95', '1995 - 96', 'lions', 'american midwest', 'miaa ( ncaa division ii )'], ['malone university', 'canton , ohio', '1892', 'private', '2559', '1994 - 95', '2010 - 11', 'pioneers', 'american mideast', 'gliac ( ncaa division ii )'], ['mckendree university', 'lebanon , illinois', '1828', 'private', '3220', '1998 - 99', '2010 - 11', 'bearcats', 'american midwest', 'glvc ( ncaa division ii )'], ['ohio dominican university', 'columbus , ohio', '1911', 'private', '3052', '2004 - 05', '2008 - 09', 'panthers', 'american mideast', 'gliac ( ncaa division ii )'], ['quincy university', 'quincy , illinois', '1860', 'private', '1169', '2003 - 04', '2011 - 12', 'hawks', 'glvc ( ncaa division ii )', 'glvc ( ncaa division ii )'], ['tiffin university', 'tiffin , ohio', '1888', 'private', '6816', '1994 - 95', '2001 - 02', 'dragons', 'american mideast', 'gliac ( ncaa division ii )'], ['trine university', 'angola , indiana', '1884', 'private', '1779', '1996 - 97', '2002 - 03', 'thunder', 'whac', 'miaa ( ncaa division iii )'], ['urbana university', 'urbana , ohio', '1850', 'private', '1505', '1994 - 95', '2007 - 08', 'blue knights', 'american mideast', 'g - mac ( ncaa division ii )'], ['walsh university', 'north canton , ohio', '1960', 'private', '2500', '1996 - 97', '2010 - 11', 'cavaliers', 'american mideast', 'gliac ( ncaa division ii )']]
binibining pilipinas
https://en.wikipedia.org/wiki/Binibining_Pilipinas
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1825751-3.html.csv
comparative
marina benipayo won the title of miss maja pilipinas before tiffany cuña did .
{'row_1': '1', 'row_2': '5', 'col': '1', 'col_other': '5', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'miss maja pilipinas', 'marina benipayo'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose miss maja pilipinas record fuzzily matches to marina benipayo .', 'tostr': 'filter_eq { all_rows ; miss maja pilipinas ; marina benipayo }'}, 'year'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; miss maja pilipinas ; marina benipayo } ; year }', 'tointer': 'select the rows whose miss maja pilipinas record fuzzily matches to marina benipayo . take the year record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'miss maja pilipinas', 'tiffany cuña'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose miss maja pilipinas record fuzzily matches to tiffany cuña .', 'tostr': 'filter_eq { all_rows ; miss maja pilipinas ; tiffany cuña }'}, 'year'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; miss maja pilipinas ; tiffany cuña } ; year }', 'tointer': 'select the rows whose miss maja pilipinas record fuzzily matches to tiffany cuña . take the year record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; miss maja pilipinas ; marina benipayo } ; year } ; hop { filter_eq { all_rows ; miss maja pilipinas ; tiffany cuña } ; year } } = true', 'tointer': 'select the rows whose miss maja pilipinas record fuzzily matches to marina benipayo . take the year record of this row . select the rows whose miss maja pilipinas record fuzzily matches to tiffany cuña . take the year record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; miss maja pilipinas ; marina benipayo } ; year } ; hop { filter_eq { all_rows ; miss maja pilipinas ; tiffany cuña } ; year } } = true
select the rows whose miss maja pilipinas record fuzzily matches to marina benipayo . take the year record of this row . select the rows whose miss maja pilipinas record fuzzily matches to tiffany cuña . take the year record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'miss maja pilipinas_7': 7, 'marina benipayo_8': 8, 'year_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'miss maja pilipinas_11': 11, 'tiffany cuña_12': 12, 'year_13': 13}
{'less_4': 'less', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'miss maja pilipinas_7': 'miss maja pilipinas', 'marina benipayo_8': 'marina benipayo', 'year_9': 'year', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'miss maja pilipinas_11': 'miss maja pilipinas', 'tiffany cuña_12': 'tiffany cuña', 'year_13': 'year'}
{'less_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'miss maja pilipinas_7': [0], 'marina benipayo_8': [0], 'year_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'miss maja pilipinas_11': [1], 'tiffany cuña_12': [1], 'year_13': [3]}
['year', 'binibining pilipinas - universe', 'binibining pilipinas - world', 'binibining pilipinas international', 'miss maja pilipinas', 'first runner - up', 'second runner - up']
[['1992', 'elizabeth berroya', 'marilen espino', 'jo - anne timothea alivio', 'marina benipayo', 'hazel huelves', 'michelle buan'], ['1992', 'elizabeth berroya', 'marina benipayo', 'jo - anne timothea alivio', 'marina benipayo', 'hazel huelves', 'michelle buan'], ['1993', 'melinda joanna gallardo', 'sharmaine gutierrez', 'sheela mae santarin', 'not awarded', 'cristina ang esguerra', 'myra macariola'], ['1994', 'charlene mae bonnin', 'caroline subijano', 'alma concepcion', 'not awarded', 'abbygale arenas', 'eda calonia'], ['1995', 'joanne santos', 'reham snow tago', 'gladys andre dueñas', 'tiffany cuña', 'caroline pobre', 'margaret laing'], ['1996', 'aileen damiles', 'daisy reyes', 'yedda marie kittilsvedt', 'not anymore part of bb pilipinas', 'maria sovietskaya bacud', 'sonia santiago'], ['1997', 'abbygale arenas', 'kristine rachel florendo', 'susan jane ritter', 'not anymore part of bb pilipinas', 'abiele arianne del moral', 'marivic galang'], ['1998', 'olivia tisha silang', 'rachel soriano', 'colette glazer', 'not anymore part of bb pilipinas', 'jewel may lobaton', 'elsie sicat'], ['1998', 'jewel may lobaton', 'rachel soriano', 'colette glazer', 'not anymore part of bb pilipinas', 'elsie sicat', 'esabela cabrera'], ['1999', 'janelle bautista', 'miriam quiambao', 'lalaine edson', 'not anymore part of bb pilipinas', 'michelle arcangel', 'joelle marie pelaez'], ['1999', 'miriam quiambao', 'lalaine edson', 'georgina anne sandico', 'not anymore part of bb pilipinas', 'michelle arcangel', 'joelle marie pelaez']]