kasnerz commited on
Commit
4d81e8d
·
1 Parent(s): 8a85ca4

Delete _numericnlg.py

Browse files
Files changed (1) hide show
  1. _numericnlg.py +0 -88
_numericnlg.py DELETED
@@ -1,88 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- """
4
- The script used to load the dataset from the original source.
5
- """
6
-
7
-
8
- import json
9
- import datasets
10
- import glob
11
- import os
12
-
13
- _CITATION = """\
14
- @inproceedings{suadaa-etal-2021-towards,
15
- title = "Towards Table-to-Text Generation with Numerical Reasoning",
16
- author = "Suadaa, Lya Hulliyyatus and
17
- Kamigaito, Hidetaka and
18
- Funakoshi, Kotaro and
19
- Okumura, Manabu and
20
- Takamura, Hiroya",
21
- booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
22
- month = aug,
23
- year = "2021",
24
- address = "Online",
25
- publisher = "Association for Computational Linguistics",
26
- url = "https://aclanthology.org/2021.acl-long.115",
27
- doi = "10.18653/v1/2021.acl-long.115",
28
- pages = "1451--1465"
29
- }
30
- """
31
- _DESCRIPTION = """\
32
- NumericNLG is a dataset for table-totext generation focusing on numerical reasoning.
33
- The dataset consists of textual descriptions of numerical tables from scientific papers.
34
- """
35
-
36
- _URL = "https://github.com/titech-nlp/numeric-nlg"
37
- _LICENSE = "CC BY-SA 4.0"
38
-
39
- class NumericNLG(datasets.GeneratorBasedBuilder):
40
- VERSION = "1.0.0"
41
- def _info(self):
42
- return datasets.DatasetInfo(
43
- description=_DESCRIPTION,
44
- features=datasets.Features({
45
- "table_id_paper": datasets.Value(dtype='string'),
46
- "caption": datasets.Value(dtype='string'),
47
- "row_header_level" : datasets.Value(dtype='int32'),
48
- "row_headers" : datasets.Value(dtype='large_string'),
49
- "column_header_level": datasets.Value(dtype='int32'),
50
- "column_headers" : datasets.Value(dtype='large_string'),
51
- "contents" : datasets.Value(dtype='large_string'),
52
- "metrics_loc" : datasets.Value(dtype='string'),
53
- "metrics_type" : datasets.Value(dtype='large_string'),
54
- "target_entity": datasets.Value(dtype='large_string'),
55
- "table_html_clean": datasets.Value(dtype='large_string'),
56
- "table_name": datasets.Value(dtype='string'),
57
- "table_id": datasets.Value(dtype='string'),
58
- "paper_id": datasets.Value(dtype='string'),
59
- "page_no": datasets.Value(dtype='int32'),
60
- "dir": datasets.Value(dtype='string'),
61
- "valid": datasets.Value(dtype='int32'),
62
- }),
63
- supervised_keys=None,
64
- homepage="https://github.com/titech-nlp/numeric-nlg",
65
- citation=_CITATION,
66
- license=_LICENSE,
67
- )
68
-
69
- def _split_generators(self, dl_manager):
70
- """Returns SplitGenerators."""
71
- return [
72
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": "data", "split" : "train"}),
73
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": "data", "split" : "dev"}),
74
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": "data", "split" : "test"}),
75
- ]
76
-
77
- def _generate_examples(self, filepath, split):
78
- filename = split if split != "dev" else "val"
79
-
80
- with open(os.path.join(filepath, f"table_{filename}.json")) as f:
81
- j = json.load(f)
82
-
83
- for example_idx, entry in enumerate(j):
84
- yield example_idx, {key: str(value) for key, value in entry.items()}
85
-
86
- if __name__ == '__main__':
87
- dataset = datasets.load_dataset(__file__)
88
- dataset.push_to_hub("kasnerz/numericnlg")