#!/usr/bin/env python3 """ The script used to load the dataset from the original source. """ import json import datasets import glob import os _CITATION = """\ @inproceedings{suadaa-etal-2021-towards, title = "Towards Table-to-Text Generation with Numerical Reasoning", author = "Suadaa, Lya Hulliyyatus and Kamigaito, Hidetaka and Funakoshi, Kotaro and Okumura, Manabu and Takamura, Hiroya", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.115", doi = "10.18653/v1/2021.acl-long.115", pages = "1451--1465" } """ _DESCRIPTION = """\ NumericNLG is a dataset for table-totext generation focusing on numerical reasoning. The dataset consists of textual descriptions of numerical tables from scientific papers. """ _URL = "https://github.com/titech-nlp/numeric-nlg" _LICENSE = "CC BY-SA 4.0" class NumericNLG(datasets.GeneratorBasedBuilder): VERSION = "1.0.0" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "table_id_paper": datasets.Value(dtype='string'), "caption": datasets.Value(dtype='string'), "row_header_level" : datasets.Value(dtype='int32'), "row_headers" : datasets.Value(dtype='large_string'), "column_header_level": datasets.Value(dtype='int32'), "column_headers" : datasets.Value(dtype='large_string'), "contents" : datasets.Value(dtype='large_string'), "metrics_loc" : datasets.Value(dtype='string'), "metrics_type" : datasets.Value(dtype='large_string'), "target_entity": datasets.Value(dtype='large_string'), "table_html_clean": datasets.Value(dtype='large_string'), "table_name": datasets.Value(dtype='string'), "table_id": datasets.Value(dtype='string'), "paper_id": datasets.Value(dtype='string'), "page_no": datasets.Value(dtype='int32'), "dir": datasets.Value(dtype='string'), "valid": datasets.Value(dtype='int32'), }), supervised_keys=None, homepage="https://github.com/titech-nlp/numeric-nlg", citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": "data", "split" : "train"}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": "data", "split" : "dev"}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": "data", "split" : "test"}), ] def _generate_examples(self, filepath, split): filename = split if split != "dev" else "val" with open(os.path.join(filepath, f"table_{filename}.json")) as f: j = json.load(f) for example_idx, entry in enumerate(j): yield example_idx, {key: str(value) for key, value in entry.items()} if __name__ == '__main__': dataset = datasets.load_dataset(__file__) dataset.push_to_hub("kasnerz/numericnlg")