text
stringlengths
89
104k
code_tokens
list
avg_line_len
float64
7.91
980
score
float64
0
630
def _get_valid_fill_mask(arr, dim, limit): '''helper function to determine values that can be filled when limit is not None''' kw = {dim: limit + 1} # we explicitly use construct method to avoid copy. new_dim = utils.get_temp_dimname(arr.dims, '_window') return (arr.isnull().rolling(min_periods=1, **kw) .construct(new_dim, fill_value=False) .sum(new_dim, skipna=False)) <= limit
[ "def", "_get_valid_fill_mask", "(", "arr", ",", "dim", ",", "limit", ")", ":", "kw", "=", "{", "dim", ":", "limit", "+", "1", "}", "# we explicitly use construct method to avoid copy.", "new_dim", "=", "utils", ".", "get_temp_dimname", "(", "arr", ".", "dims", ",", "'_window'", ")", "return", "(", "arr", ".", "isnull", "(", ")", ".", "rolling", "(", "min_periods", "=", "1", ",", "*", "*", "kw", ")", ".", "construct", "(", "new_dim", ",", "fill_value", "=", "False", ")", ".", "sum", "(", "new_dim", ",", "skipna", "=", "False", ")", ")", "<=", "limit" ]
46.666667
16.444444
def process_exception_message(exception): """ Process an exception message. Args: exception: The exception to process. Returns: A filtered string summarizing the exception. """ exception_message = str(exception) for replace_char in ['\t', '\n', '\\n']: exception_message = exception_message.replace(replace_char, '' if replace_char != '\t' else ' ') return exception_message.replace('section', 'alias')
[ "def", "process_exception_message", "(", "exception", ")", ":", "exception_message", "=", "str", "(", "exception", ")", "for", "replace_char", "in", "[", "'\\t'", ",", "'\\n'", ",", "'\\\\n'", "]", ":", "exception_message", "=", "exception_message", ".", "replace", "(", "replace_char", ",", "''", "if", "replace_char", "!=", "'\\t'", "else", "' '", ")", "return", "exception_message", ".", "replace", "(", "'section'", ",", "'alias'", ")" ]
35.071429
18.357143
def showroom_get_roomid_by_room_url_key(room_url_key): """str->str""" fake_headers_mobile = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'UTF-8,*;q=0.5', 'Accept-Encoding': 'gzip,deflate,sdch', 'Accept-Language': 'en-US,en;q=0.8', 'User-Agent': 'Mozilla/5.0 (Linux; Android 4.4.2; Nexus 4 Build/KOT49H) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.114 Mobile Safari/537.36' } webpage_url = 'https://www.showroom-live.com/' + room_url_key html = get_content(webpage_url, headers = fake_headers_mobile) roomid = match1(html, r'room\?room_id\=(\d+)') assert roomid return roomid
[ "def", "showroom_get_roomid_by_room_url_key", "(", "room_url_key", ")", ":", "fake_headers_mobile", "=", "{", "'Accept'", ":", "'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'", ",", "'Accept-Charset'", ":", "'UTF-8,*;q=0.5'", ",", "'Accept-Encoding'", ":", "'gzip,deflate,sdch'", ",", "'Accept-Language'", ":", "'en-US,en;q=0.8'", ",", "'User-Agent'", ":", "'Mozilla/5.0 (Linux; Android 4.4.2; Nexus 4 Build/KOT49H) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.114 Mobile Safari/537.36'", "}", "webpage_url", "=", "'https://www.showroom-live.com/'", "+", "room_url_key", "html", "=", "get_content", "(", "webpage_url", ",", "headers", "=", "fake_headers_mobile", ")", "roomid", "=", "match1", "(", "html", ",", "r'room\\?room_id\\=(\\d+)'", ")", "assert", "roomid", "return", "roomid" ]
49.785714
24.785714
def by_col(cls, df, e, b, t=None, geom_col='geometry', inplace=False, **kwargs): """ Compute smoothing by columns in a dataframe. The bounding box and point information is computed from the geometry column. Parameters ----------- df : pandas.DataFrame a dataframe containing the data to be smoothed e : string or list of strings the name or names of columns containing event variables to be smoothed b : string or list of strings the name or names of columns containing the population variables to be smoothed t : Headbanging_Triples instance or list of Headbanging_Triples list of headbanging triples instances. If not provided, this is computed from the geometry column of the dataframe. geom_col: string the name of the column in the dataframe containing the geometry information. inplace : bool a flag denoting whether to output a copy of `df` with the relevant smoothed columns appended, or to append the columns directly to `df` itself. **kwargs: optional keyword arguments optional keyword options that are passed directly to the smoother. Returns --------- a new dataframe containing the smoothed Headbanging Median Rates for the event/population pairs. If done inplace, there is no return value and `df` is modified in place. """ import pandas as pd if not inplace: new = df.copy() cls.by_col(new, e, b, t=t, geom_col=geom_col, inplace=True, **kwargs) return new import pandas as pd # prep for application over multiple event/population pairs if isinstance(e, str): e = [e] if isinstance(b, str): b = [b] if len(e) > len(b): b = b * len(e) data = get_points_array(df[geom_col]) #Headbanging_Triples doesn't take **kwargs, so filter its arguments # (self, data, w, k=5, t=3, angle=135.0, edgecor=False): w = kwargs.pop('w', None) if w is None: found = False for k in df._metadata: w = df.__dict__.get(w, None) if isinstance(w, W): found = True if not found: raise Exception('Weights not provided and no weights attached to frame!' ' Please provide a weight or attach a weight to the' ' dataframe') k = kwargs.pop('k', 5) t = kwargs.pop('t', 3) angle = kwargs.pop('angle', 135.0) edgecor = kwargs.pop('edgecor', False) hbt = Headbanging_Triples(data, w, k=k, t=t, angle=angle, edgecor=edgecor) res = [] for ename, bname in zip(e, b): r = cls(df[ename], df[bname], hbt, **kwargs).r name = '_'.join(('-'.join((ename, bname)), cls.__name__.lower())) df[name] = r
[ "def", "by_col", "(", "cls", ",", "df", ",", "e", ",", "b", ",", "t", "=", "None", ",", "geom_col", "=", "'geometry'", ",", "inplace", "=", "False", ",", "*", "*", "kwargs", ")", ":", "import", "pandas", "as", "pd", "if", "not", "inplace", ":", "new", "=", "df", ".", "copy", "(", ")", "cls", ".", "by_col", "(", "new", ",", "e", ",", "b", ",", "t", "=", "t", ",", "geom_col", "=", "geom_col", ",", "inplace", "=", "True", ",", "*", "*", "kwargs", ")", "return", "new", "import", "pandas", "as", "pd", "# prep for application over multiple event/population pairs", "if", "isinstance", "(", "e", ",", "str", ")", ":", "e", "=", "[", "e", "]", "if", "isinstance", "(", "b", ",", "str", ")", ":", "b", "=", "[", "b", "]", "if", "len", "(", "e", ")", ">", "len", "(", "b", ")", ":", "b", "=", "b", "*", "len", "(", "e", ")", "data", "=", "get_points_array", "(", "df", "[", "geom_col", "]", ")", "#Headbanging_Triples doesn't take **kwargs, so filter its arguments", "# (self, data, w, k=5, t=3, angle=135.0, edgecor=False):", "w", "=", "kwargs", ".", "pop", "(", "'w'", ",", "None", ")", "if", "w", "is", "None", ":", "found", "=", "False", "for", "k", "in", "df", ".", "_metadata", ":", "w", "=", "df", ".", "__dict__", ".", "get", "(", "w", ",", "None", ")", "if", "isinstance", "(", "w", ",", "W", ")", ":", "found", "=", "True", "if", "not", "found", ":", "raise", "Exception", "(", "'Weights not provided and no weights attached to frame!'", "' Please provide a weight or attach a weight to the'", "' dataframe'", ")", "k", "=", "kwargs", ".", "pop", "(", "'k'", ",", "5", ")", "t", "=", "kwargs", ".", "pop", "(", "'t'", ",", "3", ")", "angle", "=", "kwargs", ".", "pop", "(", "'angle'", ",", "135.0", ")", "edgecor", "=", "kwargs", ".", "pop", "(", "'edgecor'", ",", "False", ")", "hbt", "=", "Headbanging_Triples", "(", "data", ",", "w", ",", "k", "=", "k", ",", "t", "=", "t", ",", "angle", "=", "angle", ",", "edgecor", "=", "edgecor", ")", "res", "=", "[", "]", "for", "ename", ",", "bname", "in", "zip", "(", "e", ",", "b", ")", ":", "r", "=", "cls", "(", "df", "[", "ename", "]", ",", "df", "[", "bname", "]", ",", "hbt", ",", "*", "*", "kwargs", ")", ".", "r", "name", "=", "'_'", ".", "join", "(", "(", "'-'", ".", "join", "(", "(", "ename", ",", "bname", ")", ")", ",", "cls", ".", "__name__", ".", "lower", "(", ")", ")", ")", "df", "[", "name", "]", "=", "r" ]
41.102564
20.769231
def setup(__pkg: str) -> jinja2.Environment: """Configure a new Jinja environment with our filters. Args: __pkg: Package name to use as base for templates searches Returns: Configured Jinja environment """ dirs = [path.join(d, 'templates') for d in xdg_basedir.get_data_dirs(__pkg)] env = jinja2.Environment( autoescape=jinja2.select_autoescape(['html', 'xml']), loader=jinja2.ChoiceLoader([jinja2.FileSystemLoader(s) for s in dirs])) env.loader.loaders.append(jinja2.PackageLoader(__pkg, 'templates')) env.filters.update(FILTERS) return env
[ "def", "setup", "(", "__pkg", ":", "str", ")", "->", "jinja2", ".", "Environment", ":", "dirs", "=", "[", "path", ".", "join", "(", "d", ",", "'templates'", ")", "for", "d", "in", "xdg_basedir", ".", "get_data_dirs", "(", "__pkg", ")", "]", "env", "=", "jinja2", ".", "Environment", "(", "autoescape", "=", "jinja2", ".", "select_autoescape", "(", "[", "'html'", ",", "'xml'", "]", ")", ",", "loader", "=", "jinja2", ".", "ChoiceLoader", "(", "[", "jinja2", ".", "FileSystemLoader", "(", "s", ")", "for", "s", "in", "dirs", "]", ")", ")", "env", ".", "loader", ".", "loaders", ".", "append", "(", "jinja2", ".", "PackageLoader", "(", "__pkg", ",", "'templates'", ")", ")", "env", ".", "filters", ".", "update", "(", "FILTERS", ")", "return", "env" ]
33.722222
20.333333
def open_with_encoding(filename, encoding, mode='r'): """Return opened file with a specific encoding.""" return io.open(filename, mode=mode, encoding=encoding, newline='')
[ "def", "open_with_encoding", "(", "filename", ",", "encoding", ",", "mode", "=", "'r'", ")", ":", "return", "io", ".", "open", "(", "filename", ",", "mode", "=", "mode", ",", "encoding", "=", "encoding", ",", "newline", "=", "''", ")" ]
48.75
10.25
def clone_model(model_instance): """ Returns a copy of the given model with all objects cloned. This is equivalent to saving the model to a file and reload it, but it doesn't require writing or reading to/from disk. The original model is not touched. :param model: model to be cloned :return: a cloned copy of the given model """ data = model_instance.to_dict_with_types() parser = ModelParser(model_dict=data) return parser.get_model()
[ "def", "clone_model", "(", "model_instance", ")", ":", "data", "=", "model_instance", ".", "to_dict_with_types", "(", ")", "parser", "=", "ModelParser", "(", "model_dict", "=", "data", ")", "return", "parser", ".", "get_model", "(", ")" ]
33.071429
23.928571
def VerifyStructure(self, parser_mediator, lines): """Verifies whether content corresponds to an SCCM log file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. lines (str): one or more lines from the text file. Returns: bool: True if this is the correct parser, False otherwise. """ # Identify the token to which we attempt a match. match = self._PARSING_COMPONENTS['msg_left_delimiter'].match # Because logs files can lead with a partial event, # we can't assume that the first character (post-BOM) # in the file is the beginning of our match - so we # look for match anywhere in lines. return match in lines
[ "def", "VerifyStructure", "(", "self", ",", "parser_mediator", ",", "lines", ")", ":", "# Identify the token to which we attempt a match.", "match", "=", "self", ".", "_PARSING_COMPONENTS", "[", "'msg_left_delimiter'", "]", ".", "match", "# Because logs files can lead with a partial event,", "# we can't assume that the first character (post-BOM)", "# in the file is the beginning of our match - so we", "# look for match anywhere in lines.", "return", "match", "in", "lines" ]
39.210526
20.210526
def _get_verdict(result): """Gets verdict of the testcase.""" verdict = result.get("verdict") if not verdict: return None verdict = verdict.strip().lower() if verdict not in Verdicts.PASS + Verdicts.FAIL + Verdicts.SKIP + Verdicts.WAIT: return None return verdict
[ "def", "_get_verdict", "(", "result", ")", ":", "verdict", "=", "result", ".", "get", "(", "\"verdict\"", ")", "if", "not", "verdict", ":", "return", "None", "verdict", "=", "verdict", ".", "strip", "(", ")", ".", "lower", "(", ")", "if", "verdict", "not", "in", "Verdicts", ".", "PASS", "+", "Verdicts", ".", "FAIL", "+", "Verdicts", ".", "SKIP", "+", "Verdicts", ".", "WAIT", ":", "return", "None", "return", "verdict" ]
36.333333
14.888889
def draw_circle(self, center, radius, array, value, mode="set"): """ Draws a circle of specified radius on the input array and fills it with specified value :param center: a tuple for the center of the circle :type center: tuple (x,y) :param radius: how many pixels in radius the circle is :type radius: int :param array: image to draw circle on :type array: size (m,n) numpy array :param value: what value to fill the circle with :type value: float :param mode: if "set" will assign the circle interior value, if "add" will add the value to the circle interior, throws exception otherwise :type mode: string, either "set" or "add" :return: updates input array """ ri, ci = draw.circle(center[0], center[1], radius=radius, shape=array.shape) if mode == "add": array[ri, ci] += value elif mode == "set": array[ri, ci] = value else: raise ValueError("draw_circle mode must be 'set' or 'add' but {} used".format(mode)) return ri, ci, array[ri,ci]
[ "def", "draw_circle", "(", "self", ",", "center", ",", "radius", ",", "array", ",", "value", ",", "mode", "=", "\"set\"", ")", ":", "ri", ",", "ci", "=", "draw", ".", "circle", "(", "center", "[", "0", "]", ",", "center", "[", "1", "]", ",", "radius", "=", "radius", ",", "shape", "=", "array", ".", "shape", ")", "if", "mode", "==", "\"add\"", ":", "array", "[", "ri", ",", "ci", "]", "+=", "value", "elif", "mode", "==", "\"set\"", ":", "array", "[", "ri", ",", "ci", "]", "=", "value", "else", ":", "raise", "ValueError", "(", "\"draw_circle mode must be 'set' or 'add' but {} used\"", ".", "format", "(", "mode", ")", ")", "return", "ri", ",", "ci", ",", "array", "[", "ri", ",", "ci", "]" ]
45.230769
16.307692
def parse_stdout(self, filelike): """Parse the content written by the script to standard out into a `CifData` object. :param filelike: filelike object of stdout :returns: an exit code in case of an error, None otherwise """ from CifFile import StarError if not filelike.read().strip(): return self.exit_codes.ERROR_EMPTY_OUTPUT_FILE try: filelike.seek(0) cif = CifData(file=filelike) except StarError: self.logger.exception('Failed to parse a `CifData` from the stdout file\n%s', traceback.format_exc()) return self.exit_codes.ERROR_PARSING_CIF_DATA else: self.out('cif', cif) return
[ "def", "parse_stdout", "(", "self", ",", "filelike", ")", ":", "from", "CifFile", "import", "StarError", "if", "not", "filelike", ".", "read", "(", ")", ".", "strip", "(", ")", ":", "return", "self", ".", "exit_codes", ".", "ERROR_EMPTY_OUTPUT_FILE", "try", ":", "filelike", ".", "seek", "(", "0", ")", "cif", "=", "CifData", "(", "file", "=", "filelike", ")", "except", "StarError", ":", "self", ".", "logger", ".", "exception", "(", "'Failed to parse a `CifData` from the stdout file\\n%s'", ",", "traceback", ".", "format_exc", "(", ")", ")", "return", "self", ".", "exit_codes", ".", "ERROR_PARSING_CIF_DATA", "else", ":", "self", ".", "out", "(", "'cif'", ",", "cif", ")", "return" ]
34.238095
20.52381
def compute_pool(instance1, attribute1, relation1, instance2, attribute2, relation2, prefix1, prefix2, doinstance=True, doattribute=True, dorelation=True): """ compute all possible node mapping candidates and their weights (the triple matching number gain resulting from mapping one node in AMR 1 to another node in AMR2) Arguments: instance1: instance triples of AMR 1 attribute1: attribute triples of AMR 1 (attribute name, node name, attribute value) relation1: relation triples of AMR 1 (relation name, node 1 name, node 2 name) instance2: instance triples of AMR 2 attribute2: attribute triples of AMR 2 (attribute name, node name, attribute value) relation2: relation triples of AMR 2 (relation name, node 1 name, node 2 name prefix1: prefix label for AMR 1 prefix2: prefix label for AMR 2 Returns: candidate_mapping: a list of candidate nodes. The ith element contains the node indices (in AMR 2) the ith node (in AMR 1) can map to. (resulting in non-zero triple match) weight_dict: a dictionary which contains the matching triple number for every pair of node mapping. The key is a node pair. The value is another dictionary. key {-1} is triple match resulting from this node pair alone (instance triples and attribute triples), and other keys are node pairs that can result in relation triple match together with the first node pair. """ candidate_mapping = [] weight_dict = {} for instance1_item in instance1: # each candidate mapping is a set of node indices candidate_mapping.append(set()) if doinstance: for instance2_item in instance2: # if both triples are instance triples and have the same value if normalize(instance1_item[0]) == normalize(instance2_item[0]) and \ normalize(instance1_item[2]) == normalize(instance2_item[2]): # get node index by stripping the prefix node1_index = int(instance1_item[1][len(prefix1):]) node2_index = int(instance2_item[1][len(prefix2):]) candidate_mapping[node1_index].add(node2_index) node_pair = (node1_index, node2_index) # use -1 as key in weight_dict for instance triples and attribute triples if node_pair in weight_dict: weight_dict[node_pair][-1] += 1 else: weight_dict[node_pair] = {} weight_dict[node_pair][-1] = 1 if doattribute: for attribute1_item in attribute1: for attribute2_item in attribute2: # if both attribute relation triple have the same relation name and value if normalize(attribute1_item[0]) == normalize(attribute2_item[0]) \ and normalize(attribute1_item[2]) == normalize(attribute2_item[2]): node1_index = int(attribute1_item[1][len(prefix1):]) node2_index = int(attribute2_item[1][len(prefix2):]) candidate_mapping[node1_index].add(node2_index) node_pair = (node1_index, node2_index) # use -1 as key in weight_dict for instance triples and attribute triples if node_pair in weight_dict: weight_dict[node_pair][-1] += 1 else: weight_dict[node_pair] = {} weight_dict[node_pair][-1] = 1 if dorelation: for relation1_item in relation1: for relation2_item in relation2: # if both relation share the same name if normalize(relation1_item[0]) == normalize(relation2_item[0]): node1_index_amr1 = int(relation1_item[1][len(prefix1):]) node1_index_amr2 = int(relation2_item[1][len(prefix2):]) node2_index_amr1 = int(relation1_item[2][len(prefix1):]) node2_index_amr2 = int(relation2_item[2][len(prefix2):]) # add mapping between two nodes candidate_mapping[node1_index_amr1].add(node1_index_amr2) candidate_mapping[node2_index_amr1].add(node2_index_amr2) node_pair1 = (node1_index_amr1, node1_index_amr2) node_pair2 = (node2_index_amr1, node2_index_amr2) if node_pair2 != node_pair1: # update weight_dict weight. Note that we need to update both entries for future search # i.e weight_dict[node_pair1][node_pair2] # weight_dict[node_pair2][node_pair1] if node1_index_amr1 > node2_index_amr1: # swap node_pair1 and node_pair2 node_pair1 = (node2_index_amr1, node2_index_amr2) node_pair2 = (node1_index_amr1, node1_index_amr2) if node_pair1 in weight_dict: if node_pair2 in weight_dict[node_pair1]: weight_dict[node_pair1][node_pair2] += 1 else: weight_dict[node_pair1][node_pair2] = 1 else: weight_dict[node_pair1] = {-1: 0, node_pair2: 1} if node_pair2 in weight_dict: if node_pair1 in weight_dict[node_pair2]: weight_dict[node_pair2][node_pair1] += 1 else: weight_dict[node_pair2][node_pair1] = 1 else: weight_dict[node_pair2] = {-1: 0, node_pair1: 1} else: # two node pairs are the same. So we only update weight_dict once. # this generally should not happen. if node_pair1 in weight_dict: weight_dict[node_pair1][-1] += 1 else: weight_dict[node_pair1] = {-1: 1} return candidate_mapping, weight_dict
[ "def", "compute_pool", "(", "instance1", ",", "attribute1", ",", "relation1", ",", "instance2", ",", "attribute2", ",", "relation2", ",", "prefix1", ",", "prefix2", ",", "doinstance", "=", "True", ",", "doattribute", "=", "True", ",", "dorelation", "=", "True", ")", ":", "candidate_mapping", "=", "[", "]", "weight_dict", "=", "{", "}", "for", "instance1_item", "in", "instance1", ":", "# each candidate mapping is a set of node indices", "candidate_mapping", ".", "append", "(", "set", "(", ")", ")", "if", "doinstance", ":", "for", "instance2_item", "in", "instance2", ":", "# if both triples are instance triples and have the same value", "if", "normalize", "(", "instance1_item", "[", "0", "]", ")", "==", "normalize", "(", "instance2_item", "[", "0", "]", ")", "and", "normalize", "(", "instance1_item", "[", "2", "]", ")", "==", "normalize", "(", "instance2_item", "[", "2", "]", ")", ":", "# get node index by stripping the prefix", "node1_index", "=", "int", "(", "instance1_item", "[", "1", "]", "[", "len", "(", "prefix1", ")", ":", "]", ")", "node2_index", "=", "int", "(", "instance2_item", "[", "1", "]", "[", "len", "(", "prefix2", ")", ":", "]", ")", "candidate_mapping", "[", "node1_index", "]", ".", "add", "(", "node2_index", ")", "node_pair", "=", "(", "node1_index", ",", "node2_index", ")", "# use -1 as key in weight_dict for instance triples and attribute triples", "if", "node_pair", "in", "weight_dict", ":", "weight_dict", "[", "node_pair", "]", "[", "-", "1", "]", "+=", "1", "else", ":", "weight_dict", "[", "node_pair", "]", "=", "{", "}", "weight_dict", "[", "node_pair", "]", "[", "-", "1", "]", "=", "1", "if", "doattribute", ":", "for", "attribute1_item", "in", "attribute1", ":", "for", "attribute2_item", "in", "attribute2", ":", "# if both attribute relation triple have the same relation name and value", "if", "normalize", "(", "attribute1_item", "[", "0", "]", ")", "==", "normalize", "(", "attribute2_item", "[", "0", "]", ")", "and", "normalize", "(", "attribute1_item", "[", "2", "]", ")", "==", "normalize", "(", "attribute2_item", "[", "2", "]", ")", ":", "node1_index", "=", "int", "(", "attribute1_item", "[", "1", "]", "[", "len", "(", "prefix1", ")", ":", "]", ")", "node2_index", "=", "int", "(", "attribute2_item", "[", "1", "]", "[", "len", "(", "prefix2", ")", ":", "]", ")", "candidate_mapping", "[", "node1_index", "]", ".", "add", "(", "node2_index", ")", "node_pair", "=", "(", "node1_index", ",", "node2_index", ")", "# use -1 as key in weight_dict for instance triples and attribute triples", "if", "node_pair", "in", "weight_dict", ":", "weight_dict", "[", "node_pair", "]", "[", "-", "1", "]", "+=", "1", "else", ":", "weight_dict", "[", "node_pair", "]", "=", "{", "}", "weight_dict", "[", "node_pair", "]", "[", "-", "1", "]", "=", "1", "if", "dorelation", ":", "for", "relation1_item", "in", "relation1", ":", "for", "relation2_item", "in", "relation2", ":", "# if both relation share the same name", "if", "normalize", "(", "relation1_item", "[", "0", "]", ")", "==", "normalize", "(", "relation2_item", "[", "0", "]", ")", ":", "node1_index_amr1", "=", "int", "(", "relation1_item", "[", "1", "]", "[", "len", "(", "prefix1", ")", ":", "]", ")", "node1_index_amr2", "=", "int", "(", "relation2_item", "[", "1", "]", "[", "len", "(", "prefix2", ")", ":", "]", ")", "node2_index_amr1", "=", "int", "(", "relation1_item", "[", "2", "]", "[", "len", "(", "prefix1", ")", ":", "]", ")", "node2_index_amr2", "=", "int", "(", "relation2_item", "[", "2", "]", "[", "len", "(", "prefix2", ")", ":", "]", ")", "# add mapping between two nodes", "candidate_mapping", "[", "node1_index_amr1", "]", ".", "add", "(", "node1_index_amr2", ")", "candidate_mapping", "[", "node2_index_amr1", "]", ".", "add", "(", "node2_index_amr2", ")", "node_pair1", "=", "(", "node1_index_amr1", ",", "node1_index_amr2", ")", "node_pair2", "=", "(", "node2_index_amr1", ",", "node2_index_amr2", ")", "if", "node_pair2", "!=", "node_pair1", ":", "# update weight_dict weight. Note that we need to update both entries for future search", "# i.e weight_dict[node_pair1][node_pair2]", "# weight_dict[node_pair2][node_pair1]", "if", "node1_index_amr1", ">", "node2_index_amr1", ":", "# swap node_pair1 and node_pair2", "node_pair1", "=", "(", "node2_index_amr1", ",", "node2_index_amr2", ")", "node_pair2", "=", "(", "node1_index_amr1", ",", "node1_index_amr2", ")", "if", "node_pair1", "in", "weight_dict", ":", "if", "node_pair2", "in", "weight_dict", "[", "node_pair1", "]", ":", "weight_dict", "[", "node_pair1", "]", "[", "node_pair2", "]", "+=", "1", "else", ":", "weight_dict", "[", "node_pair1", "]", "[", "node_pair2", "]", "=", "1", "else", ":", "weight_dict", "[", "node_pair1", "]", "=", "{", "-", "1", ":", "0", ",", "node_pair2", ":", "1", "}", "if", "node_pair2", "in", "weight_dict", ":", "if", "node_pair1", "in", "weight_dict", "[", "node_pair2", "]", ":", "weight_dict", "[", "node_pair2", "]", "[", "node_pair1", "]", "+=", "1", "else", ":", "weight_dict", "[", "node_pair2", "]", "[", "node_pair1", "]", "=", "1", "else", ":", "weight_dict", "[", "node_pair2", "]", "=", "{", "-", "1", ":", "0", ",", "node_pair1", ":", "1", "}", "else", ":", "# two node pairs are the same. So we only update weight_dict once.", "# this generally should not happen.", "if", "node_pair1", "in", "weight_dict", ":", "weight_dict", "[", "node_pair1", "]", "[", "-", "1", "]", "+=", "1", "else", ":", "weight_dict", "[", "node_pair1", "]", "=", "{", "-", "1", ":", "1", "}", "return", "candidate_mapping", ",", "weight_dict" ]
58.731481
26.157407
def add_javascripts(self, *js_files): """add javascripts files in HTML body""" # create the script tag if don't exists if self.main_soup.script is None: script_tag = self.main_soup.new_tag('script') self.main_soup.body.append(script_tag) for js_file in js_files: self.main_soup.script.append(self._text_file(js_file))
[ "def", "add_javascripts", "(", "self", ",", "*", "js_files", ")", ":", "# create the script tag if don't exists", "if", "self", ".", "main_soup", ".", "script", "is", "None", ":", "script_tag", "=", "self", ".", "main_soup", ".", "new_tag", "(", "'script'", ")", "self", ".", "main_soup", ".", "body", ".", "append", "(", "script_tag", ")", "for", "js_file", "in", "js_files", ":", "self", ".", "main_soup", ".", "script", ".", "append", "(", "self", ".", "_text_file", "(", "js_file", ")", ")" ]
42
12.444444
def get_task_subtask_positions_objs(client, task_id): ''' Gets a list of the positions of a single task's subtasks Each task should (will?) only have one positions object defining how its subtasks are laid out ''' params = { 'task_id' : int(task_id) } response = client.authenticated_request(client.api.Endpoints.SUBTASK_POSITIONS, params=params) return response.json()
[ "def", "get_task_subtask_positions_objs", "(", "client", ",", "task_id", ")", ":", "params", "=", "{", "'task_id'", ":", "int", "(", "task_id", ")", "}", "response", "=", "client", ".", "authenticated_request", "(", "client", ".", "api", ".", "Endpoints", ".", "SUBTASK_POSITIONS", ",", "params", "=", "params", ")", "return", "response", ".", "json", "(", ")" ]
37.454545
29.636364
def apply_mtlist_budget_obs(list_filename,gw_filename="mtlist_gw.dat", sw_filename="mtlist_sw.dat", start_datetime="1-1-1970"): """ process an MT3D list file to extract mass budget entries. Parameters ---------- list_filename : str the mt3d list file gw_filename : str the name of the output file with gw mass budget information. Default is "mtlist_gw.dat" sw_filename : str the name of the output file with sw mass budget information. Default is "mtlist_sw.dat" start_datatime : str an str that can be cast to a pandas.TimeStamp. Used to give observations a meaningful name Returns ------- gw : pandas.DataFrame the gw mass dataframe sw : pandas.DataFrame (optional) the sw mass dataframe Note ---- requires flopy if SFT is not active, no SW mass budget will be returned """ try: import flopy except Exception as e: raise Exception("error import flopy: {0}".format(str(e))) mt = flopy.utils.MtListBudget(list_filename) gw, sw = mt.parse(start_datetime=start_datetime, diff=True) gw = gw.drop([col for col in gw.columns for drop_col in ["kper", "kstp", "tkstp"] if (col.lower().startswith(drop_col))], axis=1) gw.to_csv(gw_filename, sep=' ', index_label="datetime", date_format="%Y%m%d") if sw is not None: sw = sw.drop([col for col in sw.columns for drop_col in ["kper", "kstp", "tkstp"] if (col.lower().startswith(drop_col))], axis=1) sw.to_csv(sw_filename, sep=' ', index_label="datetime", date_format="%Y%m%d") return gw, sw
[ "def", "apply_mtlist_budget_obs", "(", "list_filename", ",", "gw_filename", "=", "\"mtlist_gw.dat\"", ",", "sw_filename", "=", "\"mtlist_sw.dat\"", ",", "start_datetime", "=", "\"1-1-1970\"", ")", ":", "try", ":", "import", "flopy", "except", "Exception", "as", "e", ":", "raise", "Exception", "(", "\"error import flopy: {0}\"", ".", "format", "(", "str", "(", "e", ")", ")", ")", "mt", "=", "flopy", ".", "utils", ".", "MtListBudget", "(", "list_filename", ")", "gw", ",", "sw", "=", "mt", ".", "parse", "(", "start_datetime", "=", "start_datetime", ",", "diff", "=", "True", ")", "gw", "=", "gw", ".", "drop", "(", "[", "col", "for", "col", "in", "gw", ".", "columns", "for", "drop_col", "in", "[", "\"kper\"", ",", "\"kstp\"", ",", "\"tkstp\"", "]", "if", "(", "col", ".", "lower", "(", ")", ".", "startswith", "(", "drop_col", ")", ")", "]", ",", "axis", "=", "1", ")", "gw", ".", "to_csv", "(", "gw_filename", ",", "sep", "=", "' '", ",", "index_label", "=", "\"datetime\"", ",", "date_format", "=", "\"%Y%m%d\"", ")", "if", "sw", "is", "not", "None", ":", "sw", "=", "sw", ".", "drop", "(", "[", "col", "for", "col", "in", "sw", ".", "columns", "for", "drop_col", "in", "[", "\"kper\"", ",", "\"kstp\"", ",", "\"tkstp\"", "]", "if", "(", "col", ".", "lower", "(", ")", ".", "startswith", "(", "drop_col", ")", ")", "]", ",", "axis", "=", "1", ")", "sw", ".", "to_csv", "(", "sw_filename", ",", "sep", "=", "' '", ",", "index_label", "=", "\"datetime\"", ",", "date_format", "=", "\"%Y%m%d\"", ")", "return", "gw", ",", "sw" ]
35.142857
21.55102
def maskedNanPercentile(maskedArray, percentiles, *args, **kwargs): """ Calculates np.nanpercentile on the non-masked values """ #https://docs.scipy.org/doc/numpy/reference/maskedarray.generic.html#accessing-the-data awm = ArrayWithMask.createFromMaskedArray(maskedArray) maskIdx = awm.maskIndex() validData = awm.data[~maskIdx] if len(validData) >= 1: result = np.nanpercentile(validData, percentiles, *args, **kwargs) else: # If np.nanpercentile on an empty list only returns a single Nan. We correct this here. result = len(percentiles) * [np.nan] assert len(result) == len(percentiles), \ "shape mismatch: {} != {}".format(len(result), len(percentiles)) return result
[ "def", "maskedNanPercentile", "(", "maskedArray", ",", "percentiles", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "#https://docs.scipy.org/doc/numpy/reference/maskedarray.generic.html#accessing-the-data", "awm", "=", "ArrayWithMask", ".", "createFromMaskedArray", "(", "maskedArray", ")", "maskIdx", "=", "awm", ".", "maskIndex", "(", ")", "validData", "=", "awm", ".", "data", "[", "~", "maskIdx", "]", "if", "len", "(", "validData", ")", ">=", "1", ":", "result", "=", "np", ".", "nanpercentile", "(", "validData", ",", "percentiles", ",", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "# If np.nanpercentile on an empty list only returns a single Nan. We correct this here.", "result", "=", "len", "(", "percentiles", ")", "*", "[", "np", ".", "nan", "]", "assert", "len", "(", "result", ")", "==", "len", "(", "percentiles", ")", ",", "\"shape mismatch: {} != {}\"", ".", "format", "(", "len", "(", "result", ")", ",", "len", "(", "percentiles", ")", ")", "return", "result" ]
36.45
25.5
def incoming_messages(self) -> t.List[t.Tuple[float, bytes]]: """Consume the receive buffer and return the messages. If there are new messages added to the queue while this funciton is being processed, they will not be returned. This ensures that this terminates in a timely manner. """ approximate_messages = self._receive_buffer.qsize() messages = [] for _ in range(approximate_messages): try: messages.append(self._receive_buffer.get_nowait()) except queue.Empty: break return messages
[ "def", "incoming_messages", "(", "self", ")", "->", "t", ".", "List", "[", "t", ".", "Tuple", "[", "float", ",", "bytes", "]", "]", ":", "approximate_messages", "=", "self", ".", "_receive_buffer", ".", "qsize", "(", ")", "messages", "=", "[", "]", "for", "_", "in", "range", "(", "approximate_messages", ")", ":", "try", ":", "messages", ".", "append", "(", "self", ".", "_receive_buffer", ".", "get_nowait", "(", ")", ")", "except", "queue", ".", "Empty", ":", "break", "return", "messages" ]
40.2
19.866667
def name(name, validator=None): """ Set a name on a validator callable. Useful for user-friendly reporting when using lambdas to populate the [`Invalid.expected`](#invalid) field: ```python from good import Schema, name Schema(lambda x: int(x))('a') #-> Invalid: invalid literal for int(): expected <lambda>(), got Schema(name('int()', lambda x: int(x))('a') #-> Invalid: invalid literal for int(): expected int(), got a ``` Note that it is only useful with lambdas, since function name is used if available: see notes on [Schema Callables](#callables). :param name: Name to assign on the validator callable :type name: unicode :param validator: Validator callable. If not provided -- a decorator is returned instead: ```python from good import name @name(u'int()') def int(v): return int(v) ``` :type validator: callable :return: The same validator callable :rtype: callable """ # Decorator mode if validator is None: def decorator(f): f.name = name return f return decorator # Direct mode validator.name = name return validator
[ "def", "name", "(", "name", ",", "validator", "=", "None", ")", ":", "# Decorator mode", "if", "validator", "is", "None", ":", "def", "decorator", "(", "f", ")", ":", "f", ".", "name", "=", "name", "return", "f", "return", "decorator", "# Direct mode", "validator", ".", "name", "=", "name", "return", "validator" ]
27.44186
23.767442
def get_subject(self, identifier): """ Build a Subject XML block for a SAML 1.1 AuthenticationStatement or AttributeStatement. """ subject = etree.Element('Subject') name = etree.SubElement(subject, 'NameIdentifier') name.text = identifier subject_confirmation = etree.SubElement(subject, 'SubjectConfirmation') method = etree.SubElement(subject_confirmation, 'ConfirmationMethod') method.text = self.confirmation_method return subject
[ "def", "get_subject", "(", "self", ",", "identifier", ")", ":", "subject", "=", "etree", ".", "Element", "(", "'Subject'", ")", "name", "=", "etree", ".", "SubElement", "(", "subject", ",", "'NameIdentifier'", ")", "name", ".", "text", "=", "identifier", "subject_confirmation", "=", "etree", ".", "SubElement", "(", "subject", ",", "'SubjectConfirmation'", ")", "method", "=", "etree", ".", "SubElement", "(", "subject_confirmation", ",", "'ConfirmationMethod'", ")", "method", ".", "text", "=", "self", ".", "confirmation_method", "return", "subject" ]
42.666667
13.166667
def reissueOverLongJobs(self): """ Check each issued job - if it is running for longer than desirable issue a kill instruction. Wait for the job to die then we pass the job to processFinishedJob. """ maxJobDuration = self.config.maxJobDuration jobsToKill = [] if maxJobDuration < 10000000: # We won't bother doing anything if rescue time > 16 weeks. runningJobs = self.batchSystem.getRunningBatchJobIDs() for jobBatchSystemID in list(runningJobs.keys()): if runningJobs[jobBatchSystemID] > maxJobDuration: logger.warn("The job: %s has been running for: %s seconds, more than the " "max job duration: %s, we'll kill it", str(self.jobBatchSystemIDToIssuedJob[jobBatchSystemID].jobStoreID), str(runningJobs[jobBatchSystemID]), str(maxJobDuration)) jobsToKill.append(jobBatchSystemID) self.killJobs(jobsToKill)
[ "def", "reissueOverLongJobs", "(", "self", ")", ":", "maxJobDuration", "=", "self", ".", "config", ".", "maxJobDuration", "jobsToKill", "=", "[", "]", "if", "maxJobDuration", "<", "10000000", ":", "# We won't bother doing anything if rescue time > 16 weeks.", "runningJobs", "=", "self", ".", "batchSystem", ".", "getRunningBatchJobIDs", "(", ")", "for", "jobBatchSystemID", "in", "list", "(", "runningJobs", ".", "keys", "(", ")", ")", ":", "if", "runningJobs", "[", "jobBatchSystemID", "]", ">", "maxJobDuration", ":", "logger", ".", "warn", "(", "\"The job: %s has been running for: %s seconds, more than the \"", "\"max job duration: %s, we'll kill it\"", ",", "str", "(", "self", ".", "jobBatchSystemIDToIssuedJob", "[", "jobBatchSystemID", "]", ".", "jobStoreID", ")", ",", "str", "(", "runningJobs", "[", "jobBatchSystemID", "]", ")", ",", "str", "(", "maxJobDuration", ")", ")", "jobsToKill", ".", "append", "(", "jobBatchSystemID", ")", "self", ".", "killJobs", "(", "jobsToKill", ")" ]
56.473684
23.421053
def sql_string_literal(text: str) -> str: """ Transforms text into its ANSI SQL-quoted version, e.g. (in Python ``repr()`` format): .. code-block:: none "some string" -> "'some string'" "Jack's dog" -> "'Jack''s dog'" """ # ANSI SQL: http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt # <character string literal> return SQUOTE + text.replace(SQUOTE, DOUBLE_SQUOTE) + SQUOTE
[ "def", "sql_string_literal", "(", "text", ":", "str", ")", "->", "str", ":", "# ANSI SQL: http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt", "# <character string literal>", "return", "SQUOTE", "+", "text", ".", "replace", "(", "SQUOTE", ",", "DOUBLE_SQUOTE", ")", "+", "SQUOTE" ]
32.615385
18
def euclidean_random_projection_split(data, indices, rng_state): """Given a set of ``indices`` for data points from ``data``, create a random hyperplane to split the data, returning two arrays indices that fall on either side of the hyperplane. This is the basis for a random projection tree, which simply uses this splitting recursively. This particular split uses euclidean distance to determine the hyperplane and which side each data sample falls on. Parameters ---------- data: array of shape (n_samples, n_features) The original data to be split indices: array of shape (tree_node_size,) The indices of the elements in the ``data`` array that are to be split in the current operation. rng_state: array of int64, shape (3,) The internal state of the rng Returns ------- indices_left: array The elements of ``indices`` that fall on the "left" side of the random hyperplane. indices_right: array The elements of ``indices`` that fall on the "left" side of the random hyperplane. """ dim = data.shape[1] # Select two random points, set the hyperplane between them left_index = tau_rand_int(rng_state) % indices.shape[0] right_index = tau_rand_int(rng_state) % indices.shape[0] right_index += left_index == right_index right_index = right_index % indices.shape[0] left = indices[left_index] right = indices[right_index] # Compute the normal vector to the hyperplane (the vector between # the two points) and the offset from the origin hyperplane_offset = 0.0 hyperplane_vector = np.empty(dim, dtype=np.float32) for d in range(dim): hyperplane_vector[d] = data[left, d] - data[right, d] hyperplane_offset -= ( hyperplane_vector[d] * (data[left, d] + data[right, d]) / 2.0 ) # For each point compute the margin (project into normal vector, add offset) # If we are on lower side of the hyperplane put in one pile, otherwise # put it in the other pile (if we hit hyperplane on the nose, flip a coin) n_left = 0 n_right = 0 side = np.empty(indices.shape[0], np.int8) for i in range(indices.shape[0]): margin = hyperplane_offset for d in range(dim): margin += hyperplane_vector[d] * data[indices[i], d] if margin == 0: side[i] = tau_rand_int(rng_state) % 2 if side[i] == 0: n_left += 1 else: n_right += 1 elif margin > 0: side[i] = 0 n_left += 1 else: side[i] = 1 n_right += 1 # Now that we have the counts allocate arrays indices_left = np.empty(n_left, dtype=np.int64) indices_right = np.empty(n_right, dtype=np.int64) # Populate the arrays with indices according to which side they fell on n_left = 0 n_right = 0 for i in range(side.shape[0]): if side[i] == 0: indices_left[n_left] = indices[i] n_left += 1 else: indices_right[n_right] = indices[i] n_right += 1 return indices_left, indices_right, hyperplane_vector, hyperplane_offset
[ "def", "euclidean_random_projection_split", "(", "data", ",", "indices", ",", "rng_state", ")", ":", "dim", "=", "data", ".", "shape", "[", "1", "]", "# Select two random points, set the hyperplane between them", "left_index", "=", "tau_rand_int", "(", "rng_state", ")", "%", "indices", ".", "shape", "[", "0", "]", "right_index", "=", "tau_rand_int", "(", "rng_state", ")", "%", "indices", ".", "shape", "[", "0", "]", "right_index", "+=", "left_index", "==", "right_index", "right_index", "=", "right_index", "%", "indices", ".", "shape", "[", "0", "]", "left", "=", "indices", "[", "left_index", "]", "right", "=", "indices", "[", "right_index", "]", "# Compute the normal vector to the hyperplane (the vector between", "# the two points) and the offset from the origin", "hyperplane_offset", "=", "0.0", "hyperplane_vector", "=", "np", ".", "empty", "(", "dim", ",", "dtype", "=", "np", ".", "float32", ")", "for", "d", "in", "range", "(", "dim", ")", ":", "hyperplane_vector", "[", "d", "]", "=", "data", "[", "left", ",", "d", "]", "-", "data", "[", "right", ",", "d", "]", "hyperplane_offset", "-=", "(", "hyperplane_vector", "[", "d", "]", "*", "(", "data", "[", "left", ",", "d", "]", "+", "data", "[", "right", ",", "d", "]", ")", "/", "2.0", ")", "# For each point compute the margin (project into normal vector, add offset)", "# If we are on lower side of the hyperplane put in one pile, otherwise", "# put it in the other pile (if we hit hyperplane on the nose, flip a coin)", "n_left", "=", "0", "n_right", "=", "0", "side", "=", "np", ".", "empty", "(", "indices", ".", "shape", "[", "0", "]", ",", "np", ".", "int8", ")", "for", "i", "in", "range", "(", "indices", ".", "shape", "[", "0", "]", ")", ":", "margin", "=", "hyperplane_offset", "for", "d", "in", "range", "(", "dim", ")", ":", "margin", "+=", "hyperplane_vector", "[", "d", "]", "*", "data", "[", "indices", "[", "i", "]", ",", "d", "]", "if", "margin", "==", "0", ":", "side", "[", "i", "]", "=", "tau_rand_int", "(", "rng_state", ")", "%", "2", "if", "side", "[", "i", "]", "==", "0", ":", "n_left", "+=", "1", "else", ":", "n_right", "+=", "1", "elif", "margin", ">", "0", ":", "side", "[", "i", "]", "=", "0", "n_left", "+=", "1", "else", ":", "side", "[", "i", "]", "=", "1", "n_right", "+=", "1", "# Now that we have the counts allocate arrays", "indices_left", "=", "np", ".", "empty", "(", "n_left", ",", "dtype", "=", "np", ".", "int64", ")", "indices_right", "=", "np", ".", "empty", "(", "n_right", ",", "dtype", "=", "np", ".", "int64", ")", "# Populate the arrays with indices according to which side they fell on", "n_left", "=", "0", "n_right", "=", "0", "for", "i", "in", "range", "(", "side", ".", "shape", "[", "0", "]", ")", ":", "if", "side", "[", "i", "]", "==", "0", ":", "indices_left", "[", "n_left", "]", "=", "indices", "[", "i", "]", "n_left", "+=", "1", "else", ":", "indices_right", "[", "n_right", "]", "=", "indices", "[", "i", "]", "n_right", "+=", "1", "return", "indices_left", ",", "indices_right", ",", "hyperplane_vector", ",", "hyperplane_offset" ]
34.380435
21.228261
def _add_onchain_locksroot_to_channel_settled_state_changes( raiden: RaidenService, storage: SQLiteStorage, ) -> None: """ Adds `our_onchain_locksroot` and `partner_onchain_locksroot` to ContractReceiveChannelSettled. """ batch_size = 50 batch_query = storage.batch_query_state_changes( batch_size=batch_size, filters=[ ('_type', 'raiden.transfer.state_change.ContractReceiveChannelSettled'), ], ) for state_changes_batch in batch_query: updated_state_changes = list() for state_change in state_changes_batch: state_change_data = json.loads(state_change.data) msg = 'v18 state changes cant contain our_onchain_locksroot' assert 'our_onchain_locksroot' not in state_change_data, msg msg = 'v18 state changes cant contain partner_onchain_locksroot' assert 'partner_onchain_locksroot' not in state_change_data, msg token_network_identifier = state_change_data['token_network_identifier'] channel_identifier = state_change_data['channel_identifier'] channel_new_state_change = _find_channel_new_state_change( storage=storage, token_network_address=token_network_identifier, channel_identifier=channel_identifier, ) if not channel_new_state_change.data: raise RaidenUnrecoverableError( f'Could not find the state change for channel {channel_identifier}, ' f'token network address: {token_network_identifier} being created. ', ) channel_state_data = json.loads(channel_new_state_change.data) new_channel_state = channel_state_data['channel_state'] canonical_identifier = CanonicalIdentifier( chain_identifier=-1, token_network_address=to_canonical_address(token_network_identifier), channel_identifier=int(channel_identifier), ) our_locksroot, partner_locksroot = get_onchain_locksroots( chain=raiden.chain, canonical_identifier=canonical_identifier, participant1=to_canonical_address(new_channel_state['our_state']['address']), participant2=to_canonical_address(new_channel_state['partner_state']['address']), block_identifier='latest', ) state_change_data['our_onchain_locksroot'] = serialize_bytes( our_locksroot, ) state_change_data['partner_onchain_locksroot'] = serialize_bytes( partner_locksroot, ) updated_state_changes.append(( json.dumps(state_change_data), state_change.state_change_identifier, )) storage.update_state_changes(updated_state_changes)
[ "def", "_add_onchain_locksroot_to_channel_settled_state_changes", "(", "raiden", ":", "RaidenService", ",", "storage", ":", "SQLiteStorage", ",", ")", "->", "None", ":", "batch_size", "=", "50", "batch_query", "=", "storage", ".", "batch_query_state_changes", "(", "batch_size", "=", "batch_size", ",", "filters", "=", "[", "(", "'_type'", ",", "'raiden.transfer.state_change.ContractReceiveChannelSettled'", ")", ",", "]", ",", ")", "for", "state_changes_batch", "in", "batch_query", ":", "updated_state_changes", "=", "list", "(", ")", "for", "state_change", "in", "state_changes_batch", ":", "state_change_data", "=", "json", ".", "loads", "(", "state_change", ".", "data", ")", "msg", "=", "'v18 state changes cant contain our_onchain_locksroot'", "assert", "'our_onchain_locksroot'", "not", "in", "state_change_data", ",", "msg", "msg", "=", "'v18 state changes cant contain partner_onchain_locksroot'", "assert", "'partner_onchain_locksroot'", "not", "in", "state_change_data", ",", "msg", "token_network_identifier", "=", "state_change_data", "[", "'token_network_identifier'", "]", "channel_identifier", "=", "state_change_data", "[", "'channel_identifier'", "]", "channel_new_state_change", "=", "_find_channel_new_state_change", "(", "storage", "=", "storage", ",", "token_network_address", "=", "token_network_identifier", ",", "channel_identifier", "=", "channel_identifier", ",", ")", "if", "not", "channel_new_state_change", ".", "data", ":", "raise", "RaidenUnrecoverableError", "(", "f'Could not find the state change for channel {channel_identifier}, '", "f'token network address: {token_network_identifier} being created. '", ",", ")", "channel_state_data", "=", "json", ".", "loads", "(", "channel_new_state_change", ".", "data", ")", "new_channel_state", "=", "channel_state_data", "[", "'channel_state'", "]", "canonical_identifier", "=", "CanonicalIdentifier", "(", "chain_identifier", "=", "-", "1", ",", "token_network_address", "=", "to_canonical_address", "(", "token_network_identifier", ")", ",", "channel_identifier", "=", "int", "(", "channel_identifier", ")", ",", ")", "our_locksroot", ",", "partner_locksroot", "=", "get_onchain_locksroots", "(", "chain", "=", "raiden", ".", "chain", ",", "canonical_identifier", "=", "canonical_identifier", ",", "participant1", "=", "to_canonical_address", "(", "new_channel_state", "[", "'our_state'", "]", "[", "'address'", "]", ")", ",", "participant2", "=", "to_canonical_address", "(", "new_channel_state", "[", "'partner_state'", "]", "[", "'address'", "]", ")", ",", "block_identifier", "=", "'latest'", ",", ")", "state_change_data", "[", "'our_onchain_locksroot'", "]", "=", "serialize_bytes", "(", "our_locksroot", ",", ")", "state_change_data", "[", "'partner_onchain_locksroot'", "]", "=", "serialize_bytes", "(", "partner_locksroot", ",", ")", "updated_state_changes", ".", "append", "(", "(", "json", ".", "dumps", "(", "state_change_data", ")", ",", "state_change", ".", "state_change_identifier", ",", ")", ")", "storage", ".", "update_state_changes", "(", "updated_state_changes", ")" ]
43.530303
24.515152
def pre_factor_kkt(Q, G, A): """ Perform all one-time factorizations and cache relevant matrix products""" nineq, nz, neq, _ = get_sizes(G, A) # S = [ A Q^{-1} A^T A Q^{-1} G^T ] # [ G Q^{-1} A^T G Q^{-1} G^T + D^{-1} ] U_Q = torch.potrf(Q) # partial cholesky of S matrix U_S = torch.zeros(neq + nineq, neq + nineq).type_as(Q) G_invQ_GT = torch.mm(G, torch.potrs(G.t(), U_Q)) R = G_invQ_GT if neq > 0: invQ_AT = torch.potrs(A.t(), U_Q) A_invQ_AT = torch.mm(A, invQ_AT) G_invQ_AT = torch.mm(G, invQ_AT) # TODO: torch.potrf sometimes says the matrix is not PSD but # numpy does? I filed an issue at # https://github.com/pytorch/pytorch/issues/199 try: U11 = torch.potrf(A_invQ_AT) except: U11 = torch.Tensor(np.linalg.cholesky( A_invQ_AT.cpu().numpy())).type_as(A_invQ_AT) # TODO: torch.trtrs is currently not implemented on the GPU # and we are using gesv as a workaround. U12 = torch.gesv(G_invQ_AT.t(), U11.t())[0] U_S[:neq, :neq] = U11 U_S[:neq, neq:] = U12 R -= torch.mm(U12.t(), U12) return U_Q, U_S, R
[ "def", "pre_factor_kkt", "(", "Q", ",", "G", ",", "A", ")", ":", "nineq", ",", "nz", ",", "neq", ",", "_", "=", "get_sizes", "(", "G", ",", "A", ")", "# S = [ A Q^{-1} A^T A Q^{-1} G^T ]", "# [ G Q^{-1} A^T G Q^{-1} G^T + D^{-1} ]", "U_Q", "=", "torch", ".", "potrf", "(", "Q", ")", "# partial cholesky of S matrix", "U_S", "=", "torch", ".", "zeros", "(", "neq", "+", "nineq", ",", "neq", "+", "nineq", ")", ".", "type_as", "(", "Q", ")", "G_invQ_GT", "=", "torch", ".", "mm", "(", "G", ",", "torch", ".", "potrs", "(", "G", ".", "t", "(", ")", ",", "U_Q", ")", ")", "R", "=", "G_invQ_GT", "if", "neq", ">", "0", ":", "invQ_AT", "=", "torch", ".", "potrs", "(", "A", ".", "t", "(", ")", ",", "U_Q", ")", "A_invQ_AT", "=", "torch", ".", "mm", "(", "A", ",", "invQ_AT", ")", "G_invQ_AT", "=", "torch", ".", "mm", "(", "G", ",", "invQ_AT", ")", "# TODO: torch.potrf sometimes says the matrix is not PSD but", "# numpy does? I filed an issue at", "# https://github.com/pytorch/pytorch/issues/199", "try", ":", "U11", "=", "torch", ".", "potrf", "(", "A_invQ_AT", ")", "except", ":", "U11", "=", "torch", ".", "Tensor", "(", "np", ".", "linalg", ".", "cholesky", "(", "A_invQ_AT", ".", "cpu", "(", ")", ".", "numpy", "(", ")", ")", ")", ".", "type_as", "(", "A_invQ_AT", ")", "# TODO: torch.trtrs is currently not implemented on the GPU", "# and we are using gesv as a workaround.", "U12", "=", "torch", ".", "gesv", "(", "G_invQ_AT", ".", "t", "(", ")", ",", "U11", ".", "t", "(", ")", ")", "[", "0", "]", "U_S", "[", ":", "neq", ",", ":", "neq", "]", "=", "U11", "U_S", "[", ":", "neq", ",", "neq", ":", "]", "=", "U12", "R", "-=", "torch", ".", "mm", "(", "U12", ".", "t", "(", ")", ",", "U12", ")", "return", "U_Q", ",", "U_S", ",", "R" ]
34.342857
17.228571
def indicators_from_tag(self, indicator, tag_name, filters=None, params=None): """ Args: indicator: tag_name: filters: params: Return: """ params = params or {} for t in self.pivot_from_tag(indicator, tag_name, filters=filters, params=params): yield t
[ "def", "indicators_from_tag", "(", "self", ",", "indicator", ",", "tag_name", ",", "filters", "=", "None", ",", "params", "=", "None", ")", ":", "params", "=", "params", "or", "{", "}", "for", "t", "in", "self", ".", "pivot_from_tag", "(", "indicator", ",", "tag_name", ",", "filters", "=", "filters", ",", "params", "=", "params", ")", ":", "yield", "t" ]
26.4
21.466667
def create_issue(self, title, content, priority=None, milestone=None, tags=None, assignee=None, private=None): """ Create a new issue. :param title: the title of the issue :param content: the description of the issue :param priority: the priority of the ticket :param milestone: the milestone of the ticket :param tags: comma sperated list of tag for the ticket :param assignee: the assignee of the ticket :param private: whether create this issue as private :return: """ request_url = "{}new_issue".format(self.create_basic_url()) payload = {'title': title, 'issue_content': content} if priority is not None: payload['priority'] = priority if milestone is not None: payload['milestone'] = milestone if tags is not None: payload['tag'] = tags if assignee is not None: payload['assignee'] = assignee if private is not None: payload['private'] = private return_value = self._call_api(request_url, method='POST', data=payload) LOG.debug(return_value)
[ "def", "create_issue", "(", "self", ",", "title", ",", "content", ",", "priority", "=", "None", ",", "milestone", "=", "None", ",", "tags", "=", "None", ",", "assignee", "=", "None", ",", "private", "=", "None", ")", ":", "request_url", "=", "\"{}new_issue\"", ".", "format", "(", "self", ".", "create_basic_url", "(", ")", ")", "payload", "=", "{", "'title'", ":", "title", ",", "'issue_content'", ":", "content", "}", "if", "priority", "is", "not", "None", ":", "payload", "[", "'priority'", "]", "=", "priority", "if", "milestone", "is", "not", "None", ":", "payload", "[", "'milestone'", "]", "=", "milestone", "if", "tags", "is", "not", "None", ":", "payload", "[", "'tag'", "]", "=", "tags", "if", "assignee", "is", "not", "None", ":", "payload", "[", "'assignee'", "]", "=", "assignee", "if", "private", "is", "not", "None", ":", "payload", "[", "'private'", "]", "=", "private", "return_value", "=", "self", ".", "_call_api", "(", "request_url", ",", "method", "=", "'POST'", ",", "data", "=", "payload", ")", "LOG", ".", "debug", "(", "return_value", ")" ]
36.939394
14.575758
def delete_ec2_role(self, role, mount_point='aws-ec2'): """DELETE /auth/<mount_point>/role/<role> :param role: :type role: :param mount_point: :type mount_point: :return: :rtype: """ return self._adapter.delete('/v1/auth/{0}/role/{1}'.format(mount_point, role))
[ "def", "delete_ec2_role", "(", "self", ",", "role", ",", "mount_point", "=", "'aws-ec2'", ")", ":", "return", "self", ".", "_adapter", ".", "delete", "(", "'/v1/auth/{0}/role/{1}'", ".", "format", "(", "mount_point", ",", "role", ")", ")" ]
29.454545
19.818182
def _parse(coord, _match=_regex.match): """Return match groups from single sheet coordinate. >>> Coordinates._parse('A1') ('A', '1', None, None) >>> Coordinates._parse('A'), Coordinates._parse('1') ((None, None, 'A', None), (None, None, None, '1')) >>> Coordinates._parse('spam') Traceback (most recent call last): ... ValueError: spam """ try: return _match(coord).groups() except AttributeError: raise ValueError(coord)
[ "def", "_parse", "(", "coord", ",", "_match", "=", "_regex", ".", "match", ")", ":", "try", ":", "return", "_match", "(", "coord", ")", ".", "groups", "(", ")", "except", "AttributeError", ":", "raise", "ValueError", "(", "coord", ")" ]
29.5
14.555556
def loadSignalFromWav(inputSignalFile, calibrationRealWorldValue=None, calibrationSignalFile=None, start=None, end=None) -> Signal: """ reads a wav file into a Signal and scales the input so that the sample are expressed in real world values (as defined by the calibration signal). :param inputSignalFile: a path to the input signal file :param calibrationSignalFile: a path the calibration signal file :param calibrationRealWorldValue: the real world value represented by the calibration signal :param bitDepth: the bit depth of the input signal, used to rescale the value to a range of +1 to -1 :returns: a Signal """ inputSignal = readWav(inputSignalFile, start=start, end=end) if calibrationSignalFile is not None: calibrationSignal = readWav(calibrationSignalFile) scalingFactor = calibrationRealWorldValue / np.max(calibrationSignal.samples) return Signal(inputSignal.samples * scalingFactor, inputSignal.fs) else: return inputSignal
[ "def", "loadSignalFromWav", "(", "inputSignalFile", ",", "calibrationRealWorldValue", "=", "None", ",", "calibrationSignalFile", "=", "None", ",", "start", "=", "None", ",", "end", "=", "None", ")", "->", "Signal", ":", "inputSignal", "=", "readWav", "(", "inputSignalFile", ",", "start", "=", "start", ",", "end", "=", "end", ")", "if", "calibrationSignalFile", "is", "not", "None", ":", "calibrationSignal", "=", "readWav", "(", "calibrationSignalFile", ")", "scalingFactor", "=", "calibrationRealWorldValue", "/", "np", ".", "max", "(", "calibrationSignal", ".", "samples", ")", "return", "Signal", "(", "inputSignal", ".", "samples", "*", "scalingFactor", ",", "inputSignal", ".", "fs", ")", "else", ":", "return", "inputSignal" ]
60.058824
25.117647
def all_label_values(self, label_list_ids=None): """ Return a set of all label-values occurring in this corpus. Args: label_list_ids (list): If not None, only labels from label-lists with an id contained in this list are considered. Returns: :class:`set`: A set of distinct label-values. """ values = set() for utterance in self.utterances.values(): values = values.union(utterance.all_label_values(label_list_ids=label_list_ids)) return values
[ "def", "all_label_values", "(", "self", ",", "label_list_ids", "=", "None", ")", ":", "values", "=", "set", "(", ")", "for", "utterance", "in", "self", ".", "utterances", ".", "values", "(", ")", ":", "values", "=", "values", ".", "union", "(", "utterance", ".", "all_label_values", "(", "label_list_ids", "=", "label_list_ids", ")", ")", "return", "values" ]
33.411765
26
def check(self, **kwargs): """ In addition to parent class' checks, also ensure that MULTITENANT_STATICFILES_DIRS is a tuple or a list. """ errors = super().check(**kwargs) multitenant_staticfiles_dirs = settings.MULTITENANT_STATICFILES_DIRS if not isinstance(multitenant_staticfiles_dirs, (list, tuple)): errors.append( Error( "Your MULTITENANT_STATICFILES_DIRS setting is not a tuple or list.", hint="Perhaps you forgot a trailing comma?", ) ) return errors
[ "def", "check", "(", "self", ",", "*", "*", "kwargs", ")", ":", "errors", "=", "super", "(", ")", ".", "check", "(", "*", "*", "kwargs", ")", "multitenant_staticfiles_dirs", "=", "settings", ".", "MULTITENANT_STATICFILES_DIRS", "if", "not", "isinstance", "(", "multitenant_staticfiles_dirs", ",", "(", "list", ",", "tuple", ")", ")", ":", "errors", ".", "append", "(", "Error", "(", "\"Your MULTITENANT_STATICFILES_DIRS setting is not a tuple or list.\"", ",", "hint", "=", "\"Perhaps you forgot a trailing comma?\"", ",", ")", ")", "return", "errors" ]
35.588235
23.235294
def parameters_dict(self): """ Get the tool parameters as a simple dictionary :return: The tool parameters """ d = {} for k, v in self.__dict__.items(): if not k.startswith("_"): d[k] = v return d
[ "def", "parameters_dict", "(", "self", ")", ":", "d", "=", "{", "}", "for", "k", ",", "v", "in", "self", ".", "__dict__", ".", "items", "(", ")", ":", "if", "not", "k", ".", "startswith", "(", "\"_\"", ")", ":", "d", "[", "k", "]", "=", "v", "return", "d" ]
24.636364
13
def random_reseed(self, seed): """ Provide YubiHSM DRBG_CTR with a new seed. @param seed: new seed -- must be exactly 32 bytes @type seed: string @returns: True on success @rtype: bool @see: L{pyhsm.basic_cmd.YHSM_Cmd_Random_Reseed} """ return pyhsm.basic_cmd.YHSM_Cmd_Random_Reseed(self.stick, seed).execute()
[ "def", "random_reseed", "(", "self", ",", "seed", ")", ":", "return", "pyhsm", ".", "basic_cmd", ".", "YHSM_Cmd_Random_Reseed", "(", "self", ".", "stick", ",", "seed", ")", ".", "execute", "(", ")" ]
28.692308
19.461538
def getSampleTypes(self, active_only=True): """Return all sampletypes """ catalog = api.get_tool("bika_setup_catalog") query = { "portal_type": "SampleType", # N.B. The `sortable_title` index sorts case sensitive. Since there # is no sort key for sample types, it makes more sense to sort # them alphabetically in the selection "sort_on": "title", "sort_order": "ascending" } results = catalog(query) if active_only: results = filter(api.is_active, results) sampletypes = map( lambda brain: (brain.UID, brain.Title), results) return DisplayList(sampletypes)
[ "def", "getSampleTypes", "(", "self", ",", "active_only", "=", "True", ")", ":", "catalog", "=", "api", ".", "get_tool", "(", "\"bika_setup_catalog\"", ")", "query", "=", "{", "\"portal_type\"", ":", "\"SampleType\"", ",", "# N.B. The `sortable_title` index sorts case sensitive. Since there", "# is no sort key for sample types, it makes more sense to sort", "# them alphabetically in the selection", "\"sort_on\"", ":", "\"title\"", ",", "\"sort_order\"", ":", "\"ascending\"", "}", "results", "=", "catalog", "(", "query", ")", "if", "active_only", ":", "results", "=", "filter", "(", "api", ".", "is_active", ",", "results", ")", "sampletypes", "=", "map", "(", "lambda", "brain", ":", "(", "brain", ".", "UID", ",", "brain", ".", "Title", ")", ",", "results", ")", "return", "DisplayList", "(", "sampletypes", ")" ]
39.888889
13.666667
def properties_changed(self, sender, changed_properties, invalidated_properties): """ Called when a device property has changed or got invalidated. """ if 'Connected' in changed_properties: if changed_properties['Connected']: self.connect_succeeded() else: self.disconnect_succeeded() if ('ServicesResolved' in changed_properties and changed_properties['ServicesResolved'] == 1 and not self.services): self.services_resolved()
[ "def", "properties_changed", "(", "self", ",", "sender", ",", "changed_properties", ",", "invalidated_properties", ")", ":", "if", "'Connected'", "in", "changed_properties", ":", "if", "changed_properties", "[", "'Connected'", "]", ":", "self", ".", "connect_succeeded", "(", ")", "else", ":", "self", ".", "disconnect_succeeded", "(", ")", "if", "(", "'ServicesResolved'", "in", "changed_properties", "and", "changed_properties", "[", "'ServicesResolved'", "]", "==", "1", "and", "not", "self", ".", "services", ")", ":", "self", ".", "services_resolved", "(", ")" ]
41.461538
17
def create_quote(self, blogname, **kwargs): """ Create a quote post on a blog :param blogname: a string, the url of the blog you want to post to. :param state: a string, The state of the post. :param tags: a list of tags that you want applied to the post :param tweet: a string, the customized tweet that you want :param date: a string, the GMT date and time of the post :param format: a string, sets the format type of the post. html or markdown :param slug: a string, a short text summary to the end of the post url :param quote: a string, the full text of the quote :param source: a string, the cited source of the quote :returns: a dict created from the JSON response """ kwargs.update({"type": "quote"}) return self._send_post(blogname, kwargs)
[ "def", "create_quote", "(", "self", ",", "blogname", ",", "*", "*", "kwargs", ")", ":", "kwargs", ".", "update", "(", "{", "\"type\"", ":", "\"quote\"", "}", ")", "return", "self", ".", "_send_post", "(", "blogname", ",", "kwargs", ")" ]
47.444444
19.888889
def three_d_effect(img, **kwargs): """Create 3D effect using convolution""" w = kwargs.get('weight', 1) LOG.debug("Applying 3D effect with weight %.2f", w) kernel = np.array([[-w, 0, w], [-w, 1, w], [-w, 0, w]]) mode = kwargs.get('convolve_mode', 'same') def func(band_data, kernel=kernel, mode=mode, index=None): del index delay = dask.delayed(_three_d_effect_delayed)(band_data, kernel, mode) new_data = da.from_delayed(delay, shape=band_data.shape, dtype=band_data.dtype) return new_data return apply_enhancement(img.data, func, separate=True, pass_dask=True)
[ "def", "three_d_effect", "(", "img", ",", "*", "*", "kwargs", ")", ":", "w", "=", "kwargs", ".", "get", "(", "'weight'", ",", "1", ")", "LOG", ".", "debug", "(", "\"Applying 3D effect with weight %.2f\"", ",", "w", ")", "kernel", "=", "np", ".", "array", "(", "[", "[", "-", "w", ",", "0", ",", "w", "]", ",", "[", "-", "w", ",", "1", ",", "w", "]", ",", "[", "-", "w", ",", "0", ",", "w", "]", "]", ")", "mode", "=", "kwargs", ".", "get", "(", "'convolve_mode'", ",", "'same'", ")", "def", "func", "(", "band_data", ",", "kernel", "=", "kernel", ",", "mode", "=", "mode", ",", "index", "=", "None", ")", ":", "del", "index", "delay", "=", "dask", ".", "delayed", "(", "_three_d_effect_delayed", ")", "(", "band_data", ",", "kernel", ",", "mode", ")", "new_data", "=", "da", ".", "from_delayed", "(", "delay", ",", "shape", "=", "band_data", ".", "shape", ",", "dtype", "=", "band_data", ".", "dtype", ")", "return", "new_data", "return", "apply_enhancement", "(", "img", ".", "data", ",", "func", ",", "separate", "=", "True", ",", "pass_dask", "=", "True", ")" ]
38.529412
20.882353
def _tool_to_dict(tool): """Parse a tool definition into a cwl2wdl style dictionary. """ out = {"name": _id_to_name(tool.tool["id"]), "baseCommand": " ".join(tool.tool["baseCommand"]), "arguments": [], "inputs": [_input_to_dict(i) for i in tool.tool["inputs"]], "outputs": [_output_to_dict(o) for o in tool.tool["outputs"]], "requirements": _requirements_to_dict(tool.requirements + tool.hints), "stdin": None, "stdout": None} return out
[ "def", "_tool_to_dict", "(", "tool", ")", ":", "out", "=", "{", "\"name\"", ":", "_id_to_name", "(", "tool", ".", "tool", "[", "\"id\"", "]", ")", ",", "\"baseCommand\"", ":", "\" \"", ".", "join", "(", "tool", ".", "tool", "[", "\"baseCommand\"", "]", ")", ",", "\"arguments\"", ":", "[", "]", ",", "\"inputs\"", ":", "[", "_input_to_dict", "(", "i", ")", "for", "i", "in", "tool", ".", "tool", "[", "\"inputs\"", "]", "]", ",", "\"outputs\"", ":", "[", "_output_to_dict", "(", "o", ")", "for", "o", "in", "tool", ".", "tool", "[", "\"outputs\"", "]", "]", ",", "\"requirements\"", ":", "_requirements_to_dict", "(", "tool", ".", "requirements", "+", "tool", ".", "hints", ")", ",", "\"stdin\"", ":", "None", ",", "\"stdout\"", ":", "None", "}", "return", "out" ]
46.272727
17.181818
def deprecated(func): """ This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used. :param func: The function to run :return: function """ def deprecation_warning(*args, **kwargs): warnings.warn('Call to deprecated function {name}. Please consult our documentation at ' 'http://pyapi-gitlab.readthedocs.io/en/latest/#gitlab.Gitlab.{name}'.format(name=func.__name__), category=DeprecationWarning) return func(*args, **kwargs) deprecation_warning.__name__ = func.__name__ deprecation_warning.__doc__ = func.__doc__ deprecation_warning.__dict__ = func.__dict__ return deprecation_warning
[ "def", "deprecated", "(", "func", ")", ":", "def", "deprecation_warning", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "warnings", ".", "warn", "(", "'Call to deprecated function {name}. Please consult our documentation at '", "'http://pyapi-gitlab.readthedocs.io/en/latest/#gitlab.Gitlab.{name}'", ".", "format", "(", "name", "=", "func", ".", "__name__", ")", ",", "category", "=", "DeprecationWarning", ")", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "deprecation_warning", ".", "__name__", "=", "func", ".", "__name__", "deprecation_warning", ".", "__doc__", "=", "func", ".", "__doc__", "deprecation_warning", ".", "__dict__", "=", "func", ".", "__dict__", "return", "deprecation_warning" ]
44.411765
20.764706
def delete(self, client=None): """API call: delete a metric via a DELETE request See https://cloud.google.com/logging/docs/reference/v2/rest/v2/projects.metrics/delete :type client: :class:`~google.cloud.logging.client.Client` or ``NoneType`` :param client: the client to use. If not passed, falls back to the ``client`` stored on the current metric. """ client = self._require_client(client) client.metrics_api.metric_delete(self.project, self.name)
[ "def", "delete", "(", "self", ",", "client", "=", "None", ")", ":", "client", "=", "self", ".", "_require_client", "(", "client", ")", "client", ".", "metrics_api", ".", "metric_delete", "(", "self", ".", "project", ",", "self", ".", "name", ")" ]
42.384615
22.461538
def on_balance_volume(close_data, volume): """ On Balance Volume. Formula: start = 1 if CLOSEt > CLOSEt-1 obv = obvt-1 + volumet elif CLOSEt < CLOSEt-1 obv = obvt-1 - volumet elif CLOSEt == CLOSTt-1 obv = obvt-1 """ catch_errors.check_for_input_len_diff(close_data, volume) obv = np.zeros(len(volume)) obv[0] = 1 for idx in range(1, len(obv)): if close_data[idx] > close_data[idx-1]: obv[idx] = obv[idx-1] + volume[idx] elif close_data[idx] < close_data[idx-1]: obv[idx] = obv[idx-1] - volume[idx] elif close_data[idx] == close_data[idx-1]: obv[idx] = obv[idx-1] return obv
[ "def", "on_balance_volume", "(", "close_data", ",", "volume", ")", ":", "catch_errors", ".", "check_for_input_len_diff", "(", "close_data", ",", "volume", ")", "obv", "=", "np", ".", "zeros", "(", "len", "(", "volume", ")", ")", "obv", "[", "0", "]", "=", "1", "for", "idx", "in", "range", "(", "1", ",", "len", "(", "obv", ")", ")", ":", "if", "close_data", "[", "idx", "]", ">", "close_data", "[", "idx", "-", "1", "]", ":", "obv", "[", "idx", "]", "=", "obv", "[", "idx", "-", "1", "]", "+", "volume", "[", "idx", "]", "elif", "close_data", "[", "idx", "]", "<", "close_data", "[", "idx", "-", "1", "]", ":", "obv", "[", "idx", "]", "=", "obv", "[", "idx", "-", "1", "]", "-", "volume", "[", "idx", "]", "elif", "close_data", "[", "idx", "]", "==", "close_data", "[", "idx", "-", "1", "]", ":", "obv", "[", "idx", "]", "=", "obv", "[", "idx", "-", "1", "]", "return", "obv" ]
28.625
13.875
def make_next_param(login_url, current_url): ''' Reduces the scheme and host from a given URL so it can be passed to the given `login` URL more efficiently. :param login_url: The login URL being redirected to. :type login_url: str :param current_url: The URL to reduce. :type current_url: str ''' l = urlparse(login_url) c = urlparse(current_url) if (not l.scheme or l.scheme == c.scheme) and \ (not l.netloc or l.netloc == c.netloc): return urlunparse(('', '', c.path, c.params, c.query, '')) return current_url
[ "def", "make_next_param", "(", "login_url", ",", "current_url", ")", ":", "l", "=", "urlparse", "(", "login_url", ")", "c", "=", "urlparse", "(", "current_url", ")", "if", "(", "not", "l", ".", "scheme", "or", "l", ".", "scheme", "==", "c", ".", "scheme", ")", "and", "(", "not", "l", ".", "netloc", "or", "l", ".", "netloc", "==", "c", ".", "netloc", ")", ":", "return", "urlunparse", "(", "(", "''", ",", "''", ",", "c", ".", "path", ",", "c", ".", "params", ",", "c", ".", "query", ",", "''", ")", ")", "return", "current_url" ]
33.294118
18.941176
def to_native(self, value, context=None): """ Schematics deserializer override We return a phoenumbers.PhoneNumber object so any kind of formatting can be trivially performed. Additionally, some convenient properties have been added: e164: string formatted '+11234567890' pretty: string formatted '(123) 456-7890' :return: phonenumbers.PhoneNumber """ if isinstance(value, pn.phonenumber.PhoneNumber): return value try: phone = pn.parse(value, 'US') valid = pn.is_valid_number(phone) except (NumberParseException, TypeError): raise ConversionError(self.messages['convert']) if not valid and pn.is_possible_number(phone): raise ConversionError(self.messages['invalid']) elif not valid: raise ConversionError(self.messages['convert']) phone.e164 = pn.format_number(phone, pn.PhoneNumberFormat.E164) phone.pretty = pn.format_number(phone, pn.PhoneNumberFormat.NATIONAL) return phone
[ "def", "to_native", "(", "self", ",", "value", ",", "context", "=", "None", ")", ":", "if", "isinstance", "(", "value", ",", "pn", ".", "phonenumber", ".", "PhoneNumber", ")", ":", "return", "value", "try", ":", "phone", "=", "pn", ".", "parse", "(", "value", ",", "'US'", ")", "valid", "=", "pn", ".", "is_valid_number", "(", "phone", ")", "except", "(", "NumberParseException", ",", "TypeError", ")", ":", "raise", "ConversionError", "(", "self", ".", "messages", "[", "'convert'", "]", ")", "if", "not", "valid", "and", "pn", ".", "is_possible_number", "(", "phone", ")", ":", "raise", "ConversionError", "(", "self", ".", "messages", "[", "'invalid'", "]", ")", "elif", "not", "valid", ":", "raise", "ConversionError", "(", "self", ".", "messages", "[", "'convert'", "]", ")", "phone", ".", "e164", "=", "pn", ".", "format_number", "(", "phone", ",", "pn", ".", "PhoneNumberFormat", ".", "E164", ")", "phone", ".", "pretty", "=", "pn", ".", "format_number", "(", "phone", ",", "pn", ".", "PhoneNumberFormat", ".", "NATIONAL", ")", "return", "phone" ]
34.354839
21.032258
def exponential_sleep_generator(initial, maximum, multiplier=_DEFAULT_DELAY_MULTIPLIER): """Generates sleep intervals based on the exponential back-off algorithm. This implements the `Truncated Exponential Back-off`_ algorithm. .. _Truncated Exponential Back-off: https://cloud.google.com/storage/docs/exponential-backoff Args: initial (float): The minimum about of time to delay. This must be greater than 0. maximum (float): The maximum about of time to delay. multiplier (float): The multiplier applied to the delay. Yields: float: successive sleep intervals. """ delay = initial while True: # Introduce jitter by yielding a delay that is uniformly distributed # to average out to the delay time. yield min(random.uniform(0.0, delay * 2.0), maximum) delay = delay * multiplier
[ "def", "exponential_sleep_generator", "(", "initial", ",", "maximum", ",", "multiplier", "=", "_DEFAULT_DELAY_MULTIPLIER", ")", ":", "delay", "=", "initial", "while", "True", ":", "# Introduce jitter by yielding a delay that is uniformly distributed", "# to average out to the delay time.", "yield", "min", "(", "random", ".", "uniform", "(", "0.0", ",", "delay", "*", "2.0", ")", ",", "maximum", ")", "delay", "=", "delay", "*", "multiplier" ]
38.130435
22.565217
def patch_ligotimegps(module="ligo.lw.lsctables"): """Context manager to on-the-fly patch LIGOTimeGPS to accept all int types """ module = import_module(module) orig = module.LIGOTimeGPS module.LIGOTimeGPS = _ligotimegps try: yield finally: module.LIGOTimeGPS = orig
[ "def", "patch_ligotimegps", "(", "module", "=", "\"ligo.lw.lsctables\"", ")", ":", "module", "=", "import_module", "(", "module", ")", "orig", "=", "module", ".", "LIGOTimeGPS", "module", ".", "LIGOTimeGPS", "=", "_ligotimegps", "try", ":", "yield", "finally", ":", "module", ".", "LIGOTimeGPS", "=", "orig" ]
30.1
12.4
def ipv4(self, network=False, address_class=None, private=None): """ Produce a random IPv4 address or network with a valid CIDR. :param network: Network address :param address_class: IPv4 address class (a, b, or c) :param private: Public or private :returns: IPv4 """ if private is True: return self.ipv4_private(address_class=address_class, network=network) elif private is False: return self.ipv4_public(address_class=address_class, network=network) # if neither private nor public is required explicitly, # generate from whole requested address space if address_class: all_networks = [_IPv4Constants._network_classes[address_class]] else: # if no address class is choosen, use whole IPv4 pool all_networks = [ip_network('0.0.0.0/0')] # exclude special networks all_networks = self._exclude_ipv4_networks( all_networks, _IPv4Constants._excluded_networks, ) # choose random network from the list random_network = self.generator.random.choice(all_networks) return self._random_ipv4_address_from_subnet(random_network, network)
[ "def", "ipv4", "(", "self", ",", "network", "=", "False", ",", "address_class", "=", "None", ",", "private", "=", "None", ")", ":", "if", "private", "is", "True", ":", "return", "self", ".", "ipv4_private", "(", "address_class", "=", "address_class", ",", "network", "=", "network", ")", "elif", "private", "is", "False", ":", "return", "self", ".", "ipv4_public", "(", "address_class", "=", "address_class", ",", "network", "=", "network", ")", "# if neither private nor public is required explicitly,", "# generate from whole requested address space", "if", "address_class", ":", "all_networks", "=", "[", "_IPv4Constants", ".", "_network_classes", "[", "address_class", "]", "]", "else", ":", "# if no address class is choosen, use whole IPv4 pool", "all_networks", "=", "[", "ip_network", "(", "'0.0.0.0/0'", ")", "]", "# exclude special networks", "all_networks", "=", "self", ".", "_exclude_ipv4_networks", "(", "all_networks", ",", "_IPv4Constants", ".", "_excluded_networks", ",", ")", "# choose random network from the list", "random_network", "=", "self", ".", "generator", ".", "random", ".", "choice", "(", "all_networks", ")", "return", "self", ".", "_random_ipv4_address_from_subnet", "(", "random_network", ",", "network", ")" ]
38.441176
19.911765
def calculate_acf(data, delta_t=1.0, unbiased=False): r"""Calculates the one-sided autocorrelation function. Calculates the autocorrelation function (ACF) and returns the one-sided ACF. The ACF is defined as the autocovariance divided by the variance. The ACF can be estimated using .. math:: \hat{R}(k) = \frac{1}{n \sigma^{2}} \sum_{t=1}^{n-k} \left( X_{t} - \mu \right) \left( X_{t+k} - \mu \right) Where :math:`\hat{R}(k)` is the ACF, :math:`X_{t}` is the data series at time t, :math:`\mu` is the mean of :math:`X_{t}`, and :math:`\sigma^{2}` is the variance of :math:`X_{t}`. Parameters ----------- data : TimeSeries or numpy.array A TimeSeries or numpy.array of data. delta_t : float The time step of the data series if it is not a TimeSeries instance. unbiased : bool If True the normalization of the autocovariance function is n-k instead of n. This is called the unbiased estimation of the autocovariance. Note that this does not mean the ACF is unbiased. Returns ------- acf : numpy.array If data is a TimeSeries then acf will be a TimeSeries of the one-sided ACF. Else acf is a numpy.array. """ # if given a TimeSeries instance then get numpy.array if isinstance(data, TimeSeries): y = data.numpy() delta_t = data.delta_t else: y = data # Zero mean y = y - y.mean() ny_orig = len(y) npad = 1 while npad < 2*ny_orig: npad = npad << 1 ypad = numpy.zeros(npad) ypad[:ny_orig] = y # FFT data minus the mean fdata = TimeSeries(ypad, delta_t=delta_t).to_frequencyseries() # correlate # do not need to give the congjugate since correlate function does it cdata = FrequencySeries(zeros(len(fdata), dtype=fdata.dtype), delta_f=fdata.delta_f, copy=False) correlate(fdata, fdata, cdata) # IFFT correlated data to get unnormalized autocovariance time series acf = cdata.to_timeseries() acf = acf[:ny_orig] # normalize the autocovariance # note that dividing by acf[0] is the same as ( y.var() * len(acf) ) if unbiased: acf /= ( y.var() * numpy.arange(len(acf), 0, -1) ) else: acf /= acf[0] # return input datatype if isinstance(data, TimeSeries): return TimeSeries(acf, delta_t=delta_t) else: return acf
[ "def", "calculate_acf", "(", "data", ",", "delta_t", "=", "1.0", ",", "unbiased", "=", "False", ")", ":", "# if given a TimeSeries instance then get numpy.array", "if", "isinstance", "(", "data", ",", "TimeSeries", ")", ":", "y", "=", "data", ".", "numpy", "(", ")", "delta_t", "=", "data", ".", "delta_t", "else", ":", "y", "=", "data", "# Zero mean", "y", "=", "y", "-", "y", ".", "mean", "(", ")", "ny_orig", "=", "len", "(", "y", ")", "npad", "=", "1", "while", "npad", "<", "2", "*", "ny_orig", ":", "npad", "=", "npad", "<<", "1", "ypad", "=", "numpy", ".", "zeros", "(", "npad", ")", "ypad", "[", ":", "ny_orig", "]", "=", "y", "# FFT data minus the mean", "fdata", "=", "TimeSeries", "(", "ypad", ",", "delta_t", "=", "delta_t", ")", ".", "to_frequencyseries", "(", ")", "# correlate", "# do not need to give the congjugate since correlate function does it", "cdata", "=", "FrequencySeries", "(", "zeros", "(", "len", "(", "fdata", ")", ",", "dtype", "=", "fdata", ".", "dtype", ")", ",", "delta_f", "=", "fdata", ".", "delta_f", ",", "copy", "=", "False", ")", "correlate", "(", "fdata", ",", "fdata", ",", "cdata", ")", "# IFFT correlated data to get unnormalized autocovariance time series", "acf", "=", "cdata", ".", "to_timeseries", "(", ")", "acf", "=", "acf", "[", ":", "ny_orig", "]", "# normalize the autocovariance", "# note that dividing by acf[0] is the same as ( y.var() * len(acf) )", "if", "unbiased", ":", "acf", "/=", "(", "y", ".", "var", "(", ")", "*", "numpy", ".", "arange", "(", "len", "(", "acf", ")", ",", "0", ",", "-", "1", ")", ")", "else", ":", "acf", "/=", "acf", "[", "0", "]", "# return input datatype", "if", "isinstance", "(", "data", ",", "TimeSeries", ")", ":", "return", "TimeSeries", "(", "acf", ",", "delta_t", "=", "delta_t", ")", "else", ":", "return", "acf" ]
31.6
24.653333
def process_tree(top, name='top'): """Creates a string representation of the process tree for process top. This method uses the :func:`walk_processes` method to create the process tree. :param top: top process for which process tree string should be created :type top: :class:`~climlab.process.process.Process` :param str name: name of top process :returns: string representation of the process tree :rtype: str :Example: :: >>> import climlab >>> from climlab.utils import walk >>> model = climlab.EBM() >>> proc_tree_str = walk.process_tree(model, name='model') >>> print proc_tree_str model: <class 'climlab.model.ebm.EBM'> diffusion: <class 'climlab.dynamics.diffusion.MeridionalDiffusion'> LW: <class 'climlab.radiation.AplusBT.AplusBT'> albedo: <class 'climlab.surface.albedo.StepFunctionAlbedo'> iceline: <class 'climlab.surface.albedo.Iceline'> cold_albedo: <class 'climlab.surface.albedo.ConstantAlbedo'> warm_albedo: <class 'climlab.surface.albedo.P2Albedo'> insolation: <class 'climlab.radiation.insolation.P2Insolation'> """ str1 = '' for name, proc, level in walk_processes(top, name, ignoreFlag=True): indent = ' ' * 3 * (level) str1 += ('{}{}: {}\n'.format(indent, name, type(proc))) return str1
[ "def", "process_tree", "(", "top", ",", "name", "=", "'top'", ")", ":", "str1", "=", "''", "for", "name", ",", "proc", ",", "level", "in", "walk_processes", "(", "top", ",", "name", ",", "ignoreFlag", "=", "True", ")", ":", "indent", "=", "' '", "*", "3", "*", "(", "level", ")", "str1", "+=", "(", "'{}{}: {}\\n'", ".", "format", "(", "indent", ",", "name", ",", "type", "(", "proc", ")", ")", ")", "return", "str1" ]
40.236842
25.078947
def load(self, items): """ Populate this section from an iteration of the parse_items call """ for k, vals in items: self[k] = "".join(vals)
[ "def", "load", "(", "self", ",", "items", ")", ":", "for", "k", ",", "vals", "in", "items", ":", "self", "[", "k", "]", "=", "\"\"", ".", "join", "(", "vals", ")" ]
25.571429
15
def int2str(num, radix=10, alphabet=BASE85): """helper function for quick base conversions from integers to strings""" return NumConv(radix, alphabet).int2str(num)
[ "def", "int2str", "(", "num", ",", "radix", "=", "10", ",", "alphabet", "=", "BASE85", ")", ":", "return", "NumConv", "(", "radix", ",", "alphabet", ")", ".", "int2str", "(", "num", ")" ]
56.333333
4
def no_llvm(*args, uid=0, gid=0, **kwargs): """ Return a customizable uchroot command. The command will be executed inside a uchroot environment. Args: args: List of additional arguments for uchroot (typical: mounts) Return: chroot_cmd """ uchroot_cmd = no_args() uchroot_cmd = uchroot_cmd[__default_opts__(uid, gid)] return uchroot_cmd[args]
[ "def", "no_llvm", "(", "*", "args", ",", "uid", "=", "0", ",", "gid", "=", "0", ",", "*", "*", "kwargs", ")", ":", "uchroot_cmd", "=", "no_args", "(", ")", "uchroot_cmd", "=", "uchroot_cmd", "[", "__default_opts__", "(", "uid", ",", "gid", ")", "]", "return", "uchroot_cmd", "[", "args", "]" ]
27.357143
18.785714
def dot_alignment(sequences, seq_field=None, name_field=None, root=None, root_name=None, cluster_threshold=0.75, as_fasta=False, just_alignment=False): ''' Creates a dot alignment (dots indicate identity, mismatches are represented by the mismatched residue) for a list of sequences. Args: sequence (list(Sequence)): A list of Sequence objects to be aligned. seq_field (str): Name of the sequence field key. Default is ``vdj_nt``. name_field (str): Name of the name field key. Default is ``seq_id``. root (str, Sequence): The sequence used to 'root' the alignment. This sequence will be at the top of the alignment and is the sequence against which dots (identity) will be evaluated. Can be provided either as a string corresponding to the name of one of the sequences in ``sequences`` or as a Sequence object. If not provided, ``sequences`` will be clustered at ``cluster_threshold`` and the centroid of the largest cluster will be used. root_name (str): Name of the root sequence. If not provided, the existing name of the root sequence (``name_field``) will be used. If ``root`` is not provided, the default ``root_name`` is ``'centroid'``. cluster_threshold (float): Threshold with which to cluster sequences if ``root`` is not provided. Default is ``0.75``. as_fasta (bool): If ``True``, returns the dot alignment as a FASTA-formatted string, rather than a string formatted for human readability. just_alignment (bool): If ``True``, returns just the dot-aligned sequences as a list. Returns: If ``just_alignment`` is ``True``, a list of dot-aligned sequences (without sequence names) will be returned. If ``as_fasta`` is ``True``, a string containing the dot-aligned sequences in FASTA format will be returned. Otherwise, a formatted string containing the aligned sequences (with sequence names) will be returned. ''' import abstar from .cluster import cluster sequences = deepcopy(sequences) root = copy(root) # if custom seq_field is specified, copy to the .alignment_sequence attribute if seq_field is not None: if not all([seq_field in list(s.annotations.keys()) for s in sequences]): print('\nERROR: {} is not present in all of the supplied sequences.\n'.format(seq_field)) sys.exit(1) for s in sequences: s.alignment_sequence = s[seq_field] else: for s in sequences: s.alignment_sequence = s.sequence # if custom name_field is specified, copy to the .id attribute if name_field is not None: if not all([name_field in list(s.annotations.keys()) for s in sequences]): print('\nERROR: {} is not present in all of the supplied sequences.\n'.format(name_field)) sys.exit(1) for s in sequences: s.alignment_id = s[name_field] else: for s in sequences: s.alignment_id = s.id # parse the root sequence if all([root is None, root_name is None]): clusters = cluster(sequences, threshold=cluster_threshold, quiet=True) clusters = sorted(clusters, key=lambda x: x.size, reverse=True) centroid = clusters[0].centroid root = abstar.run(('centroid', centroid.sequence)) root.alignment_id = 'centroid' root.alignment_sequence = root[seq_field] elif type(root) in STR_TYPES: root = [s for s in sequences if s.alignment_id == root][0] if not root: print('\nERROR: The name of the root sequence ({}) was not found in the list of input sequences.'.format(root)) print('\n') sys.exit(1) sequences = [s for s in sequences if s.alignment_id != root.alignment_id] elif type(root) == Sequence: if seq_field is not None: if seq_field not in list(root.anotations.keys()): print('\nERROR: {} is not present in the supplied root sequence.\n'.format(seq_field)) sys.exit(1) root.alignment_sequence = root[seq_field] if name_field is not None: if name_field not in list(root.anotations.keys()): print('\nERROR: {} is not present in the supplied root sequence.\n'.format(name_field)) sys.exit(1) root.alignment_id = root[name_field] sequences = [s for s in sequences if s.alignment_id != root.alignment_id] else: print('\nERROR: If root is provided, it must be the name of a sequence \ found in the supplied list of sequences or it must be a Sequence object.') print('\n') sys.exit(1) if root_name is not None: root.alignment_id = root_name else: root_name = root.alignment_id # compute and parse the alignment seqs = [(root.alignment_id, root.alignment_sequence)] seqs += [(s.alignment_id, s.alignment_sequence) for s in sequences] aln = muscle(seqs) g_aln = [a for a in aln if a.id == root_name][0] dots = [(root_name, str(g_aln.seq)), ] for seq in [a for a in aln if a.id != root_name]: s_aln = '' for g, q in zip(str(g_aln.seq), str(seq.seq)): if g == q == '-': s_aln += '-' elif g == q: s_aln += '.' else: s_aln += q dots.append((seq.id, s_aln)) if just_alignment: return [d[1] for d in dots] name_len = max([len(d[0]) for d in dots]) + 2 dot_aln = [] for d in dots: if as_fasta: dot_aln.append('>{}\n{}'.format(d[0], d[1])) else: spaces = name_len - len(d[0]) dot_aln.append(d[0] + ' ' * spaces + d[1]) return '\n'.join(dot_aln)
[ "def", "dot_alignment", "(", "sequences", ",", "seq_field", "=", "None", ",", "name_field", "=", "None", ",", "root", "=", "None", ",", "root_name", "=", "None", ",", "cluster_threshold", "=", "0.75", ",", "as_fasta", "=", "False", ",", "just_alignment", "=", "False", ")", ":", "import", "abstar", "from", ".", "cluster", "import", "cluster", "sequences", "=", "deepcopy", "(", "sequences", ")", "root", "=", "copy", "(", "root", ")", "# if custom seq_field is specified, copy to the .alignment_sequence attribute", "if", "seq_field", "is", "not", "None", ":", "if", "not", "all", "(", "[", "seq_field", "in", "list", "(", "s", ".", "annotations", ".", "keys", "(", ")", ")", "for", "s", "in", "sequences", "]", ")", ":", "print", "(", "'\\nERROR: {} is not present in all of the supplied sequences.\\n'", ".", "format", "(", "seq_field", ")", ")", "sys", ".", "exit", "(", "1", ")", "for", "s", "in", "sequences", ":", "s", ".", "alignment_sequence", "=", "s", "[", "seq_field", "]", "else", ":", "for", "s", "in", "sequences", ":", "s", ".", "alignment_sequence", "=", "s", ".", "sequence", "# if custom name_field is specified, copy to the .id attribute", "if", "name_field", "is", "not", "None", ":", "if", "not", "all", "(", "[", "name_field", "in", "list", "(", "s", ".", "annotations", ".", "keys", "(", ")", ")", "for", "s", "in", "sequences", "]", ")", ":", "print", "(", "'\\nERROR: {} is not present in all of the supplied sequences.\\n'", ".", "format", "(", "name_field", ")", ")", "sys", ".", "exit", "(", "1", ")", "for", "s", "in", "sequences", ":", "s", ".", "alignment_id", "=", "s", "[", "name_field", "]", "else", ":", "for", "s", "in", "sequences", ":", "s", ".", "alignment_id", "=", "s", ".", "id", "# parse the root sequence", "if", "all", "(", "[", "root", "is", "None", ",", "root_name", "is", "None", "]", ")", ":", "clusters", "=", "cluster", "(", "sequences", ",", "threshold", "=", "cluster_threshold", ",", "quiet", "=", "True", ")", "clusters", "=", "sorted", "(", "clusters", ",", "key", "=", "lambda", "x", ":", "x", ".", "size", ",", "reverse", "=", "True", ")", "centroid", "=", "clusters", "[", "0", "]", ".", "centroid", "root", "=", "abstar", ".", "run", "(", "(", "'centroid'", ",", "centroid", ".", "sequence", ")", ")", "root", ".", "alignment_id", "=", "'centroid'", "root", ".", "alignment_sequence", "=", "root", "[", "seq_field", "]", "elif", "type", "(", "root", ")", "in", "STR_TYPES", ":", "root", "=", "[", "s", "for", "s", "in", "sequences", "if", "s", ".", "alignment_id", "==", "root", "]", "[", "0", "]", "if", "not", "root", ":", "print", "(", "'\\nERROR: The name of the root sequence ({}) was not found in the list of input sequences.'", ".", "format", "(", "root", ")", ")", "print", "(", "'\\n'", ")", "sys", ".", "exit", "(", "1", ")", "sequences", "=", "[", "s", "for", "s", "in", "sequences", "if", "s", ".", "alignment_id", "!=", "root", ".", "alignment_id", "]", "elif", "type", "(", "root", ")", "==", "Sequence", ":", "if", "seq_field", "is", "not", "None", ":", "if", "seq_field", "not", "in", "list", "(", "root", ".", "anotations", ".", "keys", "(", ")", ")", ":", "print", "(", "'\\nERROR: {} is not present in the supplied root sequence.\\n'", ".", "format", "(", "seq_field", ")", ")", "sys", ".", "exit", "(", "1", ")", "root", ".", "alignment_sequence", "=", "root", "[", "seq_field", "]", "if", "name_field", "is", "not", "None", ":", "if", "name_field", "not", "in", "list", "(", "root", ".", "anotations", ".", "keys", "(", ")", ")", ":", "print", "(", "'\\nERROR: {} is not present in the supplied root sequence.\\n'", ".", "format", "(", "name_field", ")", ")", "sys", ".", "exit", "(", "1", ")", "root", ".", "alignment_id", "=", "root", "[", "name_field", "]", "sequences", "=", "[", "s", "for", "s", "in", "sequences", "if", "s", ".", "alignment_id", "!=", "root", ".", "alignment_id", "]", "else", ":", "print", "(", "'\\nERROR: If root is provided, it must be the name of a sequence \\\n found in the supplied list of sequences or it must be a Sequence object.'", ")", "print", "(", "'\\n'", ")", "sys", ".", "exit", "(", "1", ")", "if", "root_name", "is", "not", "None", ":", "root", ".", "alignment_id", "=", "root_name", "else", ":", "root_name", "=", "root", ".", "alignment_id", "# compute and parse the alignment", "seqs", "=", "[", "(", "root", ".", "alignment_id", ",", "root", ".", "alignment_sequence", ")", "]", "seqs", "+=", "[", "(", "s", ".", "alignment_id", ",", "s", ".", "alignment_sequence", ")", "for", "s", "in", "sequences", "]", "aln", "=", "muscle", "(", "seqs", ")", "g_aln", "=", "[", "a", "for", "a", "in", "aln", "if", "a", ".", "id", "==", "root_name", "]", "[", "0", "]", "dots", "=", "[", "(", "root_name", ",", "str", "(", "g_aln", ".", "seq", ")", ")", ",", "]", "for", "seq", "in", "[", "a", "for", "a", "in", "aln", "if", "a", ".", "id", "!=", "root_name", "]", ":", "s_aln", "=", "''", "for", "g", ",", "q", "in", "zip", "(", "str", "(", "g_aln", ".", "seq", ")", ",", "str", "(", "seq", ".", "seq", ")", ")", ":", "if", "g", "==", "q", "==", "'-'", ":", "s_aln", "+=", "'-'", "elif", "g", "==", "q", ":", "s_aln", "+=", "'.'", "else", ":", "s_aln", "+=", "q", "dots", ".", "append", "(", "(", "seq", ".", "id", ",", "s_aln", ")", ")", "if", "just_alignment", ":", "return", "[", "d", "[", "1", "]", "for", "d", "in", "dots", "]", "name_len", "=", "max", "(", "[", "len", "(", "d", "[", "0", "]", ")", "for", "d", "in", "dots", "]", ")", "+", "2", "dot_aln", "=", "[", "]", "for", "d", "in", "dots", ":", "if", "as_fasta", ":", "dot_aln", ".", "append", "(", "'>{}\\n{}'", ".", "format", "(", "d", "[", "0", "]", ",", "d", "[", "1", "]", ")", ")", "else", ":", "spaces", "=", "name_len", "-", "len", "(", "d", "[", "0", "]", ")", "dot_aln", ".", "append", "(", "d", "[", "0", "]", "+", "' '", "*", "spaces", "+", "d", "[", "1", "]", ")", "return", "'\\n'", ".", "join", "(", "dot_aln", ")" ]
43.530303
27.742424
def write_docstring_for_shortcut(self): """Write docstring to editor by shortcut of code editor.""" # cursor placed below function definition result = self.get_function_definition_from_below_last_line() if result is not None: __, number_of_lines_of_function = result cursor = self.code_editor.textCursor() for __ in range(number_of_lines_of_function): cursor.movePosition(QTextCursor.PreviousBlock) self.code_editor.setTextCursor(cursor) cursor = self.code_editor.textCursor() self.line_number_cursor = cursor.blockNumber() + 1 self.write_docstring_at_first_line_of_function()
[ "def", "write_docstring_for_shortcut", "(", "self", ")", ":", "# cursor placed below function definition\r", "result", "=", "self", ".", "get_function_definition_from_below_last_line", "(", ")", "if", "result", "is", "not", "None", ":", "__", ",", "number_of_lines_of_function", "=", "result", "cursor", "=", "self", ".", "code_editor", ".", "textCursor", "(", ")", "for", "__", "in", "range", "(", "number_of_lines_of_function", ")", ":", "cursor", ".", "movePosition", "(", "QTextCursor", ".", "PreviousBlock", ")", "self", ".", "code_editor", ".", "setTextCursor", "(", "cursor", ")", "cursor", "=", "self", ".", "code_editor", ".", "textCursor", "(", ")", "self", ".", "line_number_cursor", "=", "cursor", ".", "blockNumber", "(", ")", "+", "1", "self", ".", "write_docstring_at_first_line_of_function", "(", ")" ]
43.6875
17.6875
def indicator(self): """Produce the spinner.""" while self.run: try: size = self.work_q.qsize() except Exception: note = 'Please wait ' else: note = 'Number of Jobs in Queue = %s ' % size if self.msg: note = '%s %s' % (note, self.msg) for item in ['|', '/', '-', '\\']: sys.stdout.write('\rProcessing - [ %s ] - %s ' % (item, note)) sys.stdout.flush() time.sleep(.1) self.run = self.run
[ "def", "indicator", "(", "self", ")", ":", "while", "self", ".", "run", ":", "try", ":", "size", "=", "self", ".", "work_q", ".", "qsize", "(", ")", "except", "Exception", ":", "note", "=", "'Please wait '", "else", ":", "note", "=", "'Number of Jobs in Queue = %s '", "%", "size", "if", "self", ".", "msg", ":", "note", "=", "'%s %s'", "%", "(", "note", ",", "self", ".", "msg", ")", "for", "item", "in", "[", "'|'", ",", "'/'", ",", "'-'", ",", "'\\\\'", "]", ":", "sys", ".", "stdout", ".", "write", "(", "'\\rProcessing - [ %s ] - %s '", "%", "(", "item", ",", "note", ")", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "time", ".", "sleep", "(", ".1", ")", "self", ".", "run", "=", "self", ".", "run" ]
30.263158
17.421053
def get_task( self, taskName): """*recursively scan this taskpaper object to find a descendant task by name* **Key Arguments:** - ``taskName`` -- the name, or title, of the task you want to return **Return:** - ``task`` -- the taskpaper task object you requested (or ``None`` if no task was matched) **Usage:** .. code-block:: python aTask = doc.get_task("cut the grass") """ if taskName[:2] != "- ": taskName = "- " + taskName task = None try: self.refresh except: pass # SEARCH TASKS for t in self.tasks: if t.title.lower() == taskName.lower() and task == None: task = t break # SEARCH TASK CONTENTS if task == None: for t in self.tasks: task = t.get_task(taskName) if task: break # SEARCH PROJECT CONTENTS if task == None and "<Task " not in self.__repr__(): for p in self.projects: task = p.get_task(taskName) if task: break return task
[ "def", "get_task", "(", "self", ",", "taskName", ")", ":", "if", "taskName", "[", ":", "2", "]", "!=", "\"- \"", ":", "taskName", "=", "\"- \"", "+", "taskName", "task", "=", "None", "try", ":", "self", ".", "refresh", "except", ":", "pass", "# SEARCH TASKS", "for", "t", "in", "self", ".", "tasks", ":", "if", "t", ".", "title", ".", "lower", "(", ")", "==", "taskName", ".", "lower", "(", ")", "and", "task", "==", "None", ":", "task", "=", "t", "break", "# SEARCH TASK CONTENTS", "if", "task", "==", "None", ":", "for", "t", "in", "self", ".", "tasks", ":", "task", "=", "t", ".", "get_task", "(", "taskName", ")", "if", "task", ":", "break", "# SEARCH PROJECT CONTENTS", "if", "task", "==", "None", "and", "\"<Task \"", "not", "in", "self", ".", "__repr__", "(", ")", ":", "for", "p", "in", "self", ".", "projects", ":", "task", "=", "p", ".", "get_task", "(", "taskName", ")", "if", "task", ":", "break", "return", "task" ]
25.87234
21.659574
def dispatch(self, key): """ Get a seq of Commandchain objects that match key """ if key in self.strs: yield self.strs[key] for r, obj in self.regexs.items(): if re.match(r, key): yield obj else: #print "nomatch",key # dbg pass
[ "def", "dispatch", "(", "self", ",", "key", ")", ":", "if", "key", "in", "self", ".", "strs", ":", "yield", "self", ".", "strs", "[", "key", "]", "for", "r", ",", "obj", "in", "self", ".", "regexs", ".", "items", "(", ")", ":", "if", "re", ".", "match", "(", "r", ",", "key", ")", ":", "yield", "obj", "else", ":", "#print \"nomatch\",key # dbg", "pass" ]
29.727273
13.363636
def change_mime(self, bucket, key, mime): """修改文件mimeType: 主动修改指定资源的文件类型,具体规格参考: http://developer.qiniu.com/docs/v6/api/reference/rs/chgm.html Args: bucket: 待操作资源所在空间 key: 待操作资源文件名 mime: 待操作文件目标mimeType """ resource = entry(bucket, key) encode_mime = urlsafe_base64_encode(mime) return self.__rs_do('chgm', resource, 'mime/{0}'.format(encode_mime))
[ "def", "change_mime", "(", "self", ",", "bucket", ",", "key", ",", "mime", ")", ":", "resource", "=", "entry", "(", "bucket", ",", "key", ")", "encode_mime", "=", "urlsafe_base64_encode", "(", "mime", ")", "return", "self", ".", "__rs_do", "(", "'chgm'", ",", "resource", ",", "'mime/{0}'", ".", "format", "(", "encode_mime", ")", ")" ]
31.571429
16.071429
def custom_auth(principal, credentials, realm, scheme, **parameters): """ Generate a basic auth token for a given user and password. :param principal: specifies who is being authenticated :param credentials: authenticates the principal :param realm: specifies the authentication provider :param scheme: specifies the type of authentication :param parameters: parameters passed along to the authentication provider :return: auth token for use with :meth:`GraphDatabase.driver` """ from neobolt.security import AuthToken return AuthToken(scheme, principal, credentials, realm, **parameters)
[ "def", "custom_auth", "(", "principal", ",", "credentials", ",", "realm", ",", "scheme", ",", "*", "*", "parameters", ")", ":", "from", "neobolt", ".", "security", "import", "AuthToken", "return", "AuthToken", "(", "scheme", ",", "principal", ",", "credentials", ",", "realm", ",", "*", "*", "parameters", ")" ]
51.5
18.75
def ReadClientStartupInfo(self, client_id, cursor=None): """Reads the latest client startup record for a single client.""" query = ( "SELECT startup_info, UNIX_TIMESTAMP(timestamp) " "FROM clients, client_startup_history " "WHERE clients.last_startup_timestamp=client_startup_history.timestamp " "AND clients.client_id=client_startup_history.client_id " "AND clients.client_id=%s") cursor.execute(query, [db_utils.ClientIDToInt(client_id)]) row = cursor.fetchone() if row is None: return None startup_info, timestamp = row res = rdf_client.StartupInfo.FromSerializedString(startup_info) res.timestamp = mysql_utils.TimestampToRDFDatetime(timestamp) return res
[ "def", "ReadClientStartupInfo", "(", "self", ",", "client_id", ",", "cursor", "=", "None", ")", ":", "query", "=", "(", "\"SELECT startup_info, UNIX_TIMESTAMP(timestamp) \"", "\"FROM clients, client_startup_history \"", "\"WHERE clients.last_startup_timestamp=client_startup_history.timestamp \"", "\"AND clients.client_id=client_startup_history.client_id \"", "\"AND clients.client_id=%s\"", ")", "cursor", ".", "execute", "(", "query", ",", "[", "db_utils", ".", "ClientIDToInt", "(", "client_id", ")", "]", ")", "row", "=", "cursor", ".", "fetchone", "(", ")", "if", "row", "is", "None", ":", "return", "None", "startup_info", ",", "timestamp", "=", "row", "res", "=", "rdf_client", ".", "StartupInfo", ".", "FromSerializedString", "(", "startup_info", ")", "res", ".", "timestamp", "=", "mysql_utils", ".", "TimestampToRDFDatetime", "(", "timestamp", ")", "return", "res" ]
42.705882
20.058824
def get_docstring(filename, verbose=False): """ Search for assignment of the DOCUMENTATION variable in the given file. Parse that from YAML and return the YAML doc or None. """ doc = None try: # Thank you, Habbie, for this bit of code :-) M = ast.parse(''.join(open(filename))) for child in M.body: if isinstance(child, ast.Assign): if 'DOCUMENTATION' in (t.id for t in child.targets): doc = yaml.load(child.value.s) except: if verbose == True: traceback.print_exc() print "unable to parse %s" % filename return doc
[ "def", "get_docstring", "(", "filename", ",", "verbose", "=", "False", ")", ":", "doc", "=", "None", "try", ":", "# Thank you, Habbie, for this bit of code :-)", "M", "=", "ast", ".", "parse", "(", "''", ".", "join", "(", "open", "(", "filename", ")", ")", ")", "for", "child", "in", "M", ".", "body", ":", "if", "isinstance", "(", "child", ",", "ast", ".", "Assign", ")", ":", "if", "'DOCUMENTATION'", "in", "(", "t", ".", "id", "for", "t", "in", "child", ".", "targets", ")", ":", "doc", "=", "yaml", ".", "load", "(", "child", ".", "value", ".", "s", ")", "except", ":", "if", "verbose", "==", "True", ":", "traceback", ".", "print_exc", "(", ")", "print", "\"unable to parse %s\"", "%", "filename", "return", "doc" ]
31.7
17.5
def as_iterable(value, wrap_maps=True, wrap_sets=False, itertype=tuple): """Wraps a single non-iterable value with a tuple (or other iterable type, if ``itertype`` is provided.) >>> as_iterable("abc") ("abc",) >>> as_iterable(("abc",)) ("abc",) Equivalent to:: if is_iterable(value, not wrap_maps, not wrap_sets): return value else: return itertype(value) """ if is_iterable(value, not wrap_maps, not wrap_sets): return value else: return itertype(value)
[ "def", "as_iterable", "(", "value", ",", "wrap_maps", "=", "True", ",", "wrap_sets", "=", "False", ",", "itertype", "=", "tuple", ")", ":", "if", "is_iterable", "(", "value", ",", "not", "wrap_maps", ",", "not", "wrap_sets", ")", ":", "return", "value", "else", ":", "return", "itertype", "(", "value", ")" ]
27.571429
19.190476
def _set_closed(self, future): """ Indicate that the instance is effectively closed. :param future: The close future. """ logger.debug("%s[%s] closed.", self.__class__.__name__, id(self)) self.on_closed.emit(self) self._closed_future.set_result(future.result())
[ "def", "_set_closed", "(", "self", ",", "future", ")", ":", "logger", ".", "debug", "(", "\"%s[%s] closed.\"", ",", "self", ".", "__class__", ".", "__name__", ",", "id", "(", "self", ")", ")", "self", ".", "on_closed", ".", "emit", "(", "self", ")", "self", ".", "_closed_future", ".", "set_result", "(", "future", ".", "result", "(", ")", ")" ]
34.444444
13.555556
def _add_to_schema(self, field_name, schema): """Set the ``attribute`` attr to the field in question so this always gets deserialzed into the field name without ``_id``. Args: field_name (str): The name of the field (the attribute name being set in the schema). schema (marshmallow.Schema): The actual parent schema this field belongs to. """ super(ForeignKeyField, self)._add_to_schema(field_name, schema) if self.get_field_value('convert_fks', default=True): self.attribute = field_name.replace('_id', '')
[ "def", "_add_to_schema", "(", "self", ",", "field_name", ",", "schema", ")", ":", "super", "(", "ForeignKeyField", ",", "self", ")", ".", "_add_to_schema", "(", "field_name", ",", "schema", ")", "if", "self", ".", "get_field_value", "(", "'convert_fks'", ",", "default", "=", "True", ")", ":", "self", ".", "attribute", "=", "field_name", ".", "replace", "(", "'_id'", ",", "''", ")" ]
43.642857
21.071429
def run(self, incremental=None, run_id=None): """Queue the execution of a particular crawler.""" state = { 'crawler': self.name, 'run_id': run_id, 'incremental': settings.INCREMENTAL } if incremental is not None: state['incremental'] = incremental # Cancel previous runs: self.cancel() # Flush out previous events: Event.delete(self) Queue.queue(self.init_stage, state, {})
[ "def", "run", "(", "self", ",", "incremental", "=", "None", ",", "run_id", "=", "None", ")", ":", "state", "=", "{", "'crawler'", ":", "self", ".", "name", ",", "'run_id'", ":", "run_id", ",", "'incremental'", ":", "settings", ".", "INCREMENTAL", "}", "if", "incremental", "is", "not", "None", ":", "state", "[", "'incremental'", "]", "=", "incremental", "# Cancel previous runs:", "self", ".", "cancel", "(", ")", "# Flush out previous events:", "Event", ".", "delete", "(", "self", ")", "Queue", ".", "queue", "(", "self", ".", "init_stage", ",", "state", ",", "{", "}", ")" ]
32
12.533333
def default_vsan_policy_configured(name, policy): ''' Configures the default VSAN policy on a vCenter. The state assumes there is only one default VSAN policy on a vCenter. policy Dict representation of a policy ''' # TODO Refactor when recurse_differ supports list_differ # It's going to make the whole thing much easier policy_copy = copy.deepcopy(policy) proxy_type = __salt__['vsphere.get_proxy_type']() log.trace('proxy_type = %s', proxy_type) # All allowed proxies have a shim execution module with the same # name which implementes a get_details function # All allowed proxies have a vcenter detail vcenter = __salt__['{0}.get_details'.format(proxy_type)]()['vcenter'] log.info('Running %s on vCenter \'%s\'', name, vcenter) log.trace('policy = %s', policy) changes_required = False ret = {'name': name, 'changes': {}, 'result': None, 'comment': None} comments = [] changes = {} changes_required = False si = None try: #TODO policy schema validation si = __salt__['vsphere.get_service_instance_via_proxy']() current_policy = __salt__['vsphere.list_default_vsan_policy'](si) log.trace('current_policy = %s', current_policy) # Building all diffs between the current and expected policy # XXX We simplify the comparison by assuming we have at most 1 # sub_profile if policy.get('subprofiles'): if len(policy['subprofiles']) > 1: raise ArgumentValueError('Multiple sub_profiles ({0}) are not ' 'supported in the input policy') subprofile = policy['subprofiles'][0] current_subprofile = current_policy['subprofiles'][0] capabilities_differ = list_diff(current_subprofile['capabilities'], subprofile.get('capabilities', []), key='id') del policy['subprofiles'] if subprofile.get('capabilities'): del subprofile['capabilities'] del current_subprofile['capabilities'] # Get the subprofile diffs without the capability keys subprofile_differ = recursive_diff(current_subprofile, dict(subprofile)) del current_policy['subprofiles'] policy_differ = recursive_diff(current_policy, policy) if policy_differ.diffs or capabilities_differ.diffs or \ subprofile_differ.diffs: if 'name' in policy_differ.new_values or \ 'description' in policy_differ.new_values: raise ArgumentValueError( '\'name\' and \'description\' of the default VSAN policy ' 'cannot be updated') changes_required = True if __opts__['test']: str_changes = [] if policy_differ.diffs: str_changes.extend([change for change in policy_differ.changes_str.split('\n')]) if subprofile_differ.diffs or capabilities_differ.diffs: str_changes.append('subprofiles:') if subprofile_differ.diffs: str_changes.extend( [' {0}'.format(change) for change in subprofile_differ.changes_str.split('\n')]) if capabilities_differ.diffs: str_changes.append(' capabilities:') str_changes.extend( [' {0}'.format(change) for change in capabilities_differ.changes_str2.split('\n')]) comments.append( 'State {0} will update the default VSAN policy on ' 'vCenter \'{1}\':\n{2}' ''.format(name, vcenter, '\n'.join(str_changes))) else: __salt__['vsphere.update_storage_policy']( policy=current_policy['name'], policy_dict=policy_copy, service_instance=si) comments.append('Updated the default VSAN policy in vCenter ' '\'{0}\''.format(vcenter)) log.info(comments[-1]) new_values = policy_differ.new_values new_values['subprofiles'] = [subprofile_differ.new_values] new_values['subprofiles'][0]['capabilities'] = \ capabilities_differ.new_values if not new_values['subprofiles'][0]['capabilities']: del new_values['subprofiles'][0]['capabilities'] if not new_values['subprofiles'][0]: del new_values['subprofiles'] old_values = policy_differ.old_values old_values['subprofiles'] = [subprofile_differ.old_values] old_values['subprofiles'][0]['capabilities'] = \ capabilities_differ.old_values if not old_values['subprofiles'][0]['capabilities']: del old_values['subprofiles'][0]['capabilities'] if not old_values['subprofiles'][0]: del old_values['subprofiles'] changes.update({'default_vsan_policy': {'new': new_values, 'old': old_values}}) log.trace(changes) __salt__['vsphere.disconnect'](si) except CommandExecutionError as exc: log.error('Error: %s', exc) if si: __salt__['vsphere.disconnect'](si) if not __opts__['test']: ret['result'] = False ret.update({'comment': exc.strerror, 'result': False if not __opts__['test'] else None}) return ret if not changes_required: # We have no changes ret.update({'comment': ('Default VSAN policy in vCenter ' '\'{0}\' is correctly configured. ' 'Nothing to be done.'.format(vcenter)), 'result': True}) else: ret.update({ 'comment': '\n'.join(comments), 'changes': changes, 'result': None if __opts__['test'] else True, }) return ret
[ "def", "default_vsan_policy_configured", "(", "name", ",", "policy", ")", ":", "# TODO Refactor when recurse_differ supports list_differ", "# It's going to make the whole thing much easier", "policy_copy", "=", "copy", ".", "deepcopy", "(", "policy", ")", "proxy_type", "=", "__salt__", "[", "'vsphere.get_proxy_type'", "]", "(", ")", "log", ".", "trace", "(", "'proxy_type = %s'", ",", "proxy_type", ")", "# All allowed proxies have a shim execution module with the same", "# name which implementes a get_details function", "# All allowed proxies have a vcenter detail", "vcenter", "=", "__salt__", "[", "'{0}.get_details'", ".", "format", "(", "proxy_type", ")", "]", "(", ")", "[", "'vcenter'", "]", "log", ".", "info", "(", "'Running %s on vCenter \\'%s\\''", ",", "name", ",", "vcenter", ")", "log", ".", "trace", "(", "'policy = %s'", ",", "policy", ")", "changes_required", "=", "False", "ret", "=", "{", "'name'", ":", "name", ",", "'changes'", ":", "{", "}", ",", "'result'", ":", "None", ",", "'comment'", ":", "None", "}", "comments", "=", "[", "]", "changes", "=", "{", "}", "changes_required", "=", "False", "si", "=", "None", "try", ":", "#TODO policy schema validation", "si", "=", "__salt__", "[", "'vsphere.get_service_instance_via_proxy'", "]", "(", ")", "current_policy", "=", "__salt__", "[", "'vsphere.list_default_vsan_policy'", "]", "(", "si", ")", "log", ".", "trace", "(", "'current_policy = %s'", ",", "current_policy", ")", "# Building all diffs between the current and expected policy", "# XXX We simplify the comparison by assuming we have at most 1", "# sub_profile", "if", "policy", ".", "get", "(", "'subprofiles'", ")", ":", "if", "len", "(", "policy", "[", "'subprofiles'", "]", ")", ">", "1", ":", "raise", "ArgumentValueError", "(", "'Multiple sub_profiles ({0}) are not '", "'supported in the input policy'", ")", "subprofile", "=", "policy", "[", "'subprofiles'", "]", "[", "0", "]", "current_subprofile", "=", "current_policy", "[", "'subprofiles'", "]", "[", "0", "]", "capabilities_differ", "=", "list_diff", "(", "current_subprofile", "[", "'capabilities'", "]", ",", "subprofile", ".", "get", "(", "'capabilities'", ",", "[", "]", ")", ",", "key", "=", "'id'", ")", "del", "policy", "[", "'subprofiles'", "]", "if", "subprofile", ".", "get", "(", "'capabilities'", ")", ":", "del", "subprofile", "[", "'capabilities'", "]", "del", "current_subprofile", "[", "'capabilities'", "]", "# Get the subprofile diffs without the capability keys", "subprofile_differ", "=", "recursive_diff", "(", "current_subprofile", ",", "dict", "(", "subprofile", ")", ")", "del", "current_policy", "[", "'subprofiles'", "]", "policy_differ", "=", "recursive_diff", "(", "current_policy", ",", "policy", ")", "if", "policy_differ", ".", "diffs", "or", "capabilities_differ", ".", "diffs", "or", "subprofile_differ", ".", "diffs", ":", "if", "'name'", "in", "policy_differ", ".", "new_values", "or", "'description'", "in", "policy_differ", ".", "new_values", ":", "raise", "ArgumentValueError", "(", "'\\'name\\' and \\'description\\' of the default VSAN policy '", "'cannot be updated'", ")", "changes_required", "=", "True", "if", "__opts__", "[", "'test'", "]", ":", "str_changes", "=", "[", "]", "if", "policy_differ", ".", "diffs", ":", "str_changes", ".", "extend", "(", "[", "change", "for", "change", "in", "policy_differ", ".", "changes_str", ".", "split", "(", "'\\n'", ")", "]", ")", "if", "subprofile_differ", ".", "diffs", "or", "capabilities_differ", ".", "diffs", ":", "str_changes", ".", "append", "(", "'subprofiles:'", ")", "if", "subprofile_differ", ".", "diffs", ":", "str_changes", ".", "extend", "(", "[", "' {0}'", ".", "format", "(", "change", ")", "for", "change", "in", "subprofile_differ", ".", "changes_str", ".", "split", "(", "'\\n'", ")", "]", ")", "if", "capabilities_differ", ".", "diffs", ":", "str_changes", ".", "append", "(", "' capabilities:'", ")", "str_changes", ".", "extend", "(", "[", "' {0}'", ".", "format", "(", "change", ")", "for", "change", "in", "capabilities_differ", ".", "changes_str2", ".", "split", "(", "'\\n'", ")", "]", ")", "comments", ".", "append", "(", "'State {0} will update the default VSAN policy on '", "'vCenter \\'{1}\\':\\n{2}'", "''", ".", "format", "(", "name", ",", "vcenter", ",", "'\\n'", ".", "join", "(", "str_changes", ")", ")", ")", "else", ":", "__salt__", "[", "'vsphere.update_storage_policy'", "]", "(", "policy", "=", "current_policy", "[", "'name'", "]", ",", "policy_dict", "=", "policy_copy", ",", "service_instance", "=", "si", ")", "comments", ".", "append", "(", "'Updated the default VSAN policy in vCenter '", "'\\'{0}\\''", ".", "format", "(", "vcenter", ")", ")", "log", ".", "info", "(", "comments", "[", "-", "1", "]", ")", "new_values", "=", "policy_differ", ".", "new_values", "new_values", "[", "'subprofiles'", "]", "=", "[", "subprofile_differ", ".", "new_values", "]", "new_values", "[", "'subprofiles'", "]", "[", "0", "]", "[", "'capabilities'", "]", "=", "capabilities_differ", ".", "new_values", "if", "not", "new_values", "[", "'subprofiles'", "]", "[", "0", "]", "[", "'capabilities'", "]", ":", "del", "new_values", "[", "'subprofiles'", "]", "[", "0", "]", "[", "'capabilities'", "]", "if", "not", "new_values", "[", "'subprofiles'", "]", "[", "0", "]", ":", "del", "new_values", "[", "'subprofiles'", "]", "old_values", "=", "policy_differ", ".", "old_values", "old_values", "[", "'subprofiles'", "]", "=", "[", "subprofile_differ", ".", "old_values", "]", "old_values", "[", "'subprofiles'", "]", "[", "0", "]", "[", "'capabilities'", "]", "=", "capabilities_differ", ".", "old_values", "if", "not", "old_values", "[", "'subprofiles'", "]", "[", "0", "]", "[", "'capabilities'", "]", ":", "del", "old_values", "[", "'subprofiles'", "]", "[", "0", "]", "[", "'capabilities'", "]", "if", "not", "old_values", "[", "'subprofiles'", "]", "[", "0", "]", ":", "del", "old_values", "[", "'subprofiles'", "]", "changes", ".", "update", "(", "{", "'default_vsan_policy'", ":", "{", "'new'", ":", "new_values", ",", "'old'", ":", "old_values", "}", "}", ")", "log", ".", "trace", "(", "changes", ")", "__salt__", "[", "'vsphere.disconnect'", "]", "(", "si", ")", "except", "CommandExecutionError", "as", "exc", ":", "log", ".", "error", "(", "'Error: %s'", ",", "exc", ")", "if", "si", ":", "__salt__", "[", "'vsphere.disconnect'", "]", "(", "si", ")", "if", "not", "__opts__", "[", "'test'", "]", ":", "ret", "[", "'result'", "]", "=", "False", "ret", ".", "update", "(", "{", "'comment'", ":", "exc", ".", "strerror", ",", "'result'", ":", "False", "if", "not", "__opts__", "[", "'test'", "]", "else", "None", "}", ")", "return", "ret", "if", "not", "changes_required", ":", "# We have no changes", "ret", ".", "update", "(", "{", "'comment'", ":", "(", "'Default VSAN policy in vCenter '", "'\\'{0}\\' is correctly configured. '", "'Nothing to be done.'", ".", "format", "(", "vcenter", ")", ")", ",", "'result'", ":", "True", "}", ")", "else", ":", "ret", ".", "update", "(", "{", "'comment'", ":", "'\\n'", ".", "join", "(", "comments", ")", ",", "'changes'", ":", "changes", ",", "'result'", ":", "None", "if", "__opts__", "[", "'test'", "]", "else", "True", ",", "}", ")", "return", "ret" ]
45.471014
17.688406
def _open_ftp(self): # type: () -> FTP """Open an ftp object for the file.""" ftp = self.fs._open_ftp() ftp.voidcmd(str("TYPE I")) return ftp
[ "def", "_open_ftp", "(", "self", ")", ":", "# type: () -> FTP", "ftp", "=", "self", ".", "fs", ".", "_open_ftp", "(", ")", "ftp", ".", "voidcmd", "(", "str", "(", "\"TYPE I\"", ")", ")", "return", "ftp" ]
29.333333
11.666667
def construct_zernike_polynomials(x, y, zernike_indexes, mask=None, weight=None): """Return the zerike polynomials for all objects in an image x - the X distance of a point from the center of its object y - the Y distance of a point from the center of its object zernike_indexes - an Nx2 array of the Zernike polynomials to be computed. mask - a mask with same shape as X and Y of the points to consider weight - weightings of points with the same shape as X and Y (default weight on each point is 1). returns a height x width x N array of complex numbers which are the e^i portion of the sine and cosine of the Zernikes """ if x.shape != y.shape: raise ValueError("X and Y must have the same shape") if mask is None: pass elif mask.shape != x.shape: raise ValueError("The mask must have the same shape as X and Y") else: x = x[mask] y = y[mask] if weight is not None: weight = weight[mask] lut = construct_zernike_lookuptable(zernike_indexes) # precompute poly. coeffs. nzernikes = zernike_indexes.shape[0] # compute radii r_square = np.square(x) # r_square = x**2 np.add(r_square, np.square(y), out=r_square) # r_square = x**2 + y**2 # z = y + 1j*x # each Zernike polynomial is poly(r)*(r**m * np.exp(1j*m*phi)) == # poly(r)*(y + 1j*x)**m z = np.empty(x.shape, np.complex) np.copyto(z.real, y) np.copyto(z.imag, x) # preallocate buffers s = np.empty_like(x) zf = np.zeros((nzernikes,) + x.shape, np.complex) z_pows = {} for idx, (n, m) in enumerate(zernike_indexes): s[:]=0 if not m in z_pows: if m == 0: z_pows[m] = np.complex(1.0) else: z_pows[m] = z if m == 1 else (z ** m) z_pow = z_pows[m] # use Horner scheme for k in range((n-m)//2+1): s *= r_square s += lut[idx, k] s[r_square>1]=0 if weight is not None: s *= weight.astype(s.dtype) if m == 0: np.copyto(zf[idx], s) # zf[idx] = s else: np.multiply(s, z_pow, out=zf[idx]) # zf[idx] = s*exp_term if mask is None: result = zf.transpose( tuple(range(1, 1+x.ndim)) + (0, )) else: result = np.zeros( mask.shape + (nzernikes,), np.complex) result[mask] = zf.transpose( tuple(range(1, 1 + x.ndim)) + (0, )) return result
[ "def", "construct_zernike_polynomials", "(", "x", ",", "y", ",", "zernike_indexes", ",", "mask", "=", "None", ",", "weight", "=", "None", ")", ":", "if", "x", ".", "shape", "!=", "y", ".", "shape", ":", "raise", "ValueError", "(", "\"X and Y must have the same shape\"", ")", "if", "mask", "is", "None", ":", "pass", "elif", "mask", ".", "shape", "!=", "x", ".", "shape", ":", "raise", "ValueError", "(", "\"The mask must have the same shape as X and Y\"", ")", "else", ":", "x", "=", "x", "[", "mask", "]", "y", "=", "y", "[", "mask", "]", "if", "weight", "is", "not", "None", ":", "weight", "=", "weight", "[", "mask", "]", "lut", "=", "construct_zernike_lookuptable", "(", "zernike_indexes", ")", "# precompute poly. coeffs.", "nzernikes", "=", "zernike_indexes", ".", "shape", "[", "0", "]", "# compute radii", "r_square", "=", "np", ".", "square", "(", "x", ")", "# r_square = x**2", "np", ".", "add", "(", "r_square", ",", "np", ".", "square", "(", "y", ")", ",", "out", "=", "r_square", ")", "# r_square = x**2 + y**2", "# z = y + 1j*x", "# each Zernike polynomial is poly(r)*(r**m * np.exp(1j*m*phi)) ==", "# poly(r)*(y + 1j*x)**m", "z", "=", "np", ".", "empty", "(", "x", ".", "shape", ",", "np", ".", "complex", ")", "np", ".", "copyto", "(", "z", ".", "real", ",", "y", ")", "np", ".", "copyto", "(", "z", ".", "imag", ",", "x", ")", "# preallocate buffers", "s", "=", "np", ".", "empty_like", "(", "x", ")", "zf", "=", "np", ".", "zeros", "(", "(", "nzernikes", ",", ")", "+", "x", ".", "shape", ",", "np", ".", "complex", ")", "z_pows", "=", "{", "}", "for", "idx", ",", "(", "n", ",", "m", ")", "in", "enumerate", "(", "zernike_indexes", ")", ":", "s", "[", ":", "]", "=", "0", "if", "not", "m", "in", "z_pows", ":", "if", "m", "==", "0", ":", "z_pows", "[", "m", "]", "=", "np", ".", "complex", "(", "1.0", ")", "else", ":", "z_pows", "[", "m", "]", "=", "z", "if", "m", "==", "1", "else", "(", "z", "**", "m", ")", "z_pow", "=", "z_pows", "[", "m", "]", "# use Horner scheme", "for", "k", "in", "range", "(", "(", "n", "-", "m", ")", "//", "2", "+", "1", ")", ":", "s", "*=", "r_square", "s", "+=", "lut", "[", "idx", ",", "k", "]", "s", "[", "r_square", ">", "1", "]", "=", "0", "if", "weight", "is", "not", "None", ":", "s", "*=", "weight", ".", "astype", "(", "s", ".", "dtype", ")", "if", "m", "==", "0", ":", "np", ".", "copyto", "(", "zf", "[", "idx", "]", ",", "s", ")", "# zf[idx] = s", "else", ":", "np", ".", "multiply", "(", "s", ",", "z_pow", ",", "out", "=", "zf", "[", "idx", "]", ")", "# zf[idx] = s*exp_term", "if", "mask", "is", "None", ":", "result", "=", "zf", ".", "transpose", "(", "tuple", "(", "range", "(", "1", ",", "1", "+", "x", ".", "ndim", ")", ")", "+", "(", "0", ",", ")", ")", "else", ":", "result", "=", "np", ".", "zeros", "(", "mask", ".", "shape", "+", "(", "nzernikes", ",", ")", ",", "np", ".", "complex", ")", "result", "[", "mask", "]", "=", "zf", ".", "transpose", "(", "tuple", "(", "range", "(", "1", ",", "1", "+", "x", ".", "ndim", ")", ")", "+", "(", "0", ",", ")", ")", "return", "result" ]
37.892308
19.384615
def connect_post_namespaced_pod_exec(self, name, namespace, **kwargs): # noqa: E501 """connect_post_namespaced_pod_exec # noqa: E501 connect POST requests to exec of Pod # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_post_namespaced_pod_exec(name, namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PodExecOptions (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str command: Command is the remote command to execute. argv array. Not executed within a shell. :param str container: Container in which to execute the command. Defaults to only container if there is only one container in the pod. :param bool stderr: Redirect the standard error stream of the pod for this call. Defaults to true. :param bool stdin: Redirect the standard input stream of the pod for this call. Defaults to false. :param bool stdout: Redirect the standard output stream of the pod for this call. Defaults to true. :param bool tty: TTY if true indicates that a tty will be allocated for the exec call. Defaults to false. :return: str If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.connect_post_namespaced_pod_exec_with_http_info(name, namespace, **kwargs) # noqa: E501 else: (data) = self.connect_post_namespaced_pod_exec_with_http_info(name, namespace, **kwargs) # noqa: E501 return data
[ "def", "connect_post_namespaced_pod_exec", "(", "self", ",", "name", ",", "namespace", ",", "*", "*", "kwargs", ")", ":", "# noqa: E501", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'async_req'", ")", ":", "return", "self", ".", "connect_post_namespaced_pod_exec_with_http_info", "(", "name", ",", "namespace", ",", "*", "*", "kwargs", ")", "# noqa: E501", "else", ":", "(", "data", ")", "=", "self", ".", "connect_post_namespaced_pod_exec_with_http_info", "(", "name", ",", "namespace", ",", "*", "*", "kwargs", ")", "# noqa: E501", "return", "data" ]
64.535714
36.892857
def find_first_number(ll): """ Returns nr of first entry parseable to float in ll, None otherwise""" for nr, entry in enumerate(ll): try: float(entry) except (ValueError, TypeError) as e: pass else: return nr return None
[ "def", "find_first_number", "(", "ll", ")", ":", "for", "nr", ",", "entry", "in", "enumerate", "(", "ll", ")", ":", "try", ":", "float", "(", "entry", ")", "except", "(", "ValueError", ",", "TypeError", ")", "as", "e", ":", "pass", "else", ":", "return", "nr", "return", "None" ]
28.3
16.2
async def create_stream_player(self, url, opts=ydl_opts): """Creates a streamer that plays from a URL""" self.current_download_elapsed = 0 self.streamer = await self.vclient.create_ytdl_player(url, ytdl_options=opts, after=self.vafter_ts) self.state = "ready" await self.setup_streamer() self.nowplayinglog.debug(self.streamer.title) self.nowplayingauthorlog.debug(self.streamer.uploader if self.streamer.uploader is not None else "Unknown") self.current_duration = 0 self.is_live = True info = self.streamer.yt.extract_info(url, download=False) self.nowplayingsourcelog.info(api_music.parse_source(info)) play_state = "Streaming" if self.is_live else "Playing" await self.set_topic("{} {}".format(play_state, self.streamer.title)) self.statuslog.debug(play_state)
[ "async", "def", "create_stream_player", "(", "self", ",", "url", ",", "opts", "=", "ydl_opts", ")", ":", "self", ".", "current_download_elapsed", "=", "0", "self", ".", "streamer", "=", "await", "self", ".", "vclient", ".", "create_ytdl_player", "(", "url", ",", "ytdl_options", "=", "opts", ",", "after", "=", "self", ".", "vafter_ts", ")", "self", ".", "state", "=", "\"ready\"", "await", "self", ".", "setup_streamer", "(", ")", "self", ".", "nowplayinglog", ".", "debug", "(", "self", ".", "streamer", ".", "title", ")", "self", ".", "nowplayingauthorlog", ".", "debug", "(", "self", ".", "streamer", ".", "uploader", "if", "self", ".", "streamer", ".", "uploader", "is", "not", "None", "else", "\"Unknown\"", ")", "self", ".", "current_duration", "=", "0", "self", ".", "is_live", "=", "True", "info", "=", "self", ".", "streamer", ".", "yt", ".", "extract_info", "(", "url", ",", "download", "=", "False", ")", "self", ".", "nowplayingsourcelog", ".", "info", "(", "api_music", ".", "parse_source", "(", "info", ")", ")", "play_state", "=", "\"Streaming\"", "if", "self", ".", "is_live", "else", "\"Playing\"", "await", "self", ".", "set_topic", "(", "\"{} {}\"", ".", "format", "(", "play_state", ",", "self", ".", "streamer", ".", "title", ")", ")", "self", ".", "statuslog", ".", "debug", "(", "play_state", ")" ]
43.1
26.1
def build_status(namespace, name, branch='master') -> pin: '''Returns the current status of the build''' return ci_data(namespace, name, branch).get('build_success', None)
[ "def", "build_status", "(", "namespace", ",", "name", ",", "branch", "=", "'master'", ")", "->", "pin", ":", "return", "ci_data", "(", "namespace", ",", "name", ",", "branch", ")", ".", "get", "(", "'build_success'", ",", "None", ")" ]
59
19
def step_interpolation(x, xp, fp, **kwargs): """Multi-dimensional step interpolation. Returns the multi-dimensional step interpolant to a function with given discrete data points (xp, fp), evaluated at x. Note that *N and *M indicate zero or more dimensions. Args: x: An array of shape [*N], the x-coordinates of the interpolated values. xp: An np.array of shape [D], the x-coordinates of the data points, must be increasing. fp: An np.array of shape [D, *M], the y-coordinates of the data points. **kwargs: Unused. Returns: An array of shape [*N, *M], the interpolated values. """ del kwargs # Unused. xp = np.expand_dims(xp, -1) lower, upper = xp[:-1], xp[1:] conditions = (x >= lower) & (x < upper) # Underflow and overflow conditions and values. Values default to fp[0] and # fp[-1] respectively. conditions = np.concatenate([[x < xp[0]], conditions, [x >= xp[-1]]]) values = np.concatenate([[fp[0]], fp]) assert np.all(np.sum(conditions, 0) == 1), 'xp must be increasing.' indices = np.argmax(conditions, 0) return values[indices].astype(np.float32)
[ "def", "step_interpolation", "(", "x", ",", "xp", ",", "fp", ",", "*", "*", "kwargs", ")", ":", "del", "kwargs", "# Unused.", "xp", "=", "np", ".", "expand_dims", "(", "xp", ",", "-", "1", ")", "lower", ",", "upper", "=", "xp", "[", ":", "-", "1", "]", ",", "xp", "[", "1", ":", "]", "conditions", "=", "(", "x", ">=", "lower", ")", "&", "(", "x", "<", "upper", ")", "# Underflow and overflow conditions and values. Values default to fp[0] and", "# fp[-1] respectively.", "conditions", "=", "np", ".", "concatenate", "(", "[", "[", "x", "<", "xp", "[", "0", "]", "]", ",", "conditions", ",", "[", "x", ">=", "xp", "[", "-", "1", "]", "]", "]", ")", "values", "=", "np", ".", "concatenate", "(", "[", "[", "fp", "[", "0", "]", "]", ",", "fp", "]", ")", "assert", "np", ".", "all", "(", "np", ".", "sum", "(", "conditions", ",", "0", ")", "==", "1", ")", ",", "'xp must be increasing.'", "indices", "=", "np", ".", "argmax", "(", "conditions", ",", "0", ")", "return", "values", "[", "indices", "]", ".", "astype", "(", "np", ".", "float32", ")" ]
37.689655
20.965517
def antiscia(self): """ Returns antiscia object. """ obj = self.copy() obj.type = const.OBJ_GENERIC obj.relocate(360 - obj.lon + 180) return obj
[ "def", "antiscia", "(", "self", ")", ":", "obj", "=", "self", ".", "copy", "(", ")", "obj", ".", "type", "=", "const", ".", "OBJ_GENERIC", "obj", ".", "relocate", "(", "360", "-", "obj", ".", "lon", "+", "180", ")", "return", "obj" ]
29.833333
10.5
def _synthesize(self): """ Assigns all placeholder labels to actual values and implicitly declares the ``ro`` register for backwards compatibility. Changed in 1.9: Either all qubits must be defined or all undefined. If qubits are undefined, this method will not help you. You must explicitly call `address_qubits` which will return a new Program. Changed in 1.9: This function now returns ``self`` and updates ``self._synthesized_instructions``. Changed in 2.0: This function will add an instruction to the top of the program to declare a register of bits called ``ro`` if and only if there are no other declarations in the program. :return: This object with the ``_synthesized_instructions`` member set. """ self._synthesized_instructions = instantiate_labels(self._instructions) self._synthesized_instructions = implicitly_declare_ro(self._synthesized_instructions) return self
[ "def", "_synthesize", "(", "self", ")", ":", "self", ".", "_synthesized_instructions", "=", "instantiate_labels", "(", "self", ".", "_instructions", ")", "self", ".", "_synthesized_instructions", "=", "implicitly_declare_ro", "(", "self", ".", "_synthesized_instructions", ")", "return", "self" ]
47.190476
29.285714
def check_arg_compatibility(args: argparse.Namespace): """ Check if some arguments are incompatible with each other. :param args: Arguments as returned by argparse. """ if args.lhuc is not None: # Actually this check is a bit too strict check_condition(args.encoder != C.CONVOLUTION_TYPE or args.decoder != C.CONVOLUTION_TYPE, "LHUC is not supported for convolutional models yet.") check_condition(args.decoder != C.TRANSFORMER_TYPE or C.LHUC_STATE_INIT not in args.lhuc, "The %s options only applies to RNN models" % C.LHUC_STATE_INIT) if args.decoder_only: check_condition(args.decoder != C.TRANSFORMER_TYPE and args.decoder != C.CONVOLUTION_TYPE, "Decoder pre-training currently supports RNN decoders only.")
[ "def", "check_arg_compatibility", "(", "args", ":", "argparse", ".", "Namespace", ")", ":", "if", "args", ".", "lhuc", "is", "not", "None", ":", "# Actually this check is a bit too strict", "check_condition", "(", "args", ".", "encoder", "!=", "C", ".", "CONVOLUTION_TYPE", "or", "args", ".", "decoder", "!=", "C", ".", "CONVOLUTION_TYPE", ",", "\"LHUC is not supported for convolutional models yet.\"", ")", "check_condition", "(", "args", ".", "decoder", "!=", "C", ".", "TRANSFORMER_TYPE", "or", "C", ".", "LHUC_STATE_INIT", "not", "in", "args", ".", "lhuc", ",", "\"The %s options only applies to RNN models\"", "%", "C", ".", "LHUC_STATE_INIT", ")", "if", "args", ".", "decoder_only", ":", "check_condition", "(", "args", ".", "decoder", "!=", "C", ".", "TRANSFORMER_TYPE", "and", "args", ".", "decoder", "!=", "C", ".", "CONVOLUTION_TYPE", ",", "\"Decoder pre-training currently supports RNN decoders only.\"", ")" ]
48.588235
29.647059
def _handle_offset_response(self, response): """ Handle responses to both OffsetRequest and OffsetFetchRequest, since they are similar enough. :param response: A tuple of a single OffsetFetchResponse or OffsetResponse """ # Got a response, clear our outstanding request deferred self._request_d = None # Successful request, reset our retry delay, count, etc self.retry_delay = self.retry_init_delay self._fetch_attempt_count = 1 response = response[0] if hasattr(response, 'offsets'): # It's a response to an OffsetRequest self._fetch_offset = response.offsets[0] else: # It's a response to an OffsetFetchRequest # Make sure we got a valid offset back. Kafka uses -1 to indicate # no committed offset was retrieved if response.offset == OFFSET_NOT_COMMITTED: self._fetch_offset = OFFSET_EARLIEST else: self._fetch_offset = response.offset + 1 self._last_committed_offset = response.offset self._do_fetch()
[ "def", "_handle_offset_response", "(", "self", ",", "response", ")", ":", "# Got a response, clear our outstanding request deferred", "self", ".", "_request_d", "=", "None", "# Successful request, reset our retry delay, count, etc", "self", ".", "retry_delay", "=", "self", ".", "retry_init_delay", "self", ".", "_fetch_attempt_count", "=", "1", "response", "=", "response", "[", "0", "]", "if", "hasattr", "(", "response", ",", "'offsets'", ")", ":", "# It's a response to an OffsetRequest", "self", ".", "_fetch_offset", "=", "response", ".", "offsets", "[", "0", "]", "else", ":", "# It's a response to an OffsetFetchRequest", "# Make sure we got a valid offset back. Kafka uses -1 to indicate", "# no committed offset was retrieved", "if", "response", ".", "offset", "==", "OFFSET_NOT_COMMITTED", ":", "self", ".", "_fetch_offset", "=", "OFFSET_EARLIEST", "else", ":", "self", ".", "_fetch_offset", "=", "response", ".", "offset", "+", "1", "self", ".", "_last_committed_offset", "=", "response", ".", "offset", "self", ".", "_do_fetch", "(", ")" ]
39.172414
17.241379
def command_getkeys(self, command, *args, encoding='utf-8'): """Extract keys given a full Redis command.""" return self.execute(b'COMMAND', b'GETKEYS', command, *args, encoding=encoding)
[ "def", "command_getkeys", "(", "self", ",", "command", ",", "*", "args", ",", "encoding", "=", "'utf-8'", ")", ":", "return", "self", ".", "execute", "(", "b'COMMAND'", ",", "b'GETKEYS'", ",", "command", ",", "*", "args", ",", "encoding", "=", "encoding", ")" ]
56.75
13.25
def get_object(self, cat, **kwargs): """ This method is used for retrieving objects from facebook. "cat", the category, must be passed. When cat is "single", pass the "id "and desired "fields" of the single object. If the cat is "multiple", only pass the "ids" of the objects to be fetched. """ if 'id' not in kwargs.keys(): kwargs['id']='' res=request.get_object_cat1(self.con, self.token, cat, kwargs) return res
[ "def", "get_object", "(", "self", ",", "cat", ",", "*", "*", "kwargs", ")", ":", "if", "'id'", "not", "in", "kwargs", ".", "keys", "(", ")", ":", "kwargs", "[", "'id'", "]", "=", "''", "res", "=", "request", ".", "get_object_cat1", "(", "self", ".", "con", ",", "self", ".", "token", ",", "cat", ",", "kwargs", ")", "return", "res" ]
56
23.8
def evaluate(self, test_file, save_dir=None, logger=None, num_buckets_test=10, test_batch_size=5000): """Run evaluation on test set Parameters ---------- test_file : str path to test set save_dir : str where to store intermediate results and log logger : logging.logger logger for printing results num_buckets_test : int number of clusters for sentences from test set test_batch_size : int batch size of test set Returns ------- tuple UAS, LAS """ parser = self._parser vocab = self._vocab with mx.Context(mxnet_prefer_gpu()): UAS, LAS, speed = evaluate_official_script(parser, vocab, num_buckets_test, test_batch_size, test_file, os.path.join(save_dir, 'valid_tmp')) if logger is None: logger = init_logger(save_dir, 'test.log') logger.info('Test: UAS %.2f%% LAS %.2f%% %d sents/s' % (UAS, LAS, speed)) return UAS, LAS
[ "def", "evaluate", "(", "self", ",", "test_file", ",", "save_dir", "=", "None", ",", "logger", "=", "None", ",", "num_buckets_test", "=", "10", ",", "test_batch_size", "=", "5000", ")", ":", "parser", "=", "self", ".", "_parser", "vocab", "=", "self", ".", "_vocab", "with", "mx", ".", "Context", "(", "mxnet_prefer_gpu", "(", ")", ")", ":", "UAS", ",", "LAS", ",", "speed", "=", "evaluate_official_script", "(", "parser", ",", "vocab", ",", "num_buckets_test", ",", "test_batch_size", ",", "test_file", ",", "os", ".", "path", ".", "join", "(", "save_dir", ",", "'valid_tmp'", ")", ")", "if", "logger", "is", "None", ":", "logger", "=", "init_logger", "(", "save_dir", ",", "'test.log'", ")", "logger", ".", "info", "(", "'Test: UAS %.2f%% LAS %.2f%% %d sents/s'", "%", "(", "UAS", ",", "LAS", ",", "speed", ")", ")", "return", "UAS", ",", "LAS" ]
35.064516
21.903226
def _add_edge(self, idx, from_idx, from_lvec, to_idx, to_lvec): """ Add information about an edge linking two critical points. This actually describes two edges: from_idx ------ idx ------ to_idx However, in practice, from_idx and to_idx will typically be atom nuclei, with the center node (idx) referring to a bond critical point. Thus, it will be more convenient to model this as a single edge linking nuclei with the properties of the bond critical point stored as an edge attribute. :param idx: index of node :param from_idx: from index of node :param from_lvec: vector of lattice image the from node is in as tuple of ints :param to_idx: to index of node :param to_lvec: vector of lattice image the to node is in as tuple of ints :return: """ self.edges[idx] = {'from_idx': from_idx, 'from_lvec': from_lvec, 'to_idx': to_idx, 'to_lvec': to_lvec}
[ "def", "_add_edge", "(", "self", ",", "idx", ",", "from_idx", ",", "from_lvec", ",", "to_idx", ",", "to_lvec", ")", ":", "self", ".", "edges", "[", "idx", "]", "=", "{", "'from_idx'", ":", "from_idx", ",", "'from_lvec'", ":", "from_lvec", ",", "'to_idx'", ":", "to_idx", ",", "'to_lvec'", ":", "to_lvec", "}" ]
40.4
20.88
def to_pil_image(pic, mode=None): """Convert a tensor or an ndarray to PIL Image. See :class:`~torchvision.transforms.ToPILImage` for more details. Args: pic (Tensor or numpy.ndarray): Image to be converted to PIL Image. mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes Returns: PIL Image: Image converted to PIL Image. """ if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)): raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic))) elif isinstance(pic, torch.Tensor): if pic.ndimension() not in {2, 3}: raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension())) elif pic.ndimension() == 2: # if 2D image, add channel dimension (CHW) pic = pic.unsqueeze(0) elif isinstance(pic, np.ndarray): if pic.ndim not in {2, 3}: raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim)) elif pic.ndim == 2: # if 2D image, add channel dimension (HWC) pic = np.expand_dims(pic, 2) npimg = pic if isinstance(pic, torch.FloatTensor): pic = pic.mul(255).byte() if isinstance(pic, torch.Tensor): npimg = np.transpose(pic.numpy(), (1, 2, 0)) if not isinstance(npimg, np.ndarray): raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' + 'not {}'.format(type(npimg))) if npimg.shape[2] == 1: expected_mode = None npimg = npimg[:, :, 0] if npimg.dtype == np.uint8: expected_mode = 'L' elif npimg.dtype == np.int16: expected_mode = 'I;16' elif npimg.dtype == np.int32: expected_mode = 'I' elif npimg.dtype == np.float32: expected_mode = 'F' if mode is not None and mode != expected_mode: raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}" .format(mode, np.dtype, expected_mode)) mode = expected_mode elif npimg.shape[2] == 2: permitted_2_channel_modes = ['LA'] if mode is not None and mode not in permitted_2_channel_modes: raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes)) if mode is None and npimg.dtype == np.uint8: mode = 'LA' elif npimg.shape[2] == 4: permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX'] if mode is not None and mode not in permitted_4_channel_modes: raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes)) if mode is None and npimg.dtype == np.uint8: mode = 'RGBA' else: permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV'] if mode is not None and mode not in permitted_3_channel_modes: raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes)) if mode is None and npimg.dtype == np.uint8: mode = 'RGB' if mode is None: raise TypeError('Input type {} is not supported'.format(npimg.dtype)) return Image.fromarray(npimg, mode=mode)
[ "def", "to_pil_image", "(", "pic", ",", "mode", "=", "None", ")", ":", "if", "not", "(", "isinstance", "(", "pic", ",", "torch", ".", "Tensor", ")", "or", "isinstance", "(", "pic", ",", "np", ".", "ndarray", ")", ")", ":", "raise", "TypeError", "(", "'pic should be Tensor or ndarray. Got {}.'", ".", "format", "(", "type", "(", "pic", ")", ")", ")", "elif", "isinstance", "(", "pic", ",", "torch", ".", "Tensor", ")", ":", "if", "pic", ".", "ndimension", "(", ")", "not", "in", "{", "2", ",", "3", "}", ":", "raise", "ValueError", "(", "'pic should be 2/3 dimensional. Got {} dimensions.'", ".", "format", "(", "pic", ".", "ndimension", "(", ")", ")", ")", "elif", "pic", ".", "ndimension", "(", ")", "==", "2", ":", "# if 2D image, add channel dimension (CHW)", "pic", "=", "pic", ".", "unsqueeze", "(", "0", ")", "elif", "isinstance", "(", "pic", ",", "np", ".", "ndarray", ")", ":", "if", "pic", ".", "ndim", "not", "in", "{", "2", ",", "3", "}", ":", "raise", "ValueError", "(", "'pic should be 2/3 dimensional. Got {} dimensions.'", ".", "format", "(", "pic", ".", "ndim", ")", ")", "elif", "pic", ".", "ndim", "==", "2", ":", "# if 2D image, add channel dimension (HWC)", "pic", "=", "np", ".", "expand_dims", "(", "pic", ",", "2", ")", "npimg", "=", "pic", "if", "isinstance", "(", "pic", ",", "torch", ".", "FloatTensor", ")", ":", "pic", "=", "pic", ".", "mul", "(", "255", ")", ".", "byte", "(", ")", "if", "isinstance", "(", "pic", ",", "torch", ".", "Tensor", ")", ":", "npimg", "=", "np", ".", "transpose", "(", "pic", ".", "numpy", "(", ")", ",", "(", "1", ",", "2", ",", "0", ")", ")", "if", "not", "isinstance", "(", "npimg", ",", "np", ".", "ndarray", ")", ":", "raise", "TypeError", "(", "'Input pic must be a torch.Tensor or NumPy ndarray, '", "+", "'not {}'", ".", "format", "(", "type", "(", "npimg", ")", ")", ")", "if", "npimg", ".", "shape", "[", "2", "]", "==", "1", ":", "expected_mode", "=", "None", "npimg", "=", "npimg", "[", ":", ",", ":", ",", "0", "]", "if", "npimg", ".", "dtype", "==", "np", ".", "uint8", ":", "expected_mode", "=", "'L'", "elif", "npimg", ".", "dtype", "==", "np", ".", "int16", ":", "expected_mode", "=", "'I;16'", "elif", "npimg", ".", "dtype", "==", "np", ".", "int32", ":", "expected_mode", "=", "'I'", "elif", "npimg", ".", "dtype", "==", "np", ".", "float32", ":", "expected_mode", "=", "'F'", "if", "mode", "is", "not", "None", "and", "mode", "!=", "expected_mode", ":", "raise", "ValueError", "(", "\"Incorrect mode ({}) supplied for input type {}. Should be {}\"", ".", "format", "(", "mode", ",", "np", ".", "dtype", ",", "expected_mode", ")", ")", "mode", "=", "expected_mode", "elif", "npimg", ".", "shape", "[", "2", "]", "==", "2", ":", "permitted_2_channel_modes", "=", "[", "'LA'", "]", "if", "mode", "is", "not", "None", "and", "mode", "not", "in", "permitted_2_channel_modes", ":", "raise", "ValueError", "(", "\"Only modes {} are supported for 2D inputs\"", ".", "format", "(", "permitted_2_channel_modes", ")", ")", "if", "mode", "is", "None", "and", "npimg", ".", "dtype", "==", "np", ".", "uint8", ":", "mode", "=", "'LA'", "elif", "npimg", ".", "shape", "[", "2", "]", "==", "4", ":", "permitted_4_channel_modes", "=", "[", "'RGBA'", ",", "'CMYK'", ",", "'RGBX'", "]", "if", "mode", "is", "not", "None", "and", "mode", "not", "in", "permitted_4_channel_modes", ":", "raise", "ValueError", "(", "\"Only modes {} are supported for 4D inputs\"", ".", "format", "(", "permitted_4_channel_modes", ")", ")", "if", "mode", "is", "None", "and", "npimg", ".", "dtype", "==", "np", ".", "uint8", ":", "mode", "=", "'RGBA'", "else", ":", "permitted_3_channel_modes", "=", "[", "'RGB'", ",", "'YCbCr'", ",", "'HSV'", "]", "if", "mode", "is", "not", "None", "and", "mode", "not", "in", "permitted_3_channel_modes", ":", "raise", "ValueError", "(", "\"Only modes {} are supported for 3D inputs\"", ".", "format", "(", "permitted_3_channel_modes", ")", ")", "if", "mode", "is", "None", "and", "npimg", ".", "dtype", "==", "np", ".", "uint8", ":", "mode", "=", "'RGB'", "if", "mode", "is", "None", ":", "raise", "TypeError", "(", "'Input type {} is not supported'", ".", "format", "(", "npimg", ".", "dtype", ")", ")", "return", "Image", ".", "fromarray", "(", "npimg", ",", "mode", "=", "mode", ")" ]
39.164706
23.611765
def ratio(self, ratio): """ The split ratio of the corporate action - i.e. the ratio of new shares to old shares :param ratio: A tuple representing (original_count, new_count). For example (1, 2) is a doubling stock split. (3, 1) is a 3:1 reverse stock split. :return: """ if isinstance(ratio, tuple): self._ratio = ratio else: raise TypeError('Invalid ratio type: %s' % type(ratio))
[ "def", "ratio", "(", "self", ",", "ratio", ")", ":", "if", "isinstance", "(", "ratio", ",", "tuple", ")", ":", "self", ".", "_ratio", "=", "ratio", "else", ":", "raise", "TypeError", "(", "'Invalid ratio type: %s'", "%", "type", "(", "ratio", ")", ")" ]
42
22
def create_stack(Name=None, Region=None, VpcId=None, Attributes=None, ServiceRoleArn=None, DefaultInstanceProfileArn=None, DefaultOs=None, HostnameTheme=None, DefaultAvailabilityZone=None, DefaultSubnetId=None, CustomJson=None, ConfigurationManager=None, ChefConfiguration=None, UseCustomCookbooks=None, UseOpsworksSecurityGroups=None, CustomCookbooksSource=None, DefaultSshKeyName=None, DefaultRootDeviceType=None, AgentVersion=None): """ Creates a new stack. For more information, see Create a New Stack . See also: AWS API Documentation :example: response = client.create_stack( Name='string', Region='string', VpcId='string', Attributes={ 'string': 'string' }, ServiceRoleArn='string', DefaultInstanceProfileArn='string', DefaultOs='string', HostnameTheme='string', DefaultAvailabilityZone='string', DefaultSubnetId='string', CustomJson='string', ConfigurationManager={ 'Name': 'string', 'Version': 'string' }, ChefConfiguration={ 'ManageBerkshelf': True|False, 'BerkshelfVersion': 'string' }, UseCustomCookbooks=True|False, UseOpsworksSecurityGroups=True|False, CustomCookbooksSource={ 'Type': 'git'|'svn'|'archive'|'s3', 'Url': 'string', 'Username': 'string', 'Password': 'string', 'SshKey': 'string', 'Revision': 'string' }, DefaultSshKeyName='string', DefaultRootDeviceType='ebs'|'instance-store', AgentVersion='string' ) :type Name: string :param Name: [REQUIRED] The stack name. :type Region: string :param Region: [REQUIRED] The stack's AWS region, such as 'ap-south-1'. For more information about Amazon regions, see Regions and Endpoints . :type VpcId: string :param VpcId: The ID of the VPC that the stack is to be launched into. The VPC must be in the stack's region. All instances are launched into this VPC. You cannot change the ID later. If your account supports EC2-Classic, the default value is no VPC . If your account does not support EC2-Classic, the default value is the default VPC for the specified region. If the VPC ID corresponds to a default VPC and you have specified either the DefaultAvailabilityZone or the DefaultSubnetId parameter only, AWS OpsWorks Stacks infers the value of the other parameter. If you specify neither parameter, AWS OpsWorks Stacks sets these parameters to the first valid Availability Zone for the specified region and the corresponding default VPC subnet ID, respectively. If you specify a nondefault VPC ID, note the following: It must belong to a VPC in your account that is in the specified region. You must specify a value for DefaultSubnetId . For more information on how to use AWS OpsWorks Stacks with a VPC, see Running a Stack in a VPC . For more information on default VPC and EC2-Classic, see Supported Platforms . :type Attributes: dict :param Attributes: One or more user-defined key-value pairs to be added to the stack attributes. (string) -- (string) -- :type ServiceRoleArn: string :param ServiceRoleArn: [REQUIRED] The stack's AWS Identity and Access Management (IAM) role, which allows AWS OpsWorks Stacks to work with AWS resources on your behalf. You must set this parameter to the Amazon Resource Name (ARN) for an existing IAM role. For more information about IAM ARNs, see Using Identifiers . :type DefaultInstanceProfileArn: string :param DefaultInstanceProfileArn: [REQUIRED] The Amazon Resource Name (ARN) of an IAM profile that is the default profile for all of the stack's EC2 instances. For more information about IAM ARNs, see Using Identifiers . :type DefaultOs: string :param DefaultOs: The stack's default operating system, which is installed on every instance unless you specify a different operating system when you create the instance. You can specify one of the following. A supported Linux operating system: An Amazon Linux version, such as Amazon Linux 2016.09 , Amazon Linux 2016.03 , Amazon Linux 2015.09 , or Amazon Linux 2015.03 . A supported Ubuntu operating system, such as Ubuntu 16.04 LTS , Ubuntu 14.04 LTS , or Ubuntu 12.04 LTS . CentOS Linux 7 Red Hat Enterprise Linux 7 A supported Windows operating system, such as Microsoft Windows Server 2012 R2 Base , Microsoft Windows Server 2012 R2 with SQL Server Express , Microsoft Windows Server 2012 R2 with SQL Server Standard , or Microsoft Windows Server 2012 R2 with SQL Server Web . A custom AMI: Custom . You specify the custom AMI you want to use when you create instances. For more information, see Using Custom AMIs . The default option is the current Amazon Linux version. For more information on the supported operating systems, see AWS OpsWorks Stacks Operating Systems . :type HostnameTheme: string :param HostnameTheme: The stack's host name theme, with spaces replaced by underscores. The theme is used to generate host names for the stack's instances. By default, HostnameTheme is set to Layer_Dependent , which creates host names by appending integers to the layer's short name. The other themes are: Baked_Goods Clouds Europe_Cities Fruits Greek_Deities Legendary_creatures_from_Japan Planets_and_Moons Roman_Deities Scottish_Islands US_Cities Wild_Cats To obtain a generated host name, call GetHostNameSuggestion , which returns a host name based on the current theme. :type DefaultAvailabilityZone: string :param DefaultAvailabilityZone: The stack's default Availability Zone, which must be in the specified region. For more information, see Regions and Endpoints . If you also specify a value for DefaultSubnetId , the subnet must be in the same zone. For more information, see the VpcId parameter description. :type DefaultSubnetId: string :param DefaultSubnetId: The stack's default VPC subnet ID. This parameter is required if you specify a value for the VpcId parameter. All instances are launched into this subnet unless you specify otherwise when you create the instance. If you also specify a value for DefaultAvailabilityZone , the subnet must be in that zone. For information on default values and when this parameter is required, see the VpcId parameter description. :type CustomJson: string :param CustomJson: A string that contains user-defined, custom JSON. It can be used to override the corresponding default stack configuration attribute values or to pass data to recipes. The string should be in the following format: '{\'key1\': \'value1\', \'key2\': \'value2\',...}' For more information on custom JSON, see Use Custom JSON to Modify the Stack Configuration Attributes . :type ConfigurationManager: dict :param ConfigurationManager: The configuration manager. When you create a stack we recommend that you use the configuration manager to specify the Chef version: 12, 11.10, or 11.4 for Linux stacks, or 12.2 for Windows stacks. The default value for Linux stacks is currently 11.4. Name (string) --The name. This parameter must be set to 'Chef'. Version (string) --The Chef version. This parameter must be set to 12, 11.10, or 11.4 for Linux stacks, and to 12.2 for Windows stacks. The default value for Linux stacks is 11.4. :type ChefConfiguration: dict :param ChefConfiguration: A ChefConfiguration object that specifies whether to enable Berkshelf and the Berkshelf version on Chef 11.10 stacks. For more information, see Create a New Stack . ManageBerkshelf (boolean) --Whether to enable Berkshelf. BerkshelfVersion (string) --The Berkshelf version. :type UseCustomCookbooks: boolean :param UseCustomCookbooks: Whether the stack uses custom cookbooks. :type UseOpsworksSecurityGroups: boolean :param UseOpsworksSecurityGroups: Whether to associate the AWS OpsWorks Stacks built-in security groups with the stack's layers. AWS OpsWorks Stacks provides a standard set of built-in security groups, one for each layer, which are associated with layers by default. With UseOpsworksSecurityGroups you can instead provide your own custom security groups. UseOpsworksSecurityGroups has the following settings: True - AWS OpsWorks Stacks automatically associates the appropriate built-in security group with each layer (default setting). You can associate additional security groups with a layer after you create it, but you cannot delete the built-in security group. False - AWS OpsWorks Stacks does not associate built-in security groups with layers. You must create appropriate EC2 security groups and associate a security group with each layer that you create. However, you can still manually associate a built-in security group with a layer on creation; custom security groups are required only for those layers that need custom settings. For more information, see Create a New Stack . :type CustomCookbooksSource: dict :param CustomCookbooksSource: Contains the information required to retrieve an app or cookbook from a repository. For more information, see Creating Apps or Custom Recipes and Cookbooks . Type (string) --The repository type. Url (string) --The source URL. Username (string) --This parameter depends on the repository type. For Amazon S3 bundles, set Username to the appropriate IAM access key ID. For HTTP bundles, Git repositories, and Subversion repositories, set Username to the user name. Password (string) --When included in a request, the parameter depends on the repository type. For Amazon S3 bundles, set Password to the appropriate IAM secret access key. For HTTP bundles and Subversion repositories, set Password to the password. For more information on how to safely handle IAM credentials, see http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html . In responses, AWS OpsWorks Stacks returns *****FILTERED***** instead of the actual value. SshKey (string) --In requests, the repository's SSH key. In responses, AWS OpsWorks Stacks returns *****FILTERED***** instead of the actual value. Revision (string) --The application's version. AWS OpsWorks Stacks enables you to easily deploy new versions of an application. One of the simplest approaches is to have branches or revisions in your repository that represent different versions that can potentially be deployed. :type DefaultSshKeyName: string :param DefaultSshKeyName: A default Amazon EC2 key pair name. The default value is none. If you specify a key pair name, AWS OpsWorks installs the public key on the instance and you can use the private key with an SSH client to log in to the instance. For more information, see Using SSH to Communicate with an Instance and Managing SSH Access . You can override this setting by specifying a different key pair, or no key pair, when you create an instance . :type DefaultRootDeviceType: string :param DefaultRootDeviceType: The default root device type. This value is the default for all instances in the stack, but you can override it when you create an instance. The default option is instance-store . For more information, see Storage for the Root Device . :type AgentVersion: string :param AgentVersion: The default AWS OpsWorks Stacks agent version. You have the following options: Auto-update - Set this parameter to LATEST . AWS OpsWorks Stacks automatically installs new agent versions on the stack's instances as soon as they are available. Fixed version - Set this parameter to your preferred agent version. To update the agent version, you must edit the stack configuration and specify a new version. AWS OpsWorks Stacks then automatically installs that version on the stack's instances. The default setting is the most recent release of the agent. To specify an agent version, you must use the complete version number, not the abbreviated number shown on the console. For a list of available agent version numbers, call DescribeAgentVersions . AgentVersion cannot be set to Chef 12.2. Note You can also specify an agent version when you create or update an instance, which overrides the stack's default setting. :rtype: dict :return: { 'StackId': 'string' } """ pass
[ "def", "create_stack", "(", "Name", "=", "None", ",", "Region", "=", "None", ",", "VpcId", "=", "None", ",", "Attributes", "=", "None", ",", "ServiceRoleArn", "=", "None", ",", "DefaultInstanceProfileArn", "=", "None", ",", "DefaultOs", "=", "None", ",", "HostnameTheme", "=", "None", ",", "DefaultAvailabilityZone", "=", "None", ",", "DefaultSubnetId", "=", "None", ",", "CustomJson", "=", "None", ",", "ConfigurationManager", "=", "None", ",", "ChefConfiguration", "=", "None", ",", "UseCustomCookbooks", "=", "None", ",", "UseOpsworksSecurityGroups", "=", "None", ",", "CustomCookbooksSource", "=", "None", ",", "DefaultSshKeyName", "=", "None", ",", "DefaultRootDeviceType", "=", "None", ",", "AgentVersion", "=", "None", ")", ":", "pass" ]
71.147541
56.961749
def load_config(self, config=None): ''' loads a config file Parameters: config (str): Optional name of manual config file to load ''' # Read the config file cfgname = (config or self.config_name) cfgname = 'sdsswork' if cfgname is None else cfgname assert isinstance(cfgname, six.string_types), 'config name must be a string' config_name = cfgname if cfgname.endswith('.cfg') else '{0}.cfg'.format(cfgname) self.configfile = os.path.join(self.treedir, 'data', config_name) assert os.path.isfile(self.configfile) is True, 'configfile {0} must exist in the proper directory'.format(self.configfile) self._cfg = SafeConfigParser() try: self._cfg.read(self.configfile.decode('utf-8')) except AttributeError: self._cfg.read(self.configfile) # create the local tree environment self.environ = OrderedDict() self.environ['default'] = self._cfg.defaults() # set the filesystem envvar to sas_base_dir self._file_replace = '@FILESYSTEM@' if self.environ['default']['filesystem'] == self._file_replace: self.environ['default']['filesystem'] = self.sasbasedir
[ "def", "load_config", "(", "self", ",", "config", "=", "None", ")", ":", "# Read the config file", "cfgname", "=", "(", "config", "or", "self", ".", "config_name", ")", "cfgname", "=", "'sdsswork'", "if", "cfgname", "is", "None", "else", "cfgname", "assert", "isinstance", "(", "cfgname", ",", "six", ".", "string_types", ")", ",", "'config name must be a string'", "config_name", "=", "cfgname", "if", "cfgname", ".", "endswith", "(", "'.cfg'", ")", "else", "'{0}.cfg'", ".", "format", "(", "cfgname", ")", "self", ".", "configfile", "=", "os", ".", "path", ".", "join", "(", "self", ".", "treedir", ",", "'data'", ",", "config_name", ")", "assert", "os", ".", "path", ".", "isfile", "(", "self", ".", "configfile", ")", "is", "True", ",", "'configfile {0} must exist in the proper directory'", ".", "format", "(", "self", ".", "configfile", ")", "self", ".", "_cfg", "=", "SafeConfigParser", "(", ")", "try", ":", "self", ".", "_cfg", ".", "read", "(", "self", ".", "configfile", ".", "decode", "(", "'utf-8'", ")", ")", "except", "AttributeError", ":", "self", ".", "_cfg", ".", "read", "(", "self", ".", "configfile", ")", "# create the local tree environment", "self", ".", "environ", "=", "OrderedDict", "(", ")", "self", ".", "environ", "[", "'default'", "]", "=", "self", ".", "_cfg", ".", "defaults", "(", ")", "# set the filesystem envvar to sas_base_dir", "self", ".", "_file_replace", "=", "'@FILESYSTEM@'", "if", "self", ".", "environ", "[", "'default'", "]", "[", "'filesystem'", "]", "==", "self", ".", "_file_replace", ":", "self", ".", "environ", "[", "'default'", "]", "[", "'filesystem'", "]", "=", "self", ".", "sasbasedir" ]
39.967742
24.032258
def nsmap(self): """ Returns the current namespace mapping as a dictionary there are several problems with the map and we try to guess a few things here: 1) a URI can be mapped by many prefixes, so it is to decide which one to take 2) a prefix might map to an empty string (some packers) 3) uri+prefix mappings might be included several times 4) prefix might be empty """ NSMAP = dict() # solve 3) by using a set for k, v in set(self.namespaces): s_prefix = self.sb[k] s_uri = self.sb[v] # Solve 2) & 4) by not including if s_uri != "" and s_prefix != "": # solve 1) by using the last one in the list NSMAP[s_prefix] = s_uri return NSMAP
[ "def", "nsmap", "(", "self", ")", ":", "NSMAP", "=", "dict", "(", ")", "# solve 3) by using a set", "for", "k", ",", "v", "in", "set", "(", "self", ".", "namespaces", ")", ":", "s_prefix", "=", "self", ".", "sb", "[", "k", "]", "s_uri", "=", "self", ".", "sb", "[", "v", "]", "# Solve 2) & 4) by not including", "if", "s_uri", "!=", "\"\"", "and", "s_prefix", "!=", "\"\"", ":", "# solve 1) by using the last one in the list", "NSMAP", "[", "s_prefix", "]", "=", "s_uri", "return", "NSMAP" ]
33.416667
18.75
def on_menu_clear_interpretation(self, event): ''' clear all current interpretations. ''' # delete all previous interpretation for sp in list(self.Data.keys()): del self.Data[sp]['pars'] self.Data[sp]['pars'] = {} self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field'] self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp]['er_specimen_name'] self.Data[sp]['pars']['er_sample_name'] = self.Data[sp]['er_sample_name'] self.Data_samples = {} self.Data_sites = {} self.tmin_box.SetValue("") self.tmax_box.SetValue("") self.clear_boxes() self.draw_figure(self.s)
[ "def", "on_menu_clear_interpretation", "(", "self", ",", "event", ")", ":", "# delete all previous interpretation", "for", "sp", "in", "list", "(", "self", ".", "Data", ".", "keys", "(", ")", ")", ":", "del", "self", ".", "Data", "[", "sp", "]", "[", "'pars'", "]", "self", ".", "Data", "[", "sp", "]", "[", "'pars'", "]", "=", "{", "}", "self", ".", "Data", "[", "sp", "]", "[", "'pars'", "]", "[", "'lab_dc_field'", "]", "=", "self", ".", "Data", "[", "sp", "]", "[", "'lab_dc_field'", "]", "self", ".", "Data", "[", "sp", "]", "[", "'pars'", "]", "[", "'er_specimen_name'", "]", "=", "self", ".", "Data", "[", "sp", "]", "[", "'er_specimen_name'", "]", "self", ".", "Data", "[", "sp", "]", "[", "'pars'", "]", "[", "'er_sample_name'", "]", "=", "self", ".", "Data", "[", "sp", "]", "[", "'er_sample_name'", "]", "self", ".", "Data_samples", "=", "{", "}", "self", ".", "Data_sites", "=", "{", "}", "self", ".", "tmin_box", ".", "SetValue", "(", "\"\"", ")", "self", ".", "tmax_box", ".", "SetValue", "(", "\"\"", ")", "self", ".", "clear_boxes", "(", ")", "self", ".", "draw_figure", "(", "self", ".", "s", ")" ]
39.444444
17.111111
def compare(self, statement_a, statement_b): """ Compare the two input statements. :return: The percent of similarity between the closest synset distance. :rtype: float """ document_a = self.nlp(statement_a.text) document_b = self.nlp(statement_b.text) return document_a.similarity(document_b)
[ "def", "compare", "(", "self", ",", "statement_a", ",", "statement_b", ")", ":", "document_a", "=", "self", ".", "nlp", "(", "statement_a", ".", "text", ")", "document_b", "=", "self", ".", "nlp", "(", "statement_b", ".", "text", ")", "return", "document_a", ".", "similarity", "(", "document_b", ")" ]
31.727273
15
def _get_attributes(schema, location): """Return the schema's children, filtered by location.""" schema = DottedNameResolver(__name__).maybe_resolve(schema) def _filter(attr): if not hasattr(attr, "location"): valid_location = 'body' in location else: valid_location = attr.location in to_list(location) return valid_location return list(filter(_filter, schema().children))
[ "def", "_get_attributes", "(", "schema", ",", "location", ")", ":", "schema", "=", "DottedNameResolver", "(", "__name__", ")", ".", "maybe_resolve", "(", "schema", ")", "def", "_filter", "(", "attr", ")", ":", "if", "not", "hasattr", "(", "attr", ",", "\"location\"", ")", ":", "valid_location", "=", "'body'", "in", "location", "else", ":", "valid_location", "=", "attr", ".", "location", "in", "to_list", "(", "location", ")", "return", "valid_location", "return", "list", "(", "filter", "(", "_filter", ",", "schema", "(", ")", ".", "children", ")", ")" ]
38.666667
17.583333
def create_transaction(self, outputs, fee=None, leftover=None, combine=True, message=None, unspents=None, custom_pushdata=False): # pragma: no cover """Creates a signed P2PKH transaction. :param outputs: A sequence of outputs you wish to send in the form ``(destination, amount, currency)``. The amount can be either an int, float, or string as long as it is a valid input to ``decimal.Decimal``. The currency must be :ref:`supported <supported currencies>`. :type outputs: ``list`` of ``tuple`` :param fee: The number of satoshi per byte to pay to miners. By default Bitcash will poll `<https://bitcoincashfees.earn.com>`_ and use a fee that will allow your transaction to be confirmed as soon as possible. :type fee: ``int`` :param leftover: The destination that will receive any change from the transaction. By default Bitcash will send any change to the same address you sent from. :type leftover: ``str`` :param combine: Whether or not Bitcash should use all available UTXOs to make future transactions smaller and therefore reduce fees. By default Bitcash will consolidate UTXOs. :type combine: ``bool`` :param message: A message to include in the transaction. This will be stored in the blockchain forever. Due to size limits, each message will be stored in chunks of 220 bytes. :type message: ``str`` :param unspents: The UTXOs to use as the inputs. By default Bitcash will communicate with the blockchain itself. :type unspents: ``list`` of :class:`~bitcash.network.meta.Unspent` :returns: The signed transaction as hex. :rtype: ``str`` """ unspents, outputs = sanitize_tx_data( unspents or self.unspents, outputs, fee or get_fee(), leftover or self.address, combine=combine, message=message, compressed=self.is_compressed(), custom_pushdata=custom_pushdata ) return create_p2pkh_transaction(self, unspents, outputs, custom_pushdata=custom_pushdata)
[ "def", "create_transaction", "(", "self", ",", "outputs", ",", "fee", "=", "None", ",", "leftover", "=", "None", ",", "combine", "=", "True", ",", "message", "=", "None", ",", "unspents", "=", "None", ",", "custom_pushdata", "=", "False", ")", ":", "# pragma: no cover", "unspents", ",", "outputs", "=", "sanitize_tx_data", "(", "unspents", "or", "self", ".", "unspents", ",", "outputs", ",", "fee", "or", "get_fee", "(", ")", ",", "leftover", "or", "self", ".", "address", ",", "combine", "=", "combine", ",", "message", "=", "message", ",", "compressed", "=", "self", ".", "is_compressed", "(", ")", ",", "custom_pushdata", "=", "custom_pushdata", ")", "return", "create_p2pkh_transaction", "(", "self", ",", "unspents", ",", "outputs", ",", "custom_pushdata", "=", "custom_pushdata", ")" ]
52.586957
25.304348
def gene_tree( self, scale_to=None, population_size=1, trim_names=True, ): """ Using the current tree object as a species tree, generate a gene tree using the constrained Kingman coalescent process from dendropy. The species tree should probably be a valid, ultrametric tree, generated by some pure birth, birth-death or coalescent process, but no checks are made. Optional kwargs are: -- scale_to, which is a floating point value to scale the total tree tip-to-root length to, -- population_size, which is a floating point value which all branch lengths will be divided by to convert them to coalescent units, and -- trim_names, boolean, defaults to true, trims off the number which dendropy appends to the sequence name """ tree = self.template or self.yule() for leaf in tree._tree.leaf_node_iter(): leaf.num_genes = 1 dfr = tree._tree.seed_node.distance_from_root() dft = tree._tree.seed_node.distance_from_tip() tree_height = dfr + dft if scale_to: population_size = tree_height / scale_to for edge in tree._tree.preorder_edge_iter(): edge.pop_size = population_size gene_tree = dpy.simulate.treesim.constrained_kingman_tree(tree._tree)[0] if trim_names: for leaf in gene_tree.leaf_node_iter(): leaf.taxon.label = leaf.taxon.label.replace('\'', '').split('_')[0] # Dendropy changed its API return {'gene_tree': tree.__class__(gene_tree.as_string('newick', suppress_rooting=True).strip(';\n') + ';'), 'species_tree': tree}
[ "def", "gene_tree", "(", "self", ",", "scale_to", "=", "None", ",", "population_size", "=", "1", ",", "trim_names", "=", "True", ",", ")", ":", "tree", "=", "self", ".", "template", "or", "self", ".", "yule", "(", ")", "for", "leaf", "in", "tree", ".", "_tree", ".", "leaf_node_iter", "(", ")", ":", "leaf", ".", "num_genes", "=", "1", "dfr", "=", "tree", ".", "_tree", ".", "seed_node", ".", "distance_from_root", "(", ")", "dft", "=", "tree", ".", "_tree", ".", "seed_node", ".", "distance_from_tip", "(", ")", "tree_height", "=", "dfr", "+", "dft", "if", "scale_to", ":", "population_size", "=", "tree_height", "/", "scale_to", "for", "edge", "in", "tree", ".", "_tree", ".", "preorder_edge_iter", "(", ")", ":", "edge", ".", "pop_size", "=", "population_size", "gene_tree", "=", "dpy", ".", "simulate", ".", "treesim", ".", "constrained_kingman_tree", "(", "tree", ".", "_tree", ")", "[", "0", "]", "if", "trim_names", ":", "for", "leaf", "in", "gene_tree", ".", "leaf_node_iter", "(", ")", ":", "leaf", ".", "taxon", ".", "label", "=", "leaf", ".", "taxon", ".", "label", ".", "replace", "(", "'\\''", ",", "''", ")", ".", "split", "(", "'_'", ")", "[", "0", "]", "# Dendropy changed its API", "return", "{", "'gene_tree'", ":", "tree", ".", "__class__", "(", "gene_tree", ".", "as_string", "(", "'newick'", ",", "suppress_rooting", "=", "True", ")", ".", "strip", "(", "';\\n'", ")", "+", "';'", ")", ",", "'species_tree'", ":", "tree", "}" ]
41.317073
25.658537
def expand(matrix, power): """ Apply cluster expansion to the given matrix by raising the matrix to the given power. :param matrix: The matrix to be expanded :param power: Cluster expansion parameter :returns: The expanded matrix """ if isspmatrix(matrix): return matrix ** power return np.linalg.matrix_power(matrix, power)
[ "def", "expand", "(", "matrix", ",", "power", ")", ":", "if", "isspmatrix", "(", "matrix", ")", ":", "return", "matrix", "**", "power", "return", "np", ".", "linalg", ".", "matrix_power", "(", "matrix", ",", "power", ")" ]
27.846154
12.461538
def forwards(self, orm): "Write your forwards methods here." # Project labels names = list(orm['samples.Project'].objects.values_list('label', flat=True)) orm['samples.Cohort'].objects.filter(name__in=names).update(published=True) # World cohort orm['samples.Cohort'].objects.filter(name=DEFAULT_COHORT_NAME).update(published=True)
[ "def", "forwards", "(", "self", ",", "orm", ")", ":", "# Project labels", "names", "=", "list", "(", "orm", "[", "'samples.Project'", "]", ".", "objects", ".", "values_list", "(", "'label'", ",", "flat", "=", "True", ")", ")", "orm", "[", "'samples.Cohort'", "]", ".", "objects", ".", "filter", "(", "name__in", "=", "names", ")", ".", "update", "(", "published", "=", "True", ")", "# World cohort", "orm", "[", "'samples.Cohort'", "]", ".", "objects", ".", "filter", "(", "name", "=", "DEFAULT_COHORT_NAME", ")", ".", "update", "(", "published", "=", "True", ")" ]
46.625
29.125
def version_option(f): """ Largely a custom clone of click.version_option -- almost identical, but prints our special output. """ def callback(ctx, param, value): # copied from click.decorators.version_option # no idea what resilient_parsing means, but... if not value or ctx.resilient_parsing: return print_version() ctx.exit(0) return click.option( "--version", is_flag=True, expose_value=False, is_eager=True, callback=callback, cls=HiddenOption, )(f)
[ "def", "version_option", "(", "f", ")", ":", "def", "callback", "(", "ctx", ",", "param", ",", "value", ")", ":", "# copied from click.decorators.version_option", "# no idea what resilient_parsing means, but...", "if", "not", "value", "or", "ctx", ".", "resilient_parsing", ":", "return", "print_version", "(", ")", "ctx", ".", "exit", "(", "0", ")", "return", "click", ".", "option", "(", "\"--version\"", ",", "is_flag", "=", "True", ",", "expose_value", "=", "False", ",", "is_eager", "=", "True", ",", "callback", "=", "callback", ",", "cls", "=", "HiddenOption", ",", ")", "(", "f", ")" ]
24.478261
18.565217
def _on_wid_changed(self, wid): """Called when the widget is changed""" if self._itsme: return self.update_model(self._get_idx_from_widget(wid)) return
[ "def", "_on_wid_changed", "(", "self", ",", "wid", ")", ":", "if", "self", ".", "_itsme", ":", "return", "self", ".", "update_model", "(", "self", ".", "_get_idx_from_widget", "(", "wid", ")", ")", "return" ]
35.8
12.4
def read_code(self, name): """Reads code from a python file called 'name'""" file_path = self.gen_file_path(name) with open(file_path) as f: code = f.read() return code
[ "def", "read_code", "(", "self", ",", "name", ")", ":", "file_path", "=", "self", ".", "gen_file_path", "(", "name", ")", "with", "open", "(", "file_path", ")", "as", "f", ":", "code", "=", "f", ".", "read", "(", ")", "return", "code" ]
29.571429
14
def delete_row(self, index): """ Deletes a Row by it's index :param int index: the index of the row. zero indexed :return bool: Success or Failure """ url = self.build_url(self._endpoints.get('delete_row').format(id=index)) return bool(self.session.post(url))
[ "def", "delete_row", "(", "self", ",", "index", ")", ":", "url", "=", "self", ".", "build_url", "(", "self", ".", "_endpoints", ".", "get", "(", "'delete_row'", ")", ".", "format", "(", "id", "=", "index", ")", ")", "return", "bool", "(", "self", ".", "session", ".", "post", "(", "url", ")", ")" ]
38.5
10
def getAssociation(self, server_url, handle=None): """Retrieve an association. If no handle is specified, return the association with the latest expiration. (str, str or NoneType) -> Association or NoneType """ if handle is None: handle = '' # The filename with the empty handle is a prefix of all other # associations for the given server URL. filename = self.getAssociationFilename(server_url, handle) if handle: return self._getAssociation(filename) else: association_files = os.listdir(self.association_dir) matching_files = [] # strip off the path to do the comparison name = os.path.basename(filename) for association_file in association_files: if association_file.startswith(name): matching_files.append(association_file) matching_associations = [] # read the matching files and sort by time issued for name in matching_files: full_name = os.path.join(self.association_dir, name) association = self._getAssociation(full_name) if association is not None: matching_associations.append( (association.issued, association)) matching_associations.sort() # return the most recently issued one. if matching_associations: (_, assoc) = matching_associations[-1] return assoc else: return None
[ "def", "getAssociation", "(", "self", ",", "server_url", ",", "handle", "=", "None", ")", ":", "if", "handle", "is", "None", ":", "handle", "=", "''", "# The filename with the empty handle is a prefix of all other", "# associations for the given server URL.", "filename", "=", "self", ".", "getAssociationFilename", "(", "server_url", ",", "handle", ")", "if", "handle", ":", "return", "self", ".", "_getAssociation", "(", "filename", ")", "else", ":", "association_files", "=", "os", ".", "listdir", "(", "self", ".", "association_dir", ")", "matching_files", "=", "[", "]", "# strip off the path to do the comparison", "name", "=", "os", ".", "path", ".", "basename", "(", "filename", ")", "for", "association_file", "in", "association_files", ":", "if", "association_file", ".", "startswith", "(", "name", ")", ":", "matching_files", ".", "append", "(", "association_file", ")", "matching_associations", "=", "[", "]", "# read the matching files and sort by time issued", "for", "name", "in", "matching_files", ":", "full_name", "=", "os", ".", "path", ".", "join", "(", "self", ".", "association_dir", ",", "name", ")", "association", "=", "self", ".", "_getAssociation", "(", "full_name", ")", "if", "association", "is", "not", "None", ":", "matching_associations", ".", "append", "(", "(", "association", ".", "issued", ",", "association", ")", ")", "matching_associations", ".", "sort", "(", ")", "# return the most recently issued one.", "if", "matching_associations", ":", "(", "_", ",", "assoc", ")", "=", "matching_associations", "[", "-", "1", "]", "return", "assoc", "else", ":", "return", "None" ]
38.512195
17.195122
def format_name(format, name, target_type, prop_set): """ Given a target, as given to a custom tag rule, returns a string formatted according to the passed format. Format is a list of properties that is represented in the result. For each element of format the corresponding target information is obtained and added to the result string. For all, but the literal, the format value is taken as the as string to prepend to the output to join the item to the rest of the result. If not given "-" is used as a joiner. The format options can be: <base>[joiner] :: The basename of the target name. <toolset>[joiner] :: The abbreviated toolset tag being used to build the target. <threading>[joiner] :: Indication of a multi-threaded build. <runtime>[joiner] :: Collective tag of the build runtime. <version:/version-feature | X.Y[.Z]/>[joiner] :: Short version tag taken from the given "version-feature" in the build properties. Or if not present, the literal value as the version number. <property:/property-name/>[joiner] :: Direct lookup of the given property-name value in the build properties. /property-name/ is a regular expression. e.g. <property:toolset-.*:flavor> will match every toolset. /otherwise/ :: The literal value of the format argument. For example this format: boost_ <base> <toolset> <threading> <runtime> <version:boost-version> Might return: boost_thread-vc80-mt-gd-1_33.dll, or boost_regex-vc80-gd-1_33.dll The returned name also has the target type specific prefix and suffix which puts it in a ready form to use as the value from a custom tag rule. """ if __debug__: from ..build.property_set import PropertySet assert is_iterable_typed(format, basestring) assert isinstance(name, basestring) assert isinstance(target_type, basestring) assert isinstance(prop_set, PropertySet) # assert(isinstance(prop_set, property_set.PropertySet)) if type.is_derived(target_type, 'LIB'): result = "" ; for f in format: grist = get_grist(f) if grist == '<base>': result += os.path.basename(name) elif grist == '<toolset>': result += join_tag(get_value(f), toolset_tag(name, target_type, prop_set)) elif grist == '<threading>': result += join_tag(get_value(f), threading_tag(name, target_type, prop_set)) elif grist == '<runtime>': result += join_tag(get_value(f), runtime_tag(name, target_type, prop_set)) elif grist.startswith('<version:'): key = grist[len('<version:'):-1] version = prop_set.get('<' + key + '>') if not version: version = key version = __re_version.match(version) result += join_tag(get_value(f), version[1] + '_' + version[2]) elif grist.startswith('<property:'): key = grist[len('<property:'):-1] property_re = re.compile('<(' + key + ')>') p0 = None for prop in prop_set.raw(): match = property_re.match(prop) if match: p0 = match[1] break if p0: p = prop_set.get('<' + p0 + '>') if p: assert(len(p) == 1) result += join_tag(ungrist(f), p) else: result += f result = b2.build.virtual_target.add_prefix_and_suffix( ''.join(result), target_type, prop_set) return result
[ "def", "format_name", "(", "format", ",", "name", ",", "target_type", ",", "prop_set", ")", ":", "if", "__debug__", ":", "from", ".", ".", "build", ".", "property_set", "import", "PropertySet", "assert", "is_iterable_typed", "(", "format", ",", "basestring", ")", "assert", "isinstance", "(", "name", ",", "basestring", ")", "assert", "isinstance", "(", "target_type", ",", "basestring", ")", "assert", "isinstance", "(", "prop_set", ",", "PropertySet", ")", "# assert(isinstance(prop_set, property_set.PropertySet))", "if", "type", ".", "is_derived", "(", "target_type", ",", "'LIB'", ")", ":", "result", "=", "\"\"", "for", "f", "in", "format", ":", "grist", "=", "get_grist", "(", "f", ")", "if", "grist", "==", "'<base>'", ":", "result", "+=", "os", ".", "path", ".", "basename", "(", "name", ")", "elif", "grist", "==", "'<toolset>'", ":", "result", "+=", "join_tag", "(", "get_value", "(", "f", ")", ",", "toolset_tag", "(", "name", ",", "target_type", ",", "prop_set", ")", ")", "elif", "grist", "==", "'<threading>'", ":", "result", "+=", "join_tag", "(", "get_value", "(", "f", ")", ",", "threading_tag", "(", "name", ",", "target_type", ",", "prop_set", ")", ")", "elif", "grist", "==", "'<runtime>'", ":", "result", "+=", "join_tag", "(", "get_value", "(", "f", ")", ",", "runtime_tag", "(", "name", ",", "target_type", ",", "prop_set", ")", ")", "elif", "grist", ".", "startswith", "(", "'<version:'", ")", ":", "key", "=", "grist", "[", "len", "(", "'<version:'", ")", ":", "-", "1", "]", "version", "=", "prop_set", ".", "get", "(", "'<'", "+", "key", "+", "'>'", ")", "if", "not", "version", ":", "version", "=", "key", "version", "=", "__re_version", ".", "match", "(", "version", ")", "result", "+=", "join_tag", "(", "get_value", "(", "f", ")", ",", "version", "[", "1", "]", "+", "'_'", "+", "version", "[", "2", "]", ")", "elif", "grist", ".", "startswith", "(", "'<property:'", ")", ":", "key", "=", "grist", "[", "len", "(", "'<property:'", ")", ":", "-", "1", "]", "property_re", "=", "re", ".", "compile", "(", "'<('", "+", "key", "+", "')>'", ")", "p0", "=", "None", "for", "prop", "in", "prop_set", ".", "raw", "(", ")", ":", "match", "=", "property_re", ".", "match", "(", "prop", ")", "if", "match", ":", "p0", "=", "match", "[", "1", "]", "break", "if", "p0", ":", "p", "=", "prop_set", ".", "get", "(", "'<'", "+", "p0", "+", "'>'", ")", "if", "p", ":", "assert", "(", "len", "(", "p", ")", "==", "1", ")", "result", "+=", "join_tag", "(", "ungrist", "(", "f", ")", ",", "p", ")", "else", ":", "result", "+=", "f", "result", "=", "b2", ".", "build", ".", "virtual_target", ".", "add_prefix_and_suffix", "(", "''", ".", "join", "(", "result", ")", ",", "target_type", ",", "prop_set", ")", "return", "result" ]
43.67033
18.373626
def _cost_func(x, kernel_options, tuning_options, runner, results, cache): """ Cost function used by minimize """ error_time = 1e20 logging.debug('_cost_func called') logging.debug('x: ' + str(x)) x_key = ",".join([str(i) for i in x]) if x_key in cache: return cache[x_key] #snap values in x to nearest actual value for each parameter unscale x if needed if tuning_options.scaling: params = unscale_and_snap_to_nearest(x, tuning_options.tune_params, tuning_options.eps) else: params = snap_to_nearest_config(x, tuning_options.tune_params) logging.debug('params ' + str(params)) x_int = ",".join([str(i) for i in params]) if x_int in cache: return cache[x_int] #check if this is a legal (non-restricted) parameter instance if tuning_options.restrictions: legal = util.check_restrictions(tuning_options.restrictions, params, tuning_options.tune_params.keys(), tuning_options.verbose) if not legal: cache[x_int] = error_time cache[x_key] = error_time return error_time #compile and benchmark this instance res, _ = runner.run([params], kernel_options, tuning_options) #append to tuning results if res: results.append(res[0]) cache[x_int] = res[0]['time'] cache[x_key] = res[0]['time'] return res[0]['time'] cache[x_int] = error_time cache[x_key] = error_time return error_time
[ "def", "_cost_func", "(", "x", ",", "kernel_options", ",", "tuning_options", ",", "runner", ",", "results", ",", "cache", ")", ":", "error_time", "=", "1e20", "logging", ".", "debug", "(", "'_cost_func called'", ")", "logging", ".", "debug", "(", "'x: '", "+", "str", "(", "x", ")", ")", "x_key", "=", "\",\"", ".", "join", "(", "[", "str", "(", "i", ")", "for", "i", "in", "x", "]", ")", "if", "x_key", "in", "cache", ":", "return", "cache", "[", "x_key", "]", "#snap values in x to nearest actual value for each parameter unscale x if needed", "if", "tuning_options", ".", "scaling", ":", "params", "=", "unscale_and_snap_to_nearest", "(", "x", ",", "tuning_options", ".", "tune_params", ",", "tuning_options", ".", "eps", ")", "else", ":", "params", "=", "snap_to_nearest_config", "(", "x", ",", "tuning_options", ".", "tune_params", ")", "logging", ".", "debug", "(", "'params '", "+", "str", "(", "params", ")", ")", "x_int", "=", "\",\"", ".", "join", "(", "[", "str", "(", "i", ")", "for", "i", "in", "params", "]", ")", "if", "x_int", "in", "cache", ":", "return", "cache", "[", "x_int", "]", "#check if this is a legal (non-restricted) parameter instance", "if", "tuning_options", ".", "restrictions", ":", "legal", "=", "util", ".", "check_restrictions", "(", "tuning_options", ".", "restrictions", ",", "params", ",", "tuning_options", ".", "tune_params", ".", "keys", "(", ")", ",", "tuning_options", ".", "verbose", ")", "if", "not", "legal", ":", "cache", "[", "x_int", "]", "=", "error_time", "cache", "[", "x_key", "]", "=", "error_time", "return", "error_time", "#compile and benchmark this instance", "res", ",", "_", "=", "runner", ".", "run", "(", "[", "params", "]", ",", "kernel_options", ",", "tuning_options", ")", "#append to tuning results", "if", "res", ":", "results", ".", "append", "(", "res", "[", "0", "]", ")", "cache", "[", "x_int", "]", "=", "res", "[", "0", "]", "[", "'time'", "]", "cache", "[", "x_key", "]", "=", "res", "[", "0", "]", "[", "'time'", "]", "return", "res", "[", "0", "]", "[", "'time'", "]", "cache", "[", "x_int", "]", "=", "error_time", "cache", "[", "x_key", "]", "=", "error_time", "return", "error_time" ]
32.704545
21.75
def redraw(self, col=0): """redraw image, applying the following: rotation, flips, log scale max/min values from sliders or explicit intensity ranges color map interpolation """ conf = self.conf # note: rotation re-calls display(), to reset the image # other transformations will just do .set_data() on image if conf.rot: if self.xdata is not None: self.xdata = self.xdata[::-1] if self.ydata is not None: self.ydata = self.ydata[:] self.display(np.rot90(conf.data), x=self.ydata, xlabel=self.ylab, y=self.xdata, ylabel=self.xlab) # flips, log scales img = conf.data if img is None: return if len(img.shape) == 2: col = 0 if self.conf.style == 'image': if conf.flip_ud: img = np.flipud(img) if conf.flip_lr: img = np.fliplr(img) if conf.log_scale: img = np.log10(1 + 9.0*img) # apply intensity scale for current limited (zoomed) image if len(img.shape) == 2: # apply clipped color scale, as from sliders imin = float(conf.int_lo[col]) imax = float(conf.int_hi[col]) if conf.log_scale: imin = np.log10(1 + 9.0*imin) imax = np.log10(1 + 9.0*imax) (xmin, xmax, ymin, ymax) = self.conf.datalimits if xmin is None: xmin = 0 if xmax is None: xmax = img.shape[1] if ymin is None: ymin = 0 if ymax is None: ymax = img.shape[0] img = (img - imin)/(imax - imin + 1.e-8) mlo = conf.cmap_lo[0]/(1.0*conf.cmap_range) mhi = conf.cmap_hi[0]/(1.0*conf.cmap_range) if self.conf.style == 'image': conf.image.set_data(np.clip((img - mlo)/(mhi - mlo + 1.e-8), 0, 1)) conf.image.set_interpolation(conf.interp) else: r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] rmin = float(conf.int_lo[0]) rmax = float(conf.int_hi[0]) gmin = float(conf.int_lo[1]) gmax = float(conf.int_hi[1]) bmin = float(conf.int_lo[2]) bmax = float(conf.int_hi[2]) if conf.log_scale: rmin = np.log10(1 + 9.0*rmin) rmax = np.log10(1 + 9.0*rmax) gmin = np.log10(1 + 9.0*gmin) gmax = np.log10(1 + 9.0*gmax) bmin = np.log10(1 + 9.0*bmin) bmax = np.log10(1 + 9.0*bmax) rlo = conf.cmap_lo[0]/(1.0*conf.cmap_range) rhi = conf.cmap_hi[0]/(1.0*conf.cmap_range) glo = conf.cmap_lo[1]/(1.0*conf.cmap_range) ghi = conf.cmap_hi[1]/(1.0*conf.cmap_range) blo = conf.cmap_lo[2]/(1.0*conf.cmap_range) bhi = conf.cmap_hi[2]/(1.0*conf.cmap_range) r = (r - rmin)/(rmax - rmin + 1.e-8) g = (g - gmin)/(gmax - gmin + 1.e-8) b = (b - bmin)/(bmax - bmin + 1.e-8) inew = img*1.0 inew[:,:,0] = np.clip((r - rlo)/(rhi - rlo + 1.e-8), 0, 1) inew[:,:,1] = np.clip((g - glo)/(ghi - glo + 1.e-8), 0, 1) inew[:,:,2] = np.clip((b - blo)/(bhi - blo + 1.e-8), 0, 1) whitebg = conf.tricolor_bg.startswith('wh') if whitebg: inew = conf.tricolor_white_bg(inew) if self.conf.style == 'image': conf.image.set_data(inew) conf.image.set_interpolation(conf.interp) self.canvas.draw() if callable(self.redraw_callback): self.redraw_callback(wid=self.GetId())
[ "def", "redraw", "(", "self", ",", "col", "=", "0", ")", ":", "conf", "=", "self", ".", "conf", "# note: rotation re-calls display(), to reset the image", "# other transformations will just do .set_data() on image", "if", "conf", ".", "rot", ":", "if", "self", ".", "xdata", "is", "not", "None", ":", "self", ".", "xdata", "=", "self", ".", "xdata", "[", ":", ":", "-", "1", "]", "if", "self", ".", "ydata", "is", "not", "None", ":", "self", ".", "ydata", "=", "self", ".", "ydata", "[", ":", "]", "self", ".", "display", "(", "np", ".", "rot90", "(", "conf", ".", "data", ")", ",", "x", "=", "self", ".", "ydata", ",", "xlabel", "=", "self", ".", "ylab", ",", "y", "=", "self", ".", "xdata", ",", "ylabel", "=", "self", ".", "xlab", ")", "# flips, log scales", "img", "=", "conf", ".", "data", "if", "img", "is", "None", ":", "return", "if", "len", "(", "img", ".", "shape", ")", "==", "2", ":", "col", "=", "0", "if", "self", ".", "conf", ".", "style", "==", "'image'", ":", "if", "conf", ".", "flip_ud", ":", "img", "=", "np", ".", "flipud", "(", "img", ")", "if", "conf", ".", "flip_lr", ":", "img", "=", "np", ".", "fliplr", "(", "img", ")", "if", "conf", ".", "log_scale", ":", "img", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "img", ")", "# apply intensity scale for current limited (zoomed) image", "if", "len", "(", "img", ".", "shape", ")", "==", "2", ":", "# apply clipped color scale, as from sliders", "imin", "=", "float", "(", "conf", ".", "int_lo", "[", "col", "]", ")", "imax", "=", "float", "(", "conf", ".", "int_hi", "[", "col", "]", ")", "if", "conf", ".", "log_scale", ":", "imin", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "imin", ")", "imax", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "imax", ")", "(", "xmin", ",", "xmax", ",", "ymin", ",", "ymax", ")", "=", "self", ".", "conf", ".", "datalimits", "if", "xmin", "is", "None", ":", "xmin", "=", "0", "if", "xmax", "is", "None", ":", "xmax", "=", "img", ".", "shape", "[", "1", "]", "if", "ymin", "is", "None", ":", "ymin", "=", "0", "if", "ymax", "is", "None", ":", "ymax", "=", "img", ".", "shape", "[", "0", "]", "img", "=", "(", "img", "-", "imin", ")", "/", "(", "imax", "-", "imin", "+", "1.e-8", ")", "mlo", "=", "conf", ".", "cmap_lo", "[", "0", "]", "/", "(", "1.0", "*", "conf", ".", "cmap_range", ")", "mhi", "=", "conf", ".", "cmap_hi", "[", "0", "]", "/", "(", "1.0", "*", "conf", ".", "cmap_range", ")", "if", "self", ".", "conf", ".", "style", "==", "'image'", ":", "conf", ".", "image", ".", "set_data", "(", "np", ".", "clip", "(", "(", "img", "-", "mlo", ")", "/", "(", "mhi", "-", "mlo", "+", "1.e-8", ")", ",", "0", ",", "1", ")", ")", "conf", ".", "image", ".", "set_interpolation", "(", "conf", ".", "interp", ")", "else", ":", "r", ",", "g", ",", "b", "=", "img", "[", ":", ",", ":", ",", "0", "]", ",", "img", "[", ":", ",", ":", ",", "1", "]", ",", "img", "[", ":", ",", ":", ",", "2", "]", "rmin", "=", "float", "(", "conf", ".", "int_lo", "[", "0", "]", ")", "rmax", "=", "float", "(", "conf", ".", "int_hi", "[", "0", "]", ")", "gmin", "=", "float", "(", "conf", ".", "int_lo", "[", "1", "]", ")", "gmax", "=", "float", "(", "conf", ".", "int_hi", "[", "1", "]", ")", "bmin", "=", "float", "(", "conf", ".", "int_lo", "[", "2", "]", ")", "bmax", "=", "float", "(", "conf", ".", "int_hi", "[", "2", "]", ")", "if", "conf", ".", "log_scale", ":", "rmin", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "rmin", ")", "rmax", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "rmax", ")", "gmin", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "gmin", ")", "gmax", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "gmax", ")", "bmin", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "bmin", ")", "bmax", "=", "np", ".", "log10", "(", "1", "+", "9.0", "*", "bmax", ")", "rlo", "=", "conf", ".", "cmap_lo", "[", "0", "]", "/", "(", "1.0", "*", "conf", ".", "cmap_range", ")", "rhi", "=", "conf", ".", "cmap_hi", "[", "0", "]", "/", "(", "1.0", "*", "conf", ".", "cmap_range", ")", "glo", "=", "conf", ".", "cmap_lo", "[", "1", "]", "/", "(", "1.0", "*", "conf", ".", "cmap_range", ")", "ghi", "=", "conf", ".", "cmap_hi", "[", "1", "]", "/", "(", "1.0", "*", "conf", ".", "cmap_range", ")", "blo", "=", "conf", ".", "cmap_lo", "[", "2", "]", "/", "(", "1.0", "*", "conf", ".", "cmap_range", ")", "bhi", "=", "conf", ".", "cmap_hi", "[", "2", "]", "/", "(", "1.0", "*", "conf", ".", "cmap_range", ")", "r", "=", "(", "r", "-", "rmin", ")", "/", "(", "rmax", "-", "rmin", "+", "1.e-8", ")", "g", "=", "(", "g", "-", "gmin", ")", "/", "(", "gmax", "-", "gmin", "+", "1.e-8", ")", "b", "=", "(", "b", "-", "bmin", ")", "/", "(", "bmax", "-", "bmin", "+", "1.e-8", ")", "inew", "=", "img", "*", "1.0", "inew", "[", ":", ",", ":", ",", "0", "]", "=", "np", ".", "clip", "(", "(", "r", "-", "rlo", ")", "/", "(", "rhi", "-", "rlo", "+", "1.e-8", ")", ",", "0", ",", "1", ")", "inew", "[", ":", ",", ":", ",", "1", "]", "=", "np", ".", "clip", "(", "(", "g", "-", "glo", ")", "/", "(", "ghi", "-", "glo", "+", "1.e-8", ")", ",", "0", ",", "1", ")", "inew", "[", ":", ",", ":", ",", "2", "]", "=", "np", ".", "clip", "(", "(", "b", "-", "blo", ")", "/", "(", "bhi", "-", "blo", "+", "1.e-8", ")", ",", "0", ",", "1", ")", "whitebg", "=", "conf", ".", "tricolor_bg", ".", "startswith", "(", "'wh'", ")", "if", "whitebg", ":", "inew", "=", "conf", ".", "tricolor_white_bg", "(", "inew", ")", "if", "self", ".", "conf", ".", "style", "==", "'image'", ":", "conf", ".", "image", ".", "set_data", "(", "inew", ")", "conf", ".", "image", ".", "set_interpolation", "(", "conf", ".", "interp", ")", "self", ".", "canvas", ".", "draw", "(", ")", "if", "callable", "(", "self", ".", "redraw_callback", ")", ":", "self", ".", "redraw_callback", "(", "wid", "=", "self", ".", "GetId", "(", ")", ")" ]
38.479167
14.760417