repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
LuqueDaniel/pybooru
pybooru/api_moebooru.py
https://github.com/LuqueDaniel/pybooru/blob/60cd5254684d293b308f0b11b8f4ac2dce101479/pybooru/api_moebooru.py#L516-L526
def pool_create(self, name, description, is_public): """Function to create a pool (Require login) (UNTESTED). Parameters: name (str): The name. description (str): A description of the pool. is_public (int): 1 or 0, whether or not the pool is public. """ params = {'pool[name]': name, 'pool[description]': description, 'pool[is_public]': is_public} return self._get('pool/create', params, method='POST')
[ "def", "pool_create", "(", "self", ",", "name", ",", "description", ",", "is_public", ")", ":", "params", "=", "{", "'pool[name]'", ":", "name", ",", "'pool[description]'", ":", "description", ",", "'pool[is_public]'", ":", "is_public", "}", "return", "self", ".", "_get", "(", "'pool/create'", ",", "params", ",", "method", "=", "'POST'", ")" ]
Function to create a pool (Require login) (UNTESTED). Parameters: name (str): The name. description (str): A description of the pool. is_public (int): 1 or 0, whether or not the pool is public.
[ "Function", "to", "create", "a", "pool", "(", "Require", "login", ")", "(", "UNTESTED", ")", "." ]
python
train
tensorflow/datasets
tensorflow_datasets/translate/wmt.py
https://github.com/tensorflow/datasets/blob/46ceb0cf7b4690f38ecbbc689e4d659a903d08dc/tensorflow_datasets/translate/wmt.py#L838-L858
def _parse_tmx(path): """Generates examples from TMX file.""" def _get_tuv_lang(tuv): for k, v in tuv.items(): if k.endswith("}lang"): return v raise AssertionError("Language not found in `tuv` attributes.") def _get_tuv_seg(tuv): segs = tuv.findall("seg") assert len(segs) == 1, "Invalid number of segments: %d" % len(segs) return segs[0].text with tf.io.gfile.GFile(path) as f: for _, elem in ElementTree.iterparse(f): if elem.tag == "tu": yield { _get_tuv_lang(tuv): _get_tuv_seg(tuv) for tuv in elem.iterfind("tuv") } elem.clear()
[ "def", "_parse_tmx", "(", "path", ")", ":", "def", "_get_tuv_lang", "(", "tuv", ")", ":", "for", "k", ",", "v", "in", "tuv", ".", "items", "(", ")", ":", "if", "k", ".", "endswith", "(", "\"}lang\"", ")", ":", "return", "v", "raise", "AssertionError", "(", "\"Language not found in `tuv` attributes.\"", ")", "def", "_get_tuv_seg", "(", "tuv", ")", ":", "segs", "=", "tuv", ".", "findall", "(", "\"seg\"", ")", "assert", "len", "(", "segs", ")", "==", "1", ",", "\"Invalid number of segments: %d\"", "%", "len", "(", "segs", ")", "return", "segs", "[", "0", "]", ".", "text", "with", "tf", ".", "io", ".", "gfile", ".", "GFile", "(", "path", ")", "as", "f", ":", "for", "_", ",", "elem", "in", "ElementTree", ".", "iterparse", "(", "f", ")", ":", "if", "elem", ".", "tag", "==", "\"tu\"", ":", "yield", "{", "_get_tuv_lang", "(", "tuv", ")", ":", "_get_tuv_seg", "(", "tuv", ")", "for", "tuv", "in", "elem", ".", "iterfind", "(", "\"tuv\"", ")", "}", "elem", ".", "clear", "(", ")" ]
Generates examples from TMX file.
[ "Generates", "examples", "from", "TMX", "file", "." ]
python
train
dpkp/kafka-python
kafka/producer/kafka.py
https://github.com/dpkp/kafka-python/blob/f6a8a38937688ea2cc5dc13d3d1039493be5c9b5/kafka/producer/kafka.py#L612-L637
def flush(self, timeout=None): """ Invoking this method makes all buffered records immediately available to send (even if linger_ms is greater than 0) and blocks on the completion of the requests associated with these records. The post-condition of :meth:`~kafka.KafkaProducer.flush` is that any previously sent record will have completed (e.g. Future.is_done() == True). A request is considered completed when either it is successfully acknowledged according to the 'acks' configuration for the producer, or it results in an error. Other threads can continue sending messages while one thread is blocked waiting for a flush call to complete; however, no guarantee is made about the completion of messages sent after the flush call begins. Arguments: timeout (float, optional): timeout in seconds to wait for completion. Raises: KafkaTimeoutError: failure to flush buffered records within the provided timeout """ log.debug("Flushing accumulated records in producer.") # trace self._accumulator.begin_flush() self._sender.wakeup() self._accumulator.await_flush_completion(timeout=timeout)
[ "def", "flush", "(", "self", ",", "timeout", "=", "None", ")", ":", "log", ".", "debug", "(", "\"Flushing accumulated records in producer.\"", ")", "# trace", "self", ".", "_accumulator", ".", "begin_flush", "(", ")", "self", ".", "_sender", ".", "wakeup", "(", ")", "self", ".", "_accumulator", ".", "await_flush_completion", "(", "timeout", "=", "timeout", ")" ]
Invoking this method makes all buffered records immediately available to send (even if linger_ms is greater than 0) and blocks on the completion of the requests associated with these records. The post-condition of :meth:`~kafka.KafkaProducer.flush` is that any previously sent record will have completed (e.g. Future.is_done() == True). A request is considered completed when either it is successfully acknowledged according to the 'acks' configuration for the producer, or it results in an error. Other threads can continue sending messages while one thread is blocked waiting for a flush call to complete; however, no guarantee is made about the completion of messages sent after the flush call begins. Arguments: timeout (float, optional): timeout in seconds to wait for completion. Raises: KafkaTimeoutError: failure to flush buffered records within the provided timeout
[ "Invoking", "this", "method", "makes", "all", "buffered", "records", "immediately", "available", "to", "send", "(", "even", "if", "linger_ms", "is", "greater", "than", "0", ")", "and", "blocks", "on", "the", "completion", "of", "the", "requests", "associated", "with", "these", "records", ".", "The", "post", "-", "condition", "of", ":", "meth", ":", "~kafka", ".", "KafkaProducer", ".", "flush", "is", "that", "any", "previously", "sent", "record", "will", "have", "completed", "(", "e", ".", "g", ".", "Future", ".", "is_done", "()", "==", "True", ")", ".", "A", "request", "is", "considered", "completed", "when", "either", "it", "is", "successfully", "acknowledged", "according", "to", "the", "acks", "configuration", "for", "the", "producer", "or", "it", "results", "in", "an", "error", "." ]
python
train
CenturyLinkCloud/clc-python-sdk
src/clc/APIv1/queue.py
https://github.com/CenturyLinkCloud/clc-python-sdk/blob/f4dba40c627cb08dd4b7d0d277e8d67578010b05/src/clc/APIv1/queue.py#L18-L26
def List(type='All'): """List of Queued requests and their current status details. https://t3n.zendesk.com/entries/20350251-List-Queue-Requests :param type: list items in the queue filtered by status (All, Pending, Complete, Error) """ r = clc.v1.API.Call('post','Queue/ListQueueRequests',{'ItemStatusType': Queue.item_status_type_map[type] }) if int(r['StatusCode']) == 0: return(r['Requests'])
[ "def", "List", "(", "type", "=", "'All'", ")", ":", "r", "=", "clc", ".", "v1", ".", "API", ".", "Call", "(", "'post'", ",", "'Queue/ListQueueRequests'", ",", "{", "'ItemStatusType'", ":", "Queue", ".", "item_status_type_map", "[", "type", "]", "}", ")", "if", "int", "(", "r", "[", "'StatusCode'", "]", ")", "==", "0", ":", "return", "(", "r", "[", "'Requests'", "]", ")" ]
List of Queued requests and their current status details. https://t3n.zendesk.com/entries/20350251-List-Queue-Requests :param type: list items in the queue filtered by status (All, Pending, Complete, Error)
[ "List", "of", "Queued", "requests", "and", "their", "current", "status", "details", "." ]
python
train
project-ncl/pnc-cli
pnc_cli/buildconfigurations.py
https://github.com/project-ncl/pnc-cli/blob/3dc149bf84928f60a8044ac50b58bbaddd451902/pnc_cli/buildconfigurations.py#L367-L373
def add_dependency(id=None, name=None, dependency_id=None, dependency_name=None): """ Add an existing BuildConfiguration as a dependency to another BuildConfiguration. """ data = add_dependency_raw(id, name, dependency_id, dependency_name) if data: return utils.format_json_list(data)
[ "def", "add_dependency", "(", "id", "=", "None", ",", "name", "=", "None", ",", "dependency_id", "=", "None", ",", "dependency_name", "=", "None", ")", ":", "data", "=", "add_dependency_raw", "(", "id", ",", "name", ",", "dependency_id", ",", "dependency_name", ")", "if", "data", ":", "return", "utils", ".", "format_json_list", "(", "data", ")" ]
Add an existing BuildConfiguration as a dependency to another BuildConfiguration.
[ "Add", "an", "existing", "BuildConfiguration", "as", "a", "dependency", "to", "another", "BuildConfiguration", "." ]
python
train
arista-eosplus/pyeapi
pyeapi/api/vrrp.py
https://github.com/arista-eosplus/pyeapi/blob/96a74faef1fe3bd79c4e900aed29c9956a0587d6/pyeapi/api/vrrp.py#L354-L379
def create(self, interface, vrid, **kwargs): """Creates a vrrp instance from an interface Note: This method will attempt to create a vrrp in the node's operational config. If the vrrp already exists on the interface, then this method will set the properties of the existing vrrp to those that have been passed in, if possible. Args: interface (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be created. kwargs (dict): A dictionary specifying the properties to be applied to the new vrrp instance. See library documentation for available keys and values. Returns: True if the vrrp could be created otherwise False (see Node) """ if 'enable' not in kwargs: kwargs['enable'] = False return self._vrrp_set(interface, vrid, **kwargs)
[ "def", "create", "(", "self", ",", "interface", ",", "vrid", ",", "*", "*", "kwargs", ")", ":", "if", "'enable'", "not", "in", "kwargs", ":", "kwargs", "[", "'enable'", "]", "=", "False", "return", "self", ".", "_vrrp_set", "(", "interface", ",", "vrid", ",", "*", "*", "kwargs", ")" ]
Creates a vrrp instance from an interface Note: This method will attempt to create a vrrp in the node's operational config. If the vrrp already exists on the interface, then this method will set the properties of the existing vrrp to those that have been passed in, if possible. Args: interface (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be created. kwargs (dict): A dictionary specifying the properties to be applied to the new vrrp instance. See library documentation for available keys and values. Returns: True if the vrrp could be created otherwise False (see Node)
[ "Creates", "a", "vrrp", "instance", "from", "an", "interface" ]
python
train
Brazelton-Lab/bio_utils
bio_utils/iterators/b6.py
https://github.com/Brazelton-Lab/bio_utils/blob/5a7ddf13ee0bf4baaaeb6b2b99e01bf74aa132b7/bio_utils/iterators/b6.py#L97-L125
def write(self, default: bool=False): """Restore B6/M8 entry to original format Args: default (bool): output entry in default BLAST+ B6 format Returns: str: properly formatted string containing the B6/M8 entry """ none_type = type(None) if default: # Default order of format specifiers ordered_vals = ['query', 'subject', 'identity', 'length', 'mismatches', 'gaps', 'query_start', 'query_end', 'subject_start', 'subject_end', 'evalue', 'bitscore'] else: # Original order of B6 entry format specifiers try: ordered_vals = [self.custom_fs[i] if i in self.custom_fs else getattr(self, i) for i in self.fs_order] except TypeError: ordered_vals = [getattr(self, i) for i in self.fs_order] # Format entry for writing fstr = "\t".join(['-' if type(i) == none_type else str(i) for i in ordered_vals]) return '{}{}'.format(fstr, os.linesep)
[ "def", "write", "(", "self", ",", "default", ":", "bool", "=", "False", ")", ":", "none_type", "=", "type", "(", "None", ")", "if", "default", ":", "# Default order of format specifiers", "ordered_vals", "=", "[", "'query'", ",", "'subject'", ",", "'identity'", ",", "'length'", ",", "'mismatches'", ",", "'gaps'", ",", "'query_start'", ",", "'query_end'", ",", "'subject_start'", ",", "'subject_end'", ",", "'evalue'", ",", "'bitscore'", "]", "else", ":", "# Original order of B6 entry format specifiers", "try", ":", "ordered_vals", "=", "[", "self", ".", "custom_fs", "[", "i", "]", "if", "i", "in", "self", ".", "custom_fs", "else", "getattr", "(", "self", ",", "i", ")", "for", "i", "in", "self", ".", "fs_order", "]", "except", "TypeError", ":", "ordered_vals", "=", "[", "getattr", "(", "self", ",", "i", ")", "for", "i", "in", "self", ".", "fs_order", "]", "# Format entry for writing", "fstr", "=", "\"\\t\"", ".", "join", "(", "[", "'-'", "if", "type", "(", "i", ")", "==", "none_type", "else", "str", "(", "i", ")", "for", "i", "in", "ordered_vals", "]", ")", "return", "'{}{}'", ".", "format", "(", "fstr", ",", "os", ".", "linesep", ")" ]
Restore B6/M8 entry to original format Args: default (bool): output entry in default BLAST+ B6 format Returns: str: properly formatted string containing the B6/M8 entry
[ "Restore", "B6", "/", "M8", "entry", "to", "original", "format" ]
python
train
housecanary/hc-api-python
housecanary/apiclient.py
https://github.com/housecanary/hc-api-python/blob/2bb9e2208b34e8617575de45934357ee33b8531c/housecanary/apiclient.py#L218-L250
def _convert_to_identifier_json(self, address_data): """Convert input address data into json format""" if isinstance(address_data, str): # allow just passing a slug string. return {"slug": address_data} if isinstance(address_data, tuple) and len(address_data) > 0: address_json = {"address": address_data[0]} if len(address_data) > 1: address_json["zipcode"] = address_data[1] if len(address_data) > 2: address_json["meta"] = address_data[2] return address_json if isinstance(address_data, dict): allowed_keys = ["address", "zipcode", "unit", "city", "state", "slug", "meta", "client_value", "client_value_sqft"] # ensure the dict does not contain any unallowed keys for key in address_data: if key not in allowed_keys: msg = "Key in address input not allowed: " + key raise housecanary.exceptions.InvalidInputException(msg) # ensure it contains an "address" key if "address" in address_data or "slug" in address_data: return address_data # if we made it here, the input was not valid. msg = ("Input is invalid. Must be a list of (address, zipcode) tuples, or a dict or list" " of dicts with each item containing at least an 'address' or 'slug' key.") raise housecanary.exceptions.InvalidInputException((msg))
[ "def", "_convert_to_identifier_json", "(", "self", ",", "address_data", ")", ":", "if", "isinstance", "(", "address_data", ",", "str", ")", ":", "# allow just passing a slug string.", "return", "{", "\"slug\"", ":", "address_data", "}", "if", "isinstance", "(", "address_data", ",", "tuple", ")", "and", "len", "(", "address_data", ")", ">", "0", ":", "address_json", "=", "{", "\"address\"", ":", "address_data", "[", "0", "]", "}", "if", "len", "(", "address_data", ")", ">", "1", ":", "address_json", "[", "\"zipcode\"", "]", "=", "address_data", "[", "1", "]", "if", "len", "(", "address_data", ")", ">", "2", ":", "address_json", "[", "\"meta\"", "]", "=", "address_data", "[", "2", "]", "return", "address_json", "if", "isinstance", "(", "address_data", ",", "dict", ")", ":", "allowed_keys", "=", "[", "\"address\"", ",", "\"zipcode\"", ",", "\"unit\"", ",", "\"city\"", ",", "\"state\"", ",", "\"slug\"", ",", "\"meta\"", ",", "\"client_value\"", ",", "\"client_value_sqft\"", "]", "# ensure the dict does not contain any unallowed keys", "for", "key", "in", "address_data", ":", "if", "key", "not", "in", "allowed_keys", ":", "msg", "=", "\"Key in address input not allowed: \"", "+", "key", "raise", "housecanary", ".", "exceptions", ".", "InvalidInputException", "(", "msg", ")", "# ensure it contains an \"address\" key", "if", "\"address\"", "in", "address_data", "or", "\"slug\"", "in", "address_data", ":", "return", "address_data", "# if we made it here, the input was not valid.", "msg", "=", "(", "\"Input is invalid. Must be a list of (address, zipcode) tuples, or a dict or list\"", "\" of dicts with each item containing at least an 'address' or 'slug' key.\"", ")", "raise", "housecanary", ".", "exceptions", ".", "InvalidInputException", "(", "(", "msg", ")", ")" ]
Convert input address data into json format
[ "Convert", "input", "address", "data", "into", "json", "format" ]
python
train
pvlib/pvlib-python
pvlib/solarposition.py
https://github.com/pvlib/pvlib-python/blob/2e844a595b820b43d1170269781fa66bd0ccc8a3/pvlib/solarposition.py#L1313-L1355
def hour_angle(times, longitude, equation_of_time): """ Hour angle in local solar time. Zero at local solar noon. Parameters ---------- times : :class:`pandas.DatetimeIndex` Corresponding timestamps, must be localized to the timezone for the ``longitude``. longitude : numeric Longitude in degrees equation_of_time : numeric Equation of time in minutes. Returns ------- hour_angle : numeric Hour angle in local solar time in degrees. References ---------- [1] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition" pp. 13, J. Wiley and Sons, New York (2006) [2] J. H. Seinfeld and S. N. Pandis, "Atmospheric Chemistry and Physics" p. 132, J. Wiley (1998) [3] Daryl R. Myers, "Solar Radiation: Practical Modeling for Renewable Energy Applications", p. 5 CRC Press (2013) See Also -------- equation_of_time_Spencer71 equation_of_time_pvcdrom """ naive_times = times.tz_localize(None) # naive but still localized # hours - timezone = (times - normalized_times) - (naive_times - times) hrs_minus_tzs = 1 / NS_PER_HR * ( 2 * times.astype(np.int64) - times.normalize().astype(np.int64) - naive_times.astype(np.int64)) # ensure array return instead of a version-dependent pandas <T>Index return np.asarray( 15. * (hrs_minus_tzs - 12.) + longitude + equation_of_time / 4.)
[ "def", "hour_angle", "(", "times", ",", "longitude", ",", "equation_of_time", ")", ":", "naive_times", "=", "times", ".", "tz_localize", "(", "None", ")", "# naive but still localized", "# hours - timezone = (times - normalized_times) - (naive_times - times)", "hrs_minus_tzs", "=", "1", "/", "NS_PER_HR", "*", "(", "2", "*", "times", ".", "astype", "(", "np", ".", "int64", ")", "-", "times", ".", "normalize", "(", ")", ".", "astype", "(", "np", ".", "int64", ")", "-", "naive_times", ".", "astype", "(", "np", ".", "int64", ")", ")", "# ensure array return instead of a version-dependent pandas <T>Index", "return", "np", ".", "asarray", "(", "15.", "*", "(", "hrs_minus_tzs", "-", "12.", ")", "+", "longitude", "+", "equation_of_time", "/", "4.", ")" ]
Hour angle in local solar time. Zero at local solar noon. Parameters ---------- times : :class:`pandas.DatetimeIndex` Corresponding timestamps, must be localized to the timezone for the ``longitude``. longitude : numeric Longitude in degrees equation_of_time : numeric Equation of time in minutes. Returns ------- hour_angle : numeric Hour angle in local solar time in degrees. References ---------- [1] J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes, 3rd Edition" pp. 13, J. Wiley and Sons, New York (2006) [2] J. H. Seinfeld and S. N. Pandis, "Atmospheric Chemistry and Physics" p. 132, J. Wiley (1998) [3] Daryl R. Myers, "Solar Radiation: Practical Modeling for Renewable Energy Applications", p. 5 CRC Press (2013) See Also -------- equation_of_time_Spencer71 equation_of_time_pvcdrom
[ "Hour", "angle", "in", "local", "solar", "time", ".", "Zero", "at", "local", "solar", "noon", "." ]
python
train
shaunduncan/nosqlite
nosqlite.py
https://github.com/shaunduncan/nosqlite/blob/3033c029b7c8290c66a8b36dc512e560505d4c85/nosqlite.py#L133-L149
def update(self, document): """ Updates a document stored in this collection. If the document does not already have an '_id' value, it will be created """ if '_id' not in document: return self.insert(document) # Update the stored document, removing the id copy = document.copy() del copy['_id'] self.db.execute(""" update %s set data = ? where id = ? """ % self.name, (json.dumps(copy), document['_id'])) return document
[ "def", "update", "(", "self", ",", "document", ")", ":", "if", "'_id'", "not", "in", "document", ":", "return", "self", ".", "insert", "(", "document", ")", "# Update the stored document, removing the id", "copy", "=", "document", ".", "copy", "(", ")", "del", "copy", "[", "'_id'", "]", "self", ".", "db", ".", "execute", "(", "\"\"\"\n update %s set data = ? where id = ?\n \"\"\"", "%", "self", ".", "name", ",", "(", "json", ".", "dumps", "(", "copy", ")", ",", "document", "[", "'_id'", "]", ")", ")", "return", "document" ]
Updates a document stored in this collection. If the document does not already have an '_id' value, it will be created
[ "Updates", "a", "document", "stored", "in", "this", "collection", ".", "If", "the", "document", "does", "not", "already", "have", "an", "_id", "value", "it", "will", "be", "created" ]
python
train
Kane610/axis
axis/rtsp.py
https://github.com/Kane610/axis/blob/b2b44ce595c7b722b5e13eabcab7b91f048e1808/axis/rtsp.py#L231-L239
def SETUP(self): """Set up stream transport.""" message = "SETUP " + self.session.control_url + " RTSP/1.0\r\n" message += self.sequence message += self.authentication message += self.user_agent message += self.transport message += '\r\n' return message
[ "def", "SETUP", "(", "self", ")", ":", "message", "=", "\"SETUP \"", "+", "self", ".", "session", ".", "control_url", "+", "\" RTSP/1.0\\r\\n\"", "message", "+=", "self", ".", "sequence", "message", "+=", "self", ".", "authentication", "message", "+=", "self", ".", "user_agent", "message", "+=", "self", ".", "transport", "message", "+=", "'\\r\\n'", "return", "message" ]
Set up stream transport.
[ "Set", "up", "stream", "transport", "." ]
python
train
csparpa/pyowm
pyowm/weatherapi25/parsers/observationlistparser.py
https://github.com/csparpa/pyowm/blob/cdd59eb72f32f7238624ceef9b2e2329a5ebd472/pyowm/weatherapi25/parsers/observationlistparser.py#L20-L64
def parse_JSON(self, JSON_string): """ Parses a list of *Observation* instances out of raw JSON data. Only certain properties of the data are used: if these properties are not found or cannot be parsed, an error is issued. :param JSON_string: a raw JSON string :type JSON_string: str :returns: a list of *Observation* instances or ``None`` if no data is available :raises: *ParseResponseError* if it is impossible to find or parse the data needed to build the result, *APIResponseError* if the OWM API returns a HTTP status error """ if JSON_string is None: raise ParseResponseError('JSON data is None') d = json.loads(JSON_string) observation_parser = ObservationParser() if 'cod' in d: # Check if server returned errors: this check overcomes the lack of use # of HTTP error status codes by the OWM API 2.5. This mechanism is # supposed to be deprecated as soon as the API fully adopts HTTP for # conveying errors to the clients if d['cod'] == "200" or d['cod'] == 200: pass else: if d['cod'] == "404" or d['cod'] == 404: print("OWM API: data not found - response payload: " + json.dumps(d)) return None else: raise APIResponseError("OWM API: error - response payload: " + json.dumps(d), str(d['cod'])) # Handle the case when no results are found if 'count' in d and d['count'] == "0": return [] if 'cnt' in d and d['cnt'] == 0: return [] if 'list' in d: return [observation_parser.parse_JSON(json.dumps(item)) \ for item in d['list']] # no way out.. raise ParseResponseError(''.join([__name__, ': impossible to read JSON data']))
[ "def", "parse_JSON", "(", "self", ",", "JSON_string", ")", ":", "if", "JSON_string", "is", "None", ":", "raise", "ParseResponseError", "(", "'JSON data is None'", ")", "d", "=", "json", ".", "loads", "(", "JSON_string", ")", "observation_parser", "=", "ObservationParser", "(", ")", "if", "'cod'", "in", "d", ":", "# Check if server returned errors: this check overcomes the lack of use", "# of HTTP error status codes by the OWM API 2.5. This mechanism is", "# supposed to be deprecated as soon as the API fully adopts HTTP for", "# conveying errors to the clients", "if", "d", "[", "'cod'", "]", "==", "\"200\"", "or", "d", "[", "'cod'", "]", "==", "200", ":", "pass", "else", ":", "if", "d", "[", "'cod'", "]", "==", "\"404\"", "or", "d", "[", "'cod'", "]", "==", "404", ":", "print", "(", "\"OWM API: data not found - response payload: \"", "+", "json", ".", "dumps", "(", "d", ")", ")", "return", "None", "else", ":", "raise", "APIResponseError", "(", "\"OWM API: error - response payload: \"", "+", "json", ".", "dumps", "(", "d", ")", ",", "str", "(", "d", "[", "'cod'", "]", ")", ")", "# Handle the case when no results are found", "if", "'count'", "in", "d", "and", "d", "[", "'count'", "]", "==", "\"0\"", ":", "return", "[", "]", "if", "'cnt'", "in", "d", "and", "d", "[", "'cnt'", "]", "==", "0", ":", "return", "[", "]", "if", "'list'", "in", "d", ":", "return", "[", "observation_parser", ".", "parse_JSON", "(", "json", ".", "dumps", "(", "item", ")", ")", "for", "item", "in", "d", "[", "'list'", "]", "]", "# no way out..", "raise", "ParseResponseError", "(", "''", ".", "join", "(", "[", "__name__", ",", "': impossible to read JSON data'", "]", ")", ")" ]
Parses a list of *Observation* instances out of raw JSON data. Only certain properties of the data are used: if these properties are not found or cannot be parsed, an error is issued. :param JSON_string: a raw JSON string :type JSON_string: str :returns: a list of *Observation* instances or ``None`` if no data is available :raises: *ParseResponseError* if it is impossible to find or parse the data needed to build the result, *APIResponseError* if the OWM API returns a HTTP status error
[ "Parses", "a", "list", "of", "*", "Observation", "*", "instances", "out", "of", "raw", "JSON", "data", ".", "Only", "certain", "properties", "of", "the", "data", "are", "used", ":", "if", "these", "properties", "are", "not", "found", "or", "cannot", "be", "parsed", "an", "error", "is", "issued", "." ]
python
train
spoqa/tsukkomi
tsukkomi/typed.py
https://github.com/spoqa/tsukkomi/blob/c67bd28a5211cdd11f8ac81f109c915f3b780445/tsukkomi/typed.py#L109-L142
def check_tuple(data: typing.Tuple, hint: typing.Union[type, typing.TypingMeta]) -> bool: """Check argument type & return type of :class:`typing.Tuple`. since it raises check :class:`typing.Tuple` using `isinstance`, so compare in diffrent way :param data: tuple given as a argument :param hint: assumed type of given ``data`` """ if not isinstance(data, tuple): raise TypeError( 'expected {}, not {}'.format( typing._type_repr(hint), 'None' if data is None else '{}: {!r}'.format( typing._type_repr(type(data)), data ) ) ) tuple_param = hint.__tuple_params__ if len(data) != len(tuple_param): raise TypeError('expected tuple size is {}, not {}: ' '{!r}'.format(len(tuple_param), len(data), data)) zipped = itertools.zip_longest(data, tuple_param) for i, (v, t) in enumerate(zipped): _, correct = check_type(v, t) if not correct: raise TypeError( '{0}th item `{1}` in tuple must be {2!r}, not: {3!r}'.format( i, v, t, v ) ) return hint, True
[ "def", "check_tuple", "(", "data", ":", "typing", ".", "Tuple", ",", "hint", ":", "typing", ".", "Union", "[", "type", ",", "typing", ".", "TypingMeta", "]", ")", "->", "bool", ":", "if", "not", "isinstance", "(", "data", ",", "tuple", ")", ":", "raise", "TypeError", "(", "'expected {}, not {}'", ".", "format", "(", "typing", ".", "_type_repr", "(", "hint", ")", ",", "'None'", "if", "data", "is", "None", "else", "'{}: {!r}'", ".", "format", "(", "typing", ".", "_type_repr", "(", "type", "(", "data", ")", ")", ",", "data", ")", ")", ")", "tuple_param", "=", "hint", ".", "__tuple_params__", "if", "len", "(", "data", ")", "!=", "len", "(", "tuple_param", ")", ":", "raise", "TypeError", "(", "'expected tuple size is {}, not {}: '", "'{!r}'", ".", "format", "(", "len", "(", "tuple_param", ")", ",", "len", "(", "data", ")", ",", "data", ")", ")", "zipped", "=", "itertools", ".", "zip_longest", "(", "data", ",", "tuple_param", ")", "for", "i", ",", "(", "v", ",", "t", ")", "in", "enumerate", "(", "zipped", ")", ":", "_", ",", "correct", "=", "check_type", "(", "v", ",", "t", ")", "if", "not", "correct", ":", "raise", "TypeError", "(", "'{0}th item `{1}` in tuple must be {2!r}, not: {3!r}'", ".", "format", "(", "i", ",", "v", ",", "t", ",", "v", ")", ")", "return", "hint", ",", "True" ]
Check argument type & return type of :class:`typing.Tuple`. since it raises check :class:`typing.Tuple` using `isinstance`, so compare in diffrent way :param data: tuple given as a argument :param hint: assumed type of given ``data``
[ "Check", "argument", "type", "&", "return", "type", "of", ":", "class", ":", "typing", ".", "Tuple", ".", "since", "it", "raises", "check", ":", "class", ":", "typing", ".", "Tuple", "using", "isinstance", "so", "compare", "in", "diffrent", "way" ]
python
train
etcher-be/epab
epab/cmd/_chglog.py
https://github.com/etcher-be/epab/blob/024cde74d058281aa66e6e4b7b71dccbe803b1c1/epab/cmd/_chglog.py#L53-L63
def temporary_tag(tag): """ Temporarily tags the repo """ if tag: CTX.repo.tag(tag) try: yield finally: if tag: CTX.repo.remove_tag(tag)
[ "def", "temporary_tag", "(", "tag", ")", ":", "if", "tag", ":", "CTX", ".", "repo", ".", "tag", "(", "tag", ")", "try", ":", "yield", "finally", ":", "if", "tag", ":", "CTX", ".", "repo", ".", "remove_tag", "(", "tag", ")" ]
Temporarily tags the repo
[ "Temporarily", "tags", "the", "repo" ]
python
train
elliterate/capybara.py
capybara/session.py
https://github.com/elliterate/capybara.py/blob/0c6ae449cc37e4445ec3cd6af95674533beedc6c/capybara/session.py#L532-L546
def dismiss_confirm(self, text=None, wait=None): """ Execute the wrapped code, dismissing a confirm. Args: text (str | RegexObject, optional): Text to match against the text in the modal. wait (int | float, optional): Maximum time to wait for the modal to appear after executing the wrapped code. Raises: ModalNotFound: If a modal dialog hasn't been found. """ with self.driver.dismiss_modal("confirm", text=text, wait=wait): yield
[ "def", "dismiss_confirm", "(", "self", ",", "text", "=", "None", ",", "wait", "=", "None", ")", ":", "with", "self", ".", "driver", ".", "dismiss_modal", "(", "\"confirm\"", ",", "text", "=", "text", ",", "wait", "=", "wait", ")", ":", "yield" ]
Execute the wrapped code, dismissing a confirm. Args: text (str | RegexObject, optional): Text to match against the text in the modal. wait (int | float, optional): Maximum time to wait for the modal to appear after executing the wrapped code. Raises: ModalNotFound: If a modal dialog hasn't been found.
[ "Execute", "the", "wrapped", "code", "dismissing", "a", "confirm", "." ]
python
test
thespacedoctor/fundamentals
fundamentals/mysql/readquery.py
https://github.com/thespacedoctor/fundamentals/blob/1d2c007ac74442ec2eabde771cfcacdb9c1ab382/fundamentals/mysql/readquery.py#L19-L79
def readquery( sqlQuery, dbConn, log, quiet=False): """Given a mysql query, read the data from the database and return the results as a list of dictionaries (database rows) **Key Arguments:** - ``log`` -- the logger. - ``sqlQuery`` -- the MySQL command to execute - ``dbConn`` -- the db connection - ``quiet`` -- ignore mysql warnings and errors and move on. Be careful when setting this to true - damaging errors can easily be missed. Default *False*. **Return:** - ``rows`` -- the rows returned by the sql query **Usage:** .. code-block:: python from fundamentals.mysql import readquery rows = readquery( log=log, sqlQuery=sqlQuery, dbConn=dbConn, quiet=False ) """ log.debug('starting the ``readquery`` function') import pymysql import warnings warnings.filterwarnings('error', category=pymysql.Warning) rows = [] try: cursor = dbConn.cursor(pymysql.cursors.DictCursor) except Exception as e: log.error('could not create the database cursor: %s' % (e, )) raise IOError('could not create the database cursor: %s' % (e, )) # EXECUTE THE SQL COMMAND cursor.execute(sqlQuery) rows = cursor.fetchall() try: cursor.execute(sqlQuery) rows = cursor.fetchall() except Exception as e: sqlQuery = sqlQuery[:1000] if quiet == False: log.warning( 'MySQL raised an error - read command not executed.\n' + str(e) + '\nHere is the sqlQuery\n\t%(sqlQuery)s' % locals()) raise e # CLOSE THE CURSOR try: cursor.close() except Exception as e: log.warning('could not close the db cursor ' + str(e) + '\n') log.debug('completed the ``readquery`` function') return rows
[ "def", "readquery", "(", "sqlQuery", ",", "dbConn", ",", "log", ",", "quiet", "=", "False", ")", ":", "log", ".", "debug", "(", "'starting the ``readquery`` function'", ")", "import", "pymysql", "import", "warnings", "warnings", ".", "filterwarnings", "(", "'error'", ",", "category", "=", "pymysql", ".", "Warning", ")", "rows", "=", "[", "]", "try", ":", "cursor", "=", "dbConn", ".", "cursor", "(", "pymysql", ".", "cursors", ".", "DictCursor", ")", "except", "Exception", "as", "e", ":", "log", ".", "error", "(", "'could not create the database cursor: %s'", "%", "(", "e", ",", ")", ")", "raise", "IOError", "(", "'could not create the database cursor: %s'", "%", "(", "e", ",", ")", ")", "# EXECUTE THE SQL COMMAND", "cursor", ".", "execute", "(", "sqlQuery", ")", "rows", "=", "cursor", ".", "fetchall", "(", ")", "try", ":", "cursor", ".", "execute", "(", "sqlQuery", ")", "rows", "=", "cursor", ".", "fetchall", "(", ")", "except", "Exception", "as", "e", ":", "sqlQuery", "=", "sqlQuery", "[", ":", "1000", "]", "if", "quiet", "==", "False", ":", "log", ".", "warning", "(", "'MySQL raised an error - read command not executed.\\n'", "+", "str", "(", "e", ")", "+", "'\\nHere is the sqlQuery\\n\\t%(sqlQuery)s'", "%", "locals", "(", ")", ")", "raise", "e", "# CLOSE THE CURSOR", "try", ":", "cursor", ".", "close", "(", ")", "except", "Exception", "as", "e", ":", "log", ".", "warning", "(", "'could not close the db cursor '", "+", "str", "(", "e", ")", "+", "'\\n'", ")", "log", ".", "debug", "(", "'completed the ``readquery`` function'", ")", "return", "rows" ]
Given a mysql query, read the data from the database and return the results as a list of dictionaries (database rows) **Key Arguments:** - ``log`` -- the logger. - ``sqlQuery`` -- the MySQL command to execute - ``dbConn`` -- the db connection - ``quiet`` -- ignore mysql warnings and errors and move on. Be careful when setting this to true - damaging errors can easily be missed. Default *False*. **Return:** - ``rows`` -- the rows returned by the sql query **Usage:** .. code-block:: python from fundamentals.mysql import readquery rows = readquery( log=log, sqlQuery=sqlQuery, dbConn=dbConn, quiet=False )
[ "Given", "a", "mysql", "query", "read", "the", "data", "from", "the", "database", "and", "return", "the", "results", "as", "a", "list", "of", "dictionaries", "(", "database", "rows", ")" ]
python
train
apple/turicreate
src/unity/python/turicreate/toolkits/_tree_model_mixin.py
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/toolkits/_tree_model_mixin.py#L122-L189
def _extract_features_with_missing(self, dataset, tree_id = 0, missing_value_action = 'auto'): """ Extract features along with all the missing features associated with a dataset. Parameters ---------- dataset: bool Dataset on which to make predictions. missing_value_action: str, optional Action to perform when missing values are encountered. This can be one of: - 'auto': Choose a model dependent missing value policy. - 'impute': Proceed with evaluation by filling in the missing values with the mean of the training data. Missing values are also imputed if an entire column of data is missing during evaluation. - 'none': Treat missing value as is. Model must be able to handle missing value. - 'error' : Do not proceed with prediction and terminate with an error message. Returns ------- out : SFrame A table with two columns: - leaf_id : Leaf id of the corresponding tree. - missing_features : A list of missing feature, index pairs """ # Extract the features from only one tree. sf = dataset sf['leaf_id'] = self.extract_features(dataset, missing_value_action)\ .vector_slice(tree_id)\ .astype(int) tree = self._get_tree(tree_id) type_map = dict(zip(dataset.column_names(), dataset.column_types())) def get_missing_features(row): x = row['leaf_id'] path = tree.get_prediction_path(x) missing_id = [] # List of "missing_id" children. # For each node in the prediction path. for p in path: fname = p['feature'] idx = p['index'] f = row[fname] if type_map[fname] in [int, float]: if f is None: missing_id.append(p['child_id']) elif type_map[fname] in [dict]: if f is None: missing_id.append(p['child_id']) if idx not in f: missing_id.append(p['child_id']) else: pass return missing_id sf['missing_id'] = sf.apply(get_missing_features, list) return sf[['leaf_id', 'missing_id']]
[ "def", "_extract_features_with_missing", "(", "self", ",", "dataset", ",", "tree_id", "=", "0", ",", "missing_value_action", "=", "'auto'", ")", ":", "# Extract the features from only one tree.", "sf", "=", "dataset", "sf", "[", "'leaf_id'", "]", "=", "self", ".", "extract_features", "(", "dataset", ",", "missing_value_action", ")", ".", "vector_slice", "(", "tree_id", ")", ".", "astype", "(", "int", ")", "tree", "=", "self", ".", "_get_tree", "(", "tree_id", ")", "type_map", "=", "dict", "(", "zip", "(", "dataset", ".", "column_names", "(", ")", ",", "dataset", ".", "column_types", "(", ")", ")", ")", "def", "get_missing_features", "(", "row", ")", ":", "x", "=", "row", "[", "'leaf_id'", "]", "path", "=", "tree", ".", "get_prediction_path", "(", "x", ")", "missing_id", "=", "[", "]", "# List of \"missing_id\" children.", "# For each node in the prediction path.", "for", "p", "in", "path", ":", "fname", "=", "p", "[", "'feature'", "]", "idx", "=", "p", "[", "'index'", "]", "f", "=", "row", "[", "fname", "]", "if", "type_map", "[", "fname", "]", "in", "[", "int", ",", "float", "]", ":", "if", "f", "is", "None", ":", "missing_id", ".", "append", "(", "p", "[", "'child_id'", "]", ")", "elif", "type_map", "[", "fname", "]", "in", "[", "dict", "]", ":", "if", "f", "is", "None", ":", "missing_id", ".", "append", "(", "p", "[", "'child_id'", "]", ")", "if", "idx", "not", "in", "f", ":", "missing_id", ".", "append", "(", "p", "[", "'child_id'", "]", ")", "else", ":", "pass", "return", "missing_id", "sf", "[", "'missing_id'", "]", "=", "sf", ".", "apply", "(", "get_missing_features", ",", "list", ")", "return", "sf", "[", "[", "'leaf_id'", ",", "'missing_id'", "]", "]" ]
Extract features along with all the missing features associated with a dataset. Parameters ---------- dataset: bool Dataset on which to make predictions. missing_value_action: str, optional Action to perform when missing values are encountered. This can be one of: - 'auto': Choose a model dependent missing value policy. - 'impute': Proceed with evaluation by filling in the missing values with the mean of the training data. Missing values are also imputed if an entire column of data is missing during evaluation. - 'none': Treat missing value as is. Model must be able to handle missing value. - 'error' : Do not proceed with prediction and terminate with an error message. Returns ------- out : SFrame A table with two columns: - leaf_id : Leaf id of the corresponding tree. - missing_features : A list of missing feature, index pairs
[ "Extract", "features", "along", "with", "all", "the", "missing", "features", "associated", "with", "a", "dataset", "." ]
python
train
eddiejessup/agaro
agaro/runner.py
https://github.com/eddiejessup/agaro/blob/b2feb45d6129d749088c70b3e9290af7ca7c7d33/agaro/runner.py#L105-L111
def is_snapshot_time(self, output_every=None, t_output_every=None): """Determine whether or not the model's iteration number is one where the runner is expected to make an output snapshot. """ if t_output_every is not None: output_every = int(round(t_output_every // self.model.dt)) return not self.model.i % output_every
[ "def", "is_snapshot_time", "(", "self", ",", "output_every", "=", "None", ",", "t_output_every", "=", "None", ")", ":", "if", "t_output_every", "is", "not", "None", ":", "output_every", "=", "int", "(", "round", "(", "t_output_every", "//", "self", ".", "model", ".", "dt", ")", ")", "return", "not", "self", ".", "model", ".", "i", "%", "output_every" ]
Determine whether or not the model's iteration number is one where the runner is expected to make an output snapshot.
[ "Determine", "whether", "or", "not", "the", "model", "s", "iteration", "number", "is", "one", "where", "the", "runner", "is", "expected", "to", "make", "an", "output", "snapshot", "." ]
python
train
Esri/ArcREST
src/arcrest/common/symbology.py
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/common/symbology.py#L157-L182
def value(self): """returns the object as dictionary""" if self._outline is None: return { "type" : "esriSMS", "style" : self._style, "color" : self._color.value, "size" : self._size, "angle" : self._angle, "xoffset" : self._xoffset, "yoffset" : self._yoffset } else: return { "type" : "esriSMS", "style" : self._style, "color" : self._color.value, "size" : self._size, "angle" : self._angle, "xoffset" : self._xoffset, "yoffset" : self._yoffset, "outline" : { "width" : self._outline['width'], "color" : self._color.value } }
[ "def", "value", "(", "self", ")", ":", "if", "self", ".", "_outline", "is", "None", ":", "return", "{", "\"type\"", ":", "\"esriSMS\"", ",", "\"style\"", ":", "self", ".", "_style", ",", "\"color\"", ":", "self", ".", "_color", ".", "value", ",", "\"size\"", ":", "self", ".", "_size", ",", "\"angle\"", ":", "self", ".", "_angle", ",", "\"xoffset\"", ":", "self", ".", "_xoffset", ",", "\"yoffset\"", ":", "self", ".", "_yoffset", "}", "else", ":", "return", "{", "\"type\"", ":", "\"esriSMS\"", ",", "\"style\"", ":", "self", ".", "_style", ",", "\"color\"", ":", "self", ".", "_color", ".", "value", ",", "\"size\"", ":", "self", ".", "_size", ",", "\"angle\"", ":", "self", ".", "_angle", ",", "\"xoffset\"", ":", "self", ".", "_xoffset", ",", "\"yoffset\"", ":", "self", ".", "_yoffset", ",", "\"outline\"", ":", "{", "\"width\"", ":", "self", ".", "_outline", "[", "'width'", "]", ",", "\"color\"", ":", "self", ".", "_color", ".", "value", "}", "}" ]
returns the object as dictionary
[ "returns", "the", "object", "as", "dictionary" ]
python
train
Cue/scales
src/greplin/scales/util.py
https://github.com/Cue/scales/blob/0aced26eb050ceb98ee9d5d6cdca8db448666986/src/greplin/scales/util.py#L85-L93
def disconnect(self): """Disconnect from the Graphite server if connected.""" if self.sock is not None: try: self.sock.close() except socket.error: pass finally: self.sock = None
[ "def", "disconnect", "(", "self", ")", ":", "if", "self", ".", "sock", "is", "not", "None", ":", "try", ":", "self", ".", "sock", ".", "close", "(", ")", "except", "socket", ".", "error", ":", "pass", "finally", ":", "self", ".", "sock", "=", "None" ]
Disconnect from the Graphite server if connected.
[ "Disconnect", "from", "the", "Graphite", "server", "if", "connected", "." ]
python
train
dcos/shakedown
shakedown/dcos/task.py
https://github.com/dcos/shakedown/blob/e2f9e2382788dbcd29bd18aa058b76e7c3b83b3e/shakedown/dcos/task.py#L118-L120
def wait_for_task(service, task, timeout_sec=120): """Waits for a task which was launched to be launched""" return time_wait(lambda: task_predicate(service, task), timeout_seconds=timeout_sec)
[ "def", "wait_for_task", "(", "service", ",", "task", ",", "timeout_sec", "=", "120", ")", ":", "return", "time_wait", "(", "lambda", ":", "task_predicate", "(", "service", ",", "task", ")", ",", "timeout_seconds", "=", "timeout_sec", ")" ]
Waits for a task which was launched to be launched
[ "Waits", "for", "a", "task", "which", "was", "launched", "to", "be", "launched" ]
python
train
Robpol86/libnl
libnl/linux_private/genetlink.py
https://github.com/Robpol86/libnl/blob/274e9fdaa39822d06ef70b799ed4a95937a4d923/libnl/linux_private/genetlink.py#L71-L73
def reserved(self, value): """Reserved setter.""" self.bytearray[self._get_slicers(2)] = bytearray(c_uint16(value or 0))
[ "def", "reserved", "(", "self", ",", "value", ")", ":", "self", ".", "bytearray", "[", "self", ".", "_get_slicers", "(", "2", ")", "]", "=", "bytearray", "(", "c_uint16", "(", "value", "or", "0", ")", ")" ]
Reserved setter.
[ "Reserved", "setter", "." ]
python
train
KelSolaar/Umbra
umbra/ui/widgets/basic_QPlainTextEdit.py
https://github.com/KelSolaar/Umbra/blob/66f45f08d9d723787f1191989f8b0dda84b412ce/umbra/ui/widgets/basic_QPlainTextEdit.py#L612-L637
def duplicate_lines(self): """ Duplicates the document lines under cursor. :return: Method success. :rtype: bool """ cursor = self.textCursor() self.__select_text_under_cursor_blocks(cursor) text = cursor.selectedText() cursor.setPosition(cursor.block().next().position()) cursor.position() == cursor.document().firstBlock().position() and cursor.setPosition( cursor.document().lastBlock().position()) start_position = cursor.position() cursor.insertText(text) end_position = cursor.position() cursor.insertText(QChar(QChar.ParagraphSeparator)) cursor.setPosition(start_position, QTextCursor.MoveAnchor) cursor.setPosition(end_position, QTextCursor.KeepAnchor) self.setTextCursor(cursor) return True
[ "def", "duplicate_lines", "(", "self", ")", ":", "cursor", "=", "self", ".", "textCursor", "(", ")", "self", ".", "__select_text_under_cursor_blocks", "(", "cursor", ")", "text", "=", "cursor", ".", "selectedText", "(", ")", "cursor", ".", "setPosition", "(", "cursor", ".", "block", "(", ")", ".", "next", "(", ")", ".", "position", "(", ")", ")", "cursor", ".", "position", "(", ")", "==", "cursor", ".", "document", "(", ")", ".", "firstBlock", "(", ")", ".", "position", "(", ")", "and", "cursor", ".", "setPosition", "(", "cursor", ".", "document", "(", ")", ".", "lastBlock", "(", ")", ".", "position", "(", ")", ")", "start_position", "=", "cursor", ".", "position", "(", ")", "cursor", ".", "insertText", "(", "text", ")", "end_position", "=", "cursor", ".", "position", "(", ")", "cursor", ".", "insertText", "(", "QChar", "(", "QChar", ".", "ParagraphSeparator", ")", ")", "cursor", ".", "setPosition", "(", "start_position", ",", "QTextCursor", ".", "MoveAnchor", ")", "cursor", ".", "setPosition", "(", "end_position", ",", "QTextCursor", ".", "KeepAnchor", ")", "self", ".", "setTextCursor", "(", "cursor", ")", "return", "True" ]
Duplicates the document lines under cursor. :return: Method success. :rtype: bool
[ "Duplicates", "the", "document", "lines", "under", "cursor", "." ]
python
train
mitsei/dlkit
dlkit/records/assessment/qti/numeric_response_records.py
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/records/assessment/qti/numeric_response_records.py#L905-L931
def _init_metadata(self): """stub""" DecimalValuesFormRecord._init_metadata(self) IntegerValuesFormRecord._init_metadata(self) TextAnswerFormRecord._init_metadata(self) super(MultiLanguageCalculationInteractionFeedbackAndFilesAnswerFormRecord, self)._init_metadata() self._tolerance_mode_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'tolerance_mode'), 'element_label': 'tolerance_mode', 'instructions': 'enter the tolerance mode', 'required': True, 'read_only': False, 'linked': False, 'array': False, 'default_string_values': [{ 'text': '', 'languageTypeId': str(DEFAULT_LANGUAGE_TYPE), 'scriptTypeId': str(DEFAULT_SCRIPT_TYPE), 'formatTypeId': str(DEFAULT_FORMAT_TYPE), }], 'syntax': 'STRING', 'minimum_string_length': 0, 'maximum_string_length': 1024, 'string_set': [] }
[ "def", "_init_metadata", "(", "self", ")", ":", "DecimalValuesFormRecord", ".", "_init_metadata", "(", "self", ")", "IntegerValuesFormRecord", ".", "_init_metadata", "(", "self", ")", "TextAnswerFormRecord", ".", "_init_metadata", "(", "self", ")", "super", "(", "MultiLanguageCalculationInteractionFeedbackAndFilesAnswerFormRecord", ",", "self", ")", ".", "_init_metadata", "(", ")", "self", ".", "_tolerance_mode_metadata", "=", "{", "'element_id'", ":", "Id", "(", "self", ".", "my_osid_object_form", ".", "_authority", ",", "self", ".", "my_osid_object_form", ".", "_namespace", ",", "'tolerance_mode'", ")", ",", "'element_label'", ":", "'tolerance_mode'", ",", "'instructions'", ":", "'enter the tolerance mode'", ",", "'required'", ":", "True", ",", "'read_only'", ":", "False", ",", "'linked'", ":", "False", ",", "'array'", ":", "False", ",", "'default_string_values'", ":", "[", "{", "'text'", ":", "''", ",", "'languageTypeId'", ":", "str", "(", "DEFAULT_LANGUAGE_TYPE", ")", ",", "'scriptTypeId'", ":", "str", "(", "DEFAULT_SCRIPT_TYPE", ")", ",", "'formatTypeId'", ":", "str", "(", "DEFAULT_FORMAT_TYPE", ")", ",", "}", "]", ",", "'syntax'", ":", "'STRING'", ",", "'minimum_string_length'", ":", "0", ",", "'maximum_string_length'", ":", "1024", ",", "'string_set'", ":", "[", "]", "}" ]
stub
[ "stub" ]
python
train
UCBerkeleySETI/blimpy
blimpy/waterfall.py
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/waterfall.py#L509-L539
def grab_data(self, f_start=None, f_stop=None,t_start=None, t_stop=None, if_id=0): """ Extract a portion of data by frequency range. Args: f_start (float): start frequency in MHz f_stop (float): stop frequency in MHz if_id (int): IF input identification (req. when multiple IFs in file) Returns: (freqs, data) (np.arrays): frequency axis in MHz and data subset """ self.freqs = self.populate_freqs() self.timestamps = self.populate_timestamps() if f_start is None: f_start = self.freqs[0] if f_stop is None: f_stop = self.freqs[-1] i0 = np.argmin(np.abs(self.freqs - f_start)) i1 = np.argmin(np.abs(self.freqs - f_stop)) if i0 < i1: plot_f = self.freqs[i0:i1 + 1] plot_data = np.squeeze(self.data[t_start:t_stop, ..., i0:i1 + 1]) else: plot_f = self.freqs[i1:i0 + 1] plot_data = np.squeeze(self.data[t_start:t_stop, ..., i1:i0 + 1]) return plot_f, plot_data
[ "def", "grab_data", "(", "self", ",", "f_start", "=", "None", ",", "f_stop", "=", "None", ",", "t_start", "=", "None", ",", "t_stop", "=", "None", ",", "if_id", "=", "0", ")", ":", "self", ".", "freqs", "=", "self", ".", "populate_freqs", "(", ")", "self", ".", "timestamps", "=", "self", ".", "populate_timestamps", "(", ")", "if", "f_start", "is", "None", ":", "f_start", "=", "self", ".", "freqs", "[", "0", "]", "if", "f_stop", "is", "None", ":", "f_stop", "=", "self", ".", "freqs", "[", "-", "1", "]", "i0", "=", "np", ".", "argmin", "(", "np", ".", "abs", "(", "self", ".", "freqs", "-", "f_start", ")", ")", "i1", "=", "np", ".", "argmin", "(", "np", ".", "abs", "(", "self", ".", "freqs", "-", "f_stop", ")", ")", "if", "i0", "<", "i1", ":", "plot_f", "=", "self", ".", "freqs", "[", "i0", ":", "i1", "+", "1", "]", "plot_data", "=", "np", ".", "squeeze", "(", "self", ".", "data", "[", "t_start", ":", "t_stop", ",", "...", ",", "i0", ":", "i1", "+", "1", "]", ")", "else", ":", "plot_f", "=", "self", ".", "freqs", "[", "i1", ":", "i0", "+", "1", "]", "plot_data", "=", "np", ".", "squeeze", "(", "self", ".", "data", "[", "t_start", ":", "t_stop", ",", "...", ",", "i1", ":", "i0", "+", "1", "]", ")", "return", "plot_f", ",", "plot_data" ]
Extract a portion of data by frequency range. Args: f_start (float): start frequency in MHz f_stop (float): stop frequency in MHz if_id (int): IF input identification (req. when multiple IFs in file) Returns: (freqs, data) (np.arrays): frequency axis in MHz and data subset
[ "Extract", "a", "portion", "of", "data", "by", "frequency", "range", "." ]
python
test
kontron/python-ipmi
pyipmi/interfaces/rmcp.py
https://github.com/kontron/python-ipmi/blob/ce46da47a37dd683615f32d04a10eda069aa569a/pyipmi/interfaces/rmcp.py#L541-L555
def send_and_receive_raw(self, target, lun, netfn, raw_bytes): """Interface function to send and receive raw message. target: IPMI target lun: logical unit number netfn: network function raw_bytes: RAW bytes as bytestring Returns the IPMI message response bytestring. """ return self._send_and_receive(target=target, lun=lun, netfn=netfn, cmdid=array('B', raw_bytes)[0], payload=raw_bytes[1:])
[ "def", "send_and_receive_raw", "(", "self", ",", "target", ",", "lun", ",", "netfn", ",", "raw_bytes", ")", ":", "return", "self", ".", "_send_and_receive", "(", "target", "=", "target", ",", "lun", "=", "lun", ",", "netfn", "=", "netfn", ",", "cmdid", "=", "array", "(", "'B'", ",", "raw_bytes", ")", "[", "0", "]", ",", "payload", "=", "raw_bytes", "[", "1", ":", "]", ")" ]
Interface function to send and receive raw message. target: IPMI target lun: logical unit number netfn: network function raw_bytes: RAW bytes as bytestring Returns the IPMI message response bytestring.
[ "Interface", "function", "to", "send", "and", "receive", "raw", "message", "." ]
python
train
elastic/elasticsearch-dsl-py
elasticsearch_dsl/index.py
https://github.com/elastic/elasticsearch-dsl-py/blob/874b52472fc47b601de0e5fa0e4300e21aff0085/elasticsearch_dsl/index.py#L454-L461
def get_settings(self, using=None, **kwargs): """ Retrieve settings for the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.get_settings`` unchanged. """ return self._get_connection(using).indices.get_settings(index=self._name, **kwargs)
[ "def", "get_settings", "(", "self", ",", "using", "=", "None", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "_get_connection", "(", "using", ")", ".", "indices", ".", "get_settings", "(", "index", "=", "self", ".", "_name", ",", "*", "*", "kwargs", ")" ]
Retrieve settings for the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.get_settings`` unchanged.
[ "Retrieve", "settings", "for", "the", "index", "." ]
python
train
openstack/horizon
openstack_dashboard/api/keystone.py
https://github.com/openstack/horizon/blob/5601ea9477323e599d9b766fcac1f8be742935b2/openstack_dashboard/api/keystone.py#L671-L696
def get_project_groups_roles(request, project): """Gets the groups roles in a given project. :param request: the request entity containing the login user information :param project: the project to filter the groups roles. It accepts both project object resource or project ID :returns group_roles: a dictionary mapping the groups and their roles in given project """ groups_roles = collections.defaultdict(list) project_role_assignments = role_assignments_list(request, project=project) for role_assignment in project_role_assignments: if not hasattr(role_assignment, 'group'): continue group_id = role_assignment.group['id'] role_id = role_assignment.role['id'] # filter by project_id if ('project' in role_assignment.scope and role_assignment.scope['project']['id'] == project): groups_roles[group_id].append(role_id) return groups_roles
[ "def", "get_project_groups_roles", "(", "request", ",", "project", ")", ":", "groups_roles", "=", "collections", ".", "defaultdict", "(", "list", ")", "project_role_assignments", "=", "role_assignments_list", "(", "request", ",", "project", "=", "project", ")", "for", "role_assignment", "in", "project_role_assignments", ":", "if", "not", "hasattr", "(", "role_assignment", ",", "'group'", ")", ":", "continue", "group_id", "=", "role_assignment", ".", "group", "[", "'id'", "]", "role_id", "=", "role_assignment", ".", "role", "[", "'id'", "]", "# filter by project_id", "if", "(", "'project'", "in", "role_assignment", ".", "scope", "and", "role_assignment", ".", "scope", "[", "'project'", "]", "[", "'id'", "]", "==", "project", ")", ":", "groups_roles", "[", "group_id", "]", ".", "append", "(", "role_id", ")", "return", "groups_roles" ]
Gets the groups roles in a given project. :param request: the request entity containing the login user information :param project: the project to filter the groups roles. It accepts both project object resource or project ID :returns group_roles: a dictionary mapping the groups and their roles in given project
[ "Gets", "the", "groups", "roles", "in", "a", "given", "project", "." ]
python
train
google/grr
grr/core/grr_response_core/lib/communicator.py
https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/core/grr_response_core/lib/communicator.py#L242-L263
def VerifyCipherSignature(self, remote_public_key): """Verifies the signature on the encrypted cipher block. This method returns True if the signature verifies correctly with the key given. Args: remote_public_key: The remote public key. Returns: None Raises: rdf_crypto.VerificationError: A signature and a key were both given but verification fails. """ if self.cipher_metadata.signature and remote_public_key: stats_collector_instance.Get().IncrementCounter("grr_rsa_operations") remote_public_key.Verify(self.serialized_cipher, self.cipher_metadata.signature) return True
[ "def", "VerifyCipherSignature", "(", "self", ",", "remote_public_key", ")", ":", "if", "self", ".", "cipher_metadata", ".", "signature", "and", "remote_public_key", ":", "stats_collector_instance", ".", "Get", "(", ")", ".", "IncrementCounter", "(", "\"grr_rsa_operations\"", ")", "remote_public_key", ".", "Verify", "(", "self", ".", "serialized_cipher", ",", "self", ".", "cipher_metadata", ".", "signature", ")", "return", "True" ]
Verifies the signature on the encrypted cipher block. This method returns True if the signature verifies correctly with the key given. Args: remote_public_key: The remote public key. Returns: None Raises: rdf_crypto.VerificationError: A signature and a key were both given but verification fails.
[ "Verifies", "the", "signature", "on", "the", "encrypted", "cipher", "block", "." ]
python
train
PSPC-SPAC-buyandsell/von_agent
von_agent/agent/holder_prover.py
https://github.com/PSPC-SPAC-buyandsell/von_agent/blob/0b1c17cca3bd178b6e6974af84dbac1dfce5cf45/von_agent/agent/holder_prover.py#L690-L738
async def get_box_ids_json(self) -> str: """ Return json object on lists of all unique box identifiers for credentials in wallet: schema identifiers, credential definition identifiers, and revocation registry identifiers; e.g., :: { "schema_id": [ "R17v42T4pk...:2:tombstone:1.2", "9cHbp54C8n...:2:business:2.0", ... ], "cred_def_id": [ "R17v42T4pk...:3:CL:19:0", "9cHbp54C8n...:3:CL:37:0", ... ] "rev_reg_id": [ "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:0", "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:0", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:2", ... ] } :return: tuple of sets for schema ids, cred def ids, rev reg ids """ LOGGER.debug('HolderProver.get_box_ids_json >>>') s_ids = set() cd_ids = set() rr_ids = set() for cred in json.loads(await self.get_creds_display_coarse()): s_ids.add(cred['schema_id']) cd_ids.add(cred['cred_def_id']) if cred['rev_reg_id']: rr_ids.add(cred['rev_reg_id']) rv = json.dumps({ 'schema_id': list(s_ids), 'cred_def_id': list(cd_ids), 'rev_reg_id': list(rr_ids) }) LOGGER.debug('HolderProver.get_box_ids_json <<< %s', rv) return rv
[ "async", "def", "get_box_ids_json", "(", "self", ")", "->", "str", ":", "LOGGER", ".", "debug", "(", "'HolderProver.get_box_ids_json >>>'", ")", "s_ids", "=", "set", "(", ")", "cd_ids", "=", "set", "(", ")", "rr_ids", "=", "set", "(", ")", "for", "cred", "in", "json", ".", "loads", "(", "await", "self", ".", "get_creds_display_coarse", "(", ")", ")", ":", "s_ids", ".", "add", "(", "cred", "[", "'schema_id'", "]", ")", "cd_ids", ".", "add", "(", "cred", "[", "'cred_def_id'", "]", ")", "if", "cred", "[", "'rev_reg_id'", "]", ":", "rr_ids", ".", "add", "(", "cred", "[", "'rev_reg_id'", "]", ")", "rv", "=", "json", ".", "dumps", "(", "{", "'schema_id'", ":", "list", "(", "s_ids", ")", ",", "'cred_def_id'", ":", "list", "(", "cd_ids", ")", ",", "'rev_reg_id'", ":", "list", "(", "rr_ids", ")", "}", ")", "LOGGER", ".", "debug", "(", "'HolderProver.get_box_ids_json <<< %s'", ",", "rv", ")", "return", "rv" ]
Return json object on lists of all unique box identifiers for credentials in wallet: schema identifiers, credential definition identifiers, and revocation registry identifiers; e.g., :: { "schema_id": [ "R17v42T4pk...:2:tombstone:1.2", "9cHbp54C8n...:2:business:2.0", ... ], "cred_def_id": [ "R17v42T4pk...:3:CL:19:0", "9cHbp54C8n...:3:CL:37:0", ... ] "rev_reg_id": [ "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:0", "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:0", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:2", ... ] } :return: tuple of sets for schema ids, cred def ids, rev reg ids
[ "Return", "json", "object", "on", "lists", "of", "all", "unique", "box", "identifiers", "for", "credentials", "in", "wallet", ":", "schema", "identifiers", "credential", "definition", "identifiers", "and", "revocation", "registry", "identifiers", ";", "e", ".", "g", "." ]
python
train
dgomes/pymediaroom
pymediaroom/notify.py
https://github.com/dgomes/pymediaroom/blob/f4f2686c8d5622dd5ae1bcdd76900ba35e148529/pymediaroom/notify.py#L80-L85
def timeshift(self): """Return if the stream is a timeshift.""" if self.tune and self.tune.get('@src'): return True if self.tune.get('@src').startswith('timeshift') else False else: raise PyMediaroomError("No information in <node> about @src")
[ "def", "timeshift", "(", "self", ")", ":", "if", "self", ".", "tune", "and", "self", ".", "tune", ".", "get", "(", "'@src'", ")", ":", "return", "True", "if", "self", ".", "tune", ".", "get", "(", "'@src'", ")", ".", "startswith", "(", "'timeshift'", ")", "else", "False", "else", ":", "raise", "PyMediaroomError", "(", "\"No information in <node> about @src\"", ")" ]
Return if the stream is a timeshift.
[ "Return", "if", "the", "stream", "is", "a", "timeshift", "." ]
python
train
dslackw/slpkg
slpkg/downloader.py
https://github.com/dslackw/slpkg/blob/dd2e08a80e944d337d157b992167ba631a4343de/slpkg/downloader.py#L85-L89
def _make_tarfile(self, output_filename, source_dir): """Create .tar.gz file """ with tarfile.open(output_filename, "w:gz") as tar: tar.add(source_dir, arcname=os.path.basename(source_dir))
[ "def", "_make_tarfile", "(", "self", ",", "output_filename", ",", "source_dir", ")", ":", "with", "tarfile", ".", "open", "(", "output_filename", ",", "\"w:gz\"", ")", "as", "tar", ":", "tar", ".", "add", "(", "source_dir", ",", "arcname", "=", "os", ".", "path", ".", "basename", "(", "source_dir", ")", ")" ]
Create .tar.gz file
[ "Create", ".", "tar", ".", "gz", "file" ]
python
train
pymoca/pymoca
src/pymoca/backends/xml/model.py
https://github.com/pymoca/pymoca/blob/14b5eb7425e96689de6cc5c10f400895d586a978/src/pymoca/backends/xml/model.py#L102-L108
def create_function_f_J(self): """Jacobian for state integration""" return ca.Function( 'J', [self.t, self.x, self.y, self.m, self.p, self.c, self.ng, self.nu], [ca.jacobian(self.f_x_rhs, self.x)], ['t', 'x', 'y', 'm', 'p', 'c', 'ng', 'nu'], ['J'], self.func_opt)
[ "def", "create_function_f_J", "(", "self", ")", ":", "return", "ca", ".", "Function", "(", "'J'", ",", "[", "self", ".", "t", ",", "self", ".", "x", ",", "self", ".", "y", ",", "self", ".", "m", ",", "self", ".", "p", ",", "self", ".", "c", ",", "self", ".", "ng", ",", "self", ".", "nu", "]", ",", "[", "ca", ".", "jacobian", "(", "self", ".", "f_x_rhs", ",", "self", ".", "x", ")", "]", ",", "[", "'t'", ",", "'x'", ",", "'y'", ",", "'m'", ",", "'p'", ",", "'c'", ",", "'ng'", ",", "'nu'", "]", ",", "[", "'J'", "]", ",", "self", ".", "func_opt", ")" ]
Jacobian for state integration
[ "Jacobian", "for", "state", "integration" ]
python
train
boris-savic/python-mbills
python_mbills/api.py
https://github.com/boris-savic/python-mbills/blob/a2147810c8c54b9242d9bcc2218622f1e19f9ac3/python_mbills/api.py#L101-L121
def fetch_transaction_status(self, transaction_id): """ Get the transaction current status. :param transaction_id: :return: """ url = "%s%s%s/status" % (self.api_endpoint, constants.TRANSACTION_STATUS_ENDPOINT, transaction_id) username = self.base.get_username() password = self.base.get_password(username=username, request_url=url) response = requests.get(url, auth=HTTPBasicAuth(username=username, password=password)) if response.status_code == 404: raise TransactionDoesNotExist('Wrong transaction ID!') if not self.base.verify_response(response.json()): raise SignatureValidationException('Server signature verification has failed') return response.json()
[ "def", "fetch_transaction_status", "(", "self", ",", "transaction_id", ")", ":", "url", "=", "\"%s%s%s/status\"", "%", "(", "self", ".", "api_endpoint", ",", "constants", ".", "TRANSACTION_STATUS_ENDPOINT", ",", "transaction_id", ")", "username", "=", "self", ".", "base", ".", "get_username", "(", ")", "password", "=", "self", ".", "base", ".", "get_password", "(", "username", "=", "username", ",", "request_url", "=", "url", ")", "response", "=", "requests", ".", "get", "(", "url", ",", "auth", "=", "HTTPBasicAuth", "(", "username", "=", "username", ",", "password", "=", "password", ")", ")", "if", "response", ".", "status_code", "==", "404", ":", "raise", "TransactionDoesNotExist", "(", "'Wrong transaction ID!'", ")", "if", "not", "self", ".", "base", ".", "verify_response", "(", "response", ".", "json", "(", ")", ")", ":", "raise", "SignatureValidationException", "(", "'Server signature verification has failed'", ")", "return", "response", ".", "json", "(", ")" ]
Get the transaction current status. :param transaction_id: :return:
[ "Get", "the", "transaction", "current", "status", "." ]
python
train
jpscaletti/solution
solution/_compat.py
https://github.com/jpscaletti/solution/blob/eabafd8e695bbb0209242e002dbcc05ffb327f43/solution/_compat.py#L47-L51
def itervalues(d, **kw): """Return an iterator over the values of a dictionary.""" if not PY2: return iter(d.values(**kw)) return d.itervalues(**kw)
[ "def", "itervalues", "(", "d", ",", "*", "*", "kw", ")", ":", "if", "not", "PY2", ":", "return", "iter", "(", "d", ".", "values", "(", "*", "*", "kw", ")", ")", "return", "d", ".", "itervalues", "(", "*", "*", "kw", ")" ]
Return an iterator over the values of a dictionary.
[ "Return", "an", "iterator", "over", "the", "values", "of", "a", "dictionary", "." ]
python
train
tensorflow/tensor2tensor
tensor2tensor/models/video/basic_deterministic_params.py
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/video/basic_deterministic_params.py#L110-L117
def next_frame_ae_tiny(): """Conv autoencoder, tiny set for testing.""" hparams = next_frame_tiny() hparams.bottom["inputs"] = modalities.video_bitwise_bottom hparams.top["inputs"] = modalities.video_top hparams.batch_size = 8 hparams.dropout = 0.4 return hparams
[ "def", "next_frame_ae_tiny", "(", ")", ":", "hparams", "=", "next_frame_tiny", "(", ")", "hparams", ".", "bottom", "[", "\"inputs\"", "]", "=", "modalities", ".", "video_bitwise_bottom", "hparams", ".", "top", "[", "\"inputs\"", "]", "=", "modalities", ".", "video_top", "hparams", ".", "batch_size", "=", "8", "hparams", ".", "dropout", "=", "0.4", "return", "hparams" ]
Conv autoencoder, tiny set for testing.
[ "Conv", "autoencoder", "tiny", "set", "for", "testing", "." ]
python
train
kata198/indexedredis
IndexedRedis/__init__.py
https://github.com/kata198/indexedredis/blob/f9c85adcf5218dac25acb06eedc63fc2950816fa/IndexedRedis/__init__.py#L515-L536
def hasUnsavedChanges(self, cascadeObjects=False): ''' hasUnsavedChanges - Check if any unsaved changes are present in this model, or if it has never been saved. @param cascadeObjects <bool> default False, if True will check if any foreign linked objects themselves have unsaved changes (recursively). Otherwise, will just check if the pk has changed. @return <bool> - True if any fields have changed since last fetch, or if never saved. Otherwise, False ''' if not self._id or not self._origData: return True for thisField in self.FIELDS: thisVal = object.__getattribute__(self, thisField) if self._origData.get(thisField, '') != thisVal: return True if cascadeObjects is True and issubclass(thisField.__class__, IRForeignLinkFieldBase): if thisVal.objHasUnsavedChanges(): return True return False
[ "def", "hasUnsavedChanges", "(", "self", ",", "cascadeObjects", "=", "False", ")", ":", "if", "not", "self", ".", "_id", "or", "not", "self", ".", "_origData", ":", "return", "True", "for", "thisField", "in", "self", ".", "FIELDS", ":", "thisVal", "=", "object", ".", "__getattribute__", "(", "self", ",", "thisField", ")", "if", "self", ".", "_origData", ".", "get", "(", "thisField", ",", "''", ")", "!=", "thisVal", ":", "return", "True", "if", "cascadeObjects", "is", "True", "and", "issubclass", "(", "thisField", ".", "__class__", ",", "IRForeignLinkFieldBase", ")", ":", "if", "thisVal", ".", "objHasUnsavedChanges", "(", ")", ":", "return", "True", "return", "False" ]
hasUnsavedChanges - Check if any unsaved changes are present in this model, or if it has never been saved. @param cascadeObjects <bool> default False, if True will check if any foreign linked objects themselves have unsaved changes (recursively). Otherwise, will just check if the pk has changed. @return <bool> - True if any fields have changed since last fetch, or if never saved. Otherwise, False
[ "hasUnsavedChanges", "-", "Check", "if", "any", "unsaved", "changes", "are", "present", "in", "this", "model", "or", "if", "it", "has", "never", "been", "saved", "." ]
python
valid
saltstack/salt
salt/states/boto3_elasticache.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/boto3_elasticache.py#L106-L161
def _diff_cache_cluster(current, desired): ''' If you need to enhance what modify_cache_cluster() considers when deciding what is to be (or can be) updated, add it to 'modifiable' below. It's a dict mapping the param as used in modify_cache_cluster() to that in describe_cache_clusters(). Any data fiddlery that needs to be done to make the mappings meaningful should be done in the munging section below as well. This function will ONLY touch settings that are explicitly called out in 'desired' - any settings which might have previously been changed from their 'default' values will not be changed back simply by leaving them out of 'desired'. This is both intentional, and much, much easier to code :) ''' ### The data formats are annoyingly (and as far as I can can tell, unnecessarily) ### different - we have to munge to a common format to compare... if current.get('SecurityGroups') is not None: current['SecurityGroupIds'] = [s['SecurityGroupId'] for s in current['SecurityGroups']] if current.get('CacheSecurityGroups') is not None: current['CacheSecurityGroupNames'] = [c['CacheSecurityGroupName'] for c in current['CacheSecurityGroups']] if current.get('NotificationConfiguration') is not None: current['NotificationTopicArn'] = current['NotificationConfiguration']['TopicArn'] current['NotificationTopicStatus'] = current['NotificationConfiguration']['TopicStatus'] if current.get('CacheParameterGroup') is not None: current['CacheParameterGroupName'] = current['CacheParameterGroup']['CacheParameterGroupName'] modifiable = { 'AutoMinorVersionUpgrade': 'AutoMinorVersionUpgrade', 'AZMode': 'AZMode', 'CacheNodeType': 'CacheNodeType', 'CacheNodeIdsToRemove': None, 'CacheParameterGroupName': 'CacheParameterGroupName', 'CacheSecurityGroupNames': 'CacheSecurityGroupNames', 'EngineVersion': 'EngineVersion', 'NewAvailabilityZones': None, 'NotificationTopicArn': 'NotificationTopicArn', 'NotificationTopicStatus': 'NotificationTopicStatus', 'NumCacheNodes': 'NumCacheNodes', 'PreferredMaintenanceWindow': 'PreferredMaintenanceWindow', 'SecurityGroupIds': 'SecurityGroupIds', 'SnapshotRetentionLimit': 'SnapshotRetentionLimit', 'SnapshotWindow': 'SnapshotWindow' } need_update = {} for m, o in modifiable.items(): if m in desired: if not o: # Always pass these through - let AWS do the math... need_update[m] = desired[m] else: if m in current: # Equivalence testing works fine for current simple type comparisons # This might need enhancement if more complex structures enter the picture if current[m] != desired[m]: need_update[m] = desired[m] return need_update
[ "def", "_diff_cache_cluster", "(", "current", ",", "desired", ")", ":", "### The data formats are annoyingly (and as far as I can can tell, unnecessarily)", "### different - we have to munge to a common format to compare...", "if", "current", ".", "get", "(", "'SecurityGroups'", ")", "is", "not", "None", ":", "current", "[", "'SecurityGroupIds'", "]", "=", "[", "s", "[", "'SecurityGroupId'", "]", "for", "s", "in", "current", "[", "'SecurityGroups'", "]", "]", "if", "current", ".", "get", "(", "'CacheSecurityGroups'", ")", "is", "not", "None", ":", "current", "[", "'CacheSecurityGroupNames'", "]", "=", "[", "c", "[", "'CacheSecurityGroupName'", "]", "for", "c", "in", "current", "[", "'CacheSecurityGroups'", "]", "]", "if", "current", ".", "get", "(", "'NotificationConfiguration'", ")", "is", "not", "None", ":", "current", "[", "'NotificationTopicArn'", "]", "=", "current", "[", "'NotificationConfiguration'", "]", "[", "'TopicArn'", "]", "current", "[", "'NotificationTopicStatus'", "]", "=", "current", "[", "'NotificationConfiguration'", "]", "[", "'TopicStatus'", "]", "if", "current", ".", "get", "(", "'CacheParameterGroup'", ")", "is", "not", "None", ":", "current", "[", "'CacheParameterGroupName'", "]", "=", "current", "[", "'CacheParameterGroup'", "]", "[", "'CacheParameterGroupName'", "]", "modifiable", "=", "{", "'AutoMinorVersionUpgrade'", ":", "'AutoMinorVersionUpgrade'", ",", "'AZMode'", ":", "'AZMode'", ",", "'CacheNodeType'", ":", "'CacheNodeType'", ",", "'CacheNodeIdsToRemove'", ":", "None", ",", "'CacheParameterGroupName'", ":", "'CacheParameterGroupName'", ",", "'CacheSecurityGroupNames'", ":", "'CacheSecurityGroupNames'", ",", "'EngineVersion'", ":", "'EngineVersion'", ",", "'NewAvailabilityZones'", ":", "None", ",", "'NotificationTopicArn'", ":", "'NotificationTopicArn'", ",", "'NotificationTopicStatus'", ":", "'NotificationTopicStatus'", ",", "'NumCacheNodes'", ":", "'NumCacheNodes'", ",", "'PreferredMaintenanceWindow'", ":", "'PreferredMaintenanceWindow'", ",", "'SecurityGroupIds'", ":", "'SecurityGroupIds'", ",", "'SnapshotRetentionLimit'", ":", "'SnapshotRetentionLimit'", ",", "'SnapshotWindow'", ":", "'SnapshotWindow'", "}", "need_update", "=", "{", "}", "for", "m", ",", "o", "in", "modifiable", ".", "items", "(", ")", ":", "if", "m", "in", "desired", ":", "if", "not", "o", ":", "# Always pass these through - let AWS do the math...", "need_update", "[", "m", "]", "=", "desired", "[", "m", "]", "else", ":", "if", "m", "in", "current", ":", "# Equivalence testing works fine for current simple type comparisons", "# This might need enhancement if more complex structures enter the picture", "if", "current", "[", "m", "]", "!=", "desired", "[", "m", "]", ":", "need_update", "[", "m", "]", "=", "desired", "[", "m", "]", "return", "need_update" ]
If you need to enhance what modify_cache_cluster() considers when deciding what is to be (or can be) updated, add it to 'modifiable' below. It's a dict mapping the param as used in modify_cache_cluster() to that in describe_cache_clusters(). Any data fiddlery that needs to be done to make the mappings meaningful should be done in the munging section below as well. This function will ONLY touch settings that are explicitly called out in 'desired' - any settings which might have previously been changed from their 'default' values will not be changed back simply by leaving them out of 'desired'. This is both intentional, and much, much easier to code :)
[ "If", "you", "need", "to", "enhance", "what", "modify_cache_cluster", "()", "considers", "when", "deciding", "what", "is", "to", "be", "(", "or", "can", "be", ")", "updated", "add", "it", "to", "modifiable", "below", ".", "It", "s", "a", "dict", "mapping", "the", "param", "as", "used", "in", "modify_cache_cluster", "()", "to", "that", "in", "describe_cache_clusters", "()", ".", "Any", "data", "fiddlery", "that", "needs", "to", "be", "done", "to", "make", "the", "mappings", "meaningful", "should", "be", "done", "in", "the", "munging", "section", "below", "as", "well", "." ]
python
train
napalm-automation/napalm-ios
napalm_ios/ios.py
https://github.com/napalm-automation/napalm-ios/blob/7bbbc6a4d9f70a5b8cf32b7c7072a7ab437ddb81/napalm_ios/ios.py#L436-L443
def discard_config(self): """Set candidate_cfg to current running-config. Erase the merge_cfg file.""" discard_candidate = 'copy running-config {}'.format(self._gen_full_path(self.candidate_cfg)) discard_merge = 'copy null: {}'.format(self._gen_full_path(self.merge_cfg)) self._disable_confirm() self.device.send_command_expect(discard_candidate) self.device.send_command_expect(discard_merge) self._enable_confirm()
[ "def", "discard_config", "(", "self", ")", ":", "discard_candidate", "=", "'copy running-config {}'", ".", "format", "(", "self", ".", "_gen_full_path", "(", "self", ".", "candidate_cfg", ")", ")", "discard_merge", "=", "'copy null: {}'", ".", "format", "(", "self", ".", "_gen_full_path", "(", "self", ".", "merge_cfg", ")", ")", "self", ".", "_disable_confirm", "(", ")", "self", ".", "device", ".", "send_command_expect", "(", "discard_candidate", ")", "self", ".", "device", ".", "send_command_expect", "(", "discard_merge", ")", "self", ".", "_enable_confirm", "(", ")" ]
Set candidate_cfg to current running-config. Erase the merge_cfg file.
[ "Set", "candidate_cfg", "to", "current", "running", "-", "config", ".", "Erase", "the", "merge_cfg", "file", "." ]
python
train
MediaFire/mediafire-python-open-sdk
mediafire/client.py
https://github.com/MediaFire/mediafire-python-open-sdk/blob/8f1f23db1b16f16e026f5c6777aec32d00baa05f/mediafire/client.py#L282-L327
def create_folder(self, uri, recursive=False): """Create folder. uri -- MediaFire URI Keyword arguments: recursive -- set to True to create intermediate folders. """ logger.info("Creating %s", uri) # check that folder exists already try: resource = self.get_resource_by_uri(uri) if isinstance(resource, Folder): return resource else: raise NotAFolderError(uri) except ResourceNotFoundError: pass location = self._parse_uri(uri) folder_name = posixpath.basename(location) parent_uri = 'mf://' + posixpath.dirname(location) try: parent_node = self.get_resource_by_uri(parent_uri) if not isinstance(parent_node, Folder): raise NotAFolderError(parent_uri) parent_key = parent_node['folderkey'] except ResourceNotFoundError: if recursive: result = self.create_folder(parent_uri, recursive=True) parent_key = result['folderkey'] else: raise # We specify exact location, so don't allow duplicates result = self.api.folder_create( folder_name, parent_key=parent_key, action_on_duplicate='skip') logger.info("Created folder '%s' [mf:%s]", result['name'], result['folder_key']) return self.get_resource_by_key(result['folder_key'])
[ "def", "create_folder", "(", "self", ",", "uri", ",", "recursive", "=", "False", ")", ":", "logger", ".", "info", "(", "\"Creating %s\"", ",", "uri", ")", "# check that folder exists already", "try", ":", "resource", "=", "self", ".", "get_resource_by_uri", "(", "uri", ")", "if", "isinstance", "(", "resource", ",", "Folder", ")", ":", "return", "resource", "else", ":", "raise", "NotAFolderError", "(", "uri", ")", "except", "ResourceNotFoundError", ":", "pass", "location", "=", "self", ".", "_parse_uri", "(", "uri", ")", "folder_name", "=", "posixpath", ".", "basename", "(", "location", ")", "parent_uri", "=", "'mf://'", "+", "posixpath", ".", "dirname", "(", "location", ")", "try", ":", "parent_node", "=", "self", ".", "get_resource_by_uri", "(", "parent_uri", ")", "if", "not", "isinstance", "(", "parent_node", ",", "Folder", ")", ":", "raise", "NotAFolderError", "(", "parent_uri", ")", "parent_key", "=", "parent_node", "[", "'folderkey'", "]", "except", "ResourceNotFoundError", ":", "if", "recursive", ":", "result", "=", "self", ".", "create_folder", "(", "parent_uri", ",", "recursive", "=", "True", ")", "parent_key", "=", "result", "[", "'folderkey'", "]", "else", ":", "raise", "# We specify exact location, so don't allow duplicates", "result", "=", "self", ".", "api", ".", "folder_create", "(", "folder_name", ",", "parent_key", "=", "parent_key", ",", "action_on_duplicate", "=", "'skip'", ")", "logger", ".", "info", "(", "\"Created folder '%s' [mf:%s]\"", ",", "result", "[", "'name'", "]", ",", "result", "[", "'folder_key'", "]", ")", "return", "self", ".", "get_resource_by_key", "(", "result", "[", "'folder_key'", "]", ")" ]
Create folder. uri -- MediaFire URI Keyword arguments: recursive -- set to True to create intermediate folders.
[ "Create", "folder", "." ]
python
train
csparpa/pyowm
pyowm/pollutionapi30/ozone.py
https://github.com/csparpa/pyowm/blob/cdd59eb72f32f7238624ceef9b2e2329a5ebd472/pyowm/pollutionapi30/ozone.py#L144-L162
def _to_DOM(self): """ Dumps object data to a fully traversable DOM representation of the object. :returns: a ``xml.etree.Element`` object """ root_node = ET.Element("ozone") reference_time_node = ET.SubElement(root_node, "reference_time") reference_time_node.text = str(self._reference_time) reception_time_node = ET.SubElement(root_node, "reception_time") reception_time_node.text = str(self._reception_time) interval_node = ET.SubElement(root_node, "interval") interval_node.text = str(self._interval) value_node = ET.SubElement(root_node, "value") value_node.text = str(self.du_value) root_node.append(self._location._to_DOM()) return root_node
[ "def", "_to_DOM", "(", "self", ")", ":", "root_node", "=", "ET", ".", "Element", "(", "\"ozone\"", ")", "reference_time_node", "=", "ET", ".", "SubElement", "(", "root_node", ",", "\"reference_time\"", ")", "reference_time_node", ".", "text", "=", "str", "(", "self", ".", "_reference_time", ")", "reception_time_node", "=", "ET", ".", "SubElement", "(", "root_node", ",", "\"reception_time\"", ")", "reception_time_node", ".", "text", "=", "str", "(", "self", ".", "_reception_time", ")", "interval_node", "=", "ET", ".", "SubElement", "(", "root_node", ",", "\"interval\"", ")", "interval_node", ".", "text", "=", "str", "(", "self", ".", "_interval", ")", "value_node", "=", "ET", ".", "SubElement", "(", "root_node", ",", "\"value\"", ")", "value_node", ".", "text", "=", "str", "(", "self", ".", "du_value", ")", "root_node", ".", "append", "(", "self", ".", "_location", ".", "_to_DOM", "(", ")", ")", "return", "root_node" ]
Dumps object data to a fully traversable DOM representation of the object. :returns: a ``xml.etree.Element`` object
[ "Dumps", "object", "data", "to", "a", "fully", "traversable", "DOM", "representation", "of", "the", "object", "." ]
python
train
edeposit/marcxml_parser
src/marcxml_parser/query.py
https://github.com/edeposit/marcxml_parser/blob/6d1c77c61fc2827b71f1b3d5aa3332d7f5807820/src/marcxml_parser/query.py#L385-L403
def get_corporations(self, roles=["dst"]): """ Args: roles (list, optional): Specify which types of corporations you need. Set to ``["any"]`` for any role, ``["dst"]`` for distributors, etc.. Note: See http://www.loc.gov/marc/relators/relaterm.html for details. Returns: list: :class:`.Corporation` objects specified by roles parameter. """ corporations = self._parse_corporations("110", "a", roles) corporations += self._parse_corporations("610", "a", roles) corporations += self._parse_corporations("710", "a", roles) corporations += self._parse_corporations("810", "a", roles) return corporations
[ "def", "get_corporations", "(", "self", ",", "roles", "=", "[", "\"dst\"", "]", ")", ":", "corporations", "=", "self", ".", "_parse_corporations", "(", "\"110\"", ",", "\"a\"", ",", "roles", ")", "corporations", "+=", "self", ".", "_parse_corporations", "(", "\"610\"", ",", "\"a\"", ",", "roles", ")", "corporations", "+=", "self", ".", "_parse_corporations", "(", "\"710\"", ",", "\"a\"", ",", "roles", ")", "corporations", "+=", "self", ".", "_parse_corporations", "(", "\"810\"", ",", "\"a\"", ",", "roles", ")", "return", "corporations" ]
Args: roles (list, optional): Specify which types of corporations you need. Set to ``["any"]`` for any role, ``["dst"]`` for distributors, etc.. Note: See http://www.loc.gov/marc/relators/relaterm.html for details. Returns: list: :class:`.Corporation` objects specified by roles parameter.
[ "Args", ":", "roles", "(", "list", "optional", ")", ":", "Specify", "which", "types", "of", "corporations", "you", "need", ".", "Set", "to", "[", "any", "]", "for", "any", "role", "[", "dst", "]", "for", "distributors", "etc", ".." ]
python
valid
dhermes/bezier
src/bezier/curve.py
https://github.com/dhermes/bezier/blob/4f941f82637a8e70a5b159a9203132192e23406b/src/bezier/curve.py#L276-L315
def subdivide(self): r"""Split the curve :math:`B(s)` into a left and right half. Takes the interval :math:`\left[0, 1\right]` and splits the curve into :math:`B_1 = B\left(\left[0, \frac{1}{2}\right]\right)` and :math:`B_2 = B\left(\left[\frac{1}{2}, 1\right]\right)`. In order to do this, also reparameterizes the curve, hence the resulting left and right halves have new nodes. .. image:: ../../images/curve_subdivide.png :align: center .. doctest:: curve-subdivide :options: +NORMALIZE_WHITESPACE >>> nodes = np.asfortranarray([ ... [0.0, 1.25, 2.0], ... [0.0, 3.0 , 1.0], ... ]) >>> curve = bezier.Curve(nodes, degree=2) >>> left, right = curve.subdivide() >>> left.nodes array([[0. , 0.625, 1.125], [0. , 1.5 , 1.75 ]]) >>> right.nodes array([[1.125, 1.625, 2. ], [1.75 , 2. , 1. ]]) .. testcleanup:: curve-subdivide import make_images make_images.curve_subdivide(curve, left, right) Returns: Tuple[Curve, Curve]: The left and right sub-curves. """ left_nodes, right_nodes = _curve_helpers.subdivide_nodes(self._nodes) left = Curve(left_nodes, self._degree, _copy=False) right = Curve(right_nodes, self._degree, _copy=False) return left, right
[ "def", "subdivide", "(", "self", ")", ":", "left_nodes", ",", "right_nodes", "=", "_curve_helpers", ".", "subdivide_nodes", "(", "self", ".", "_nodes", ")", "left", "=", "Curve", "(", "left_nodes", ",", "self", ".", "_degree", ",", "_copy", "=", "False", ")", "right", "=", "Curve", "(", "right_nodes", ",", "self", ".", "_degree", ",", "_copy", "=", "False", ")", "return", "left", ",", "right" ]
r"""Split the curve :math:`B(s)` into a left and right half. Takes the interval :math:`\left[0, 1\right]` and splits the curve into :math:`B_1 = B\left(\left[0, \frac{1}{2}\right]\right)` and :math:`B_2 = B\left(\left[\frac{1}{2}, 1\right]\right)`. In order to do this, also reparameterizes the curve, hence the resulting left and right halves have new nodes. .. image:: ../../images/curve_subdivide.png :align: center .. doctest:: curve-subdivide :options: +NORMALIZE_WHITESPACE >>> nodes = np.asfortranarray([ ... [0.0, 1.25, 2.0], ... [0.0, 3.0 , 1.0], ... ]) >>> curve = bezier.Curve(nodes, degree=2) >>> left, right = curve.subdivide() >>> left.nodes array([[0. , 0.625, 1.125], [0. , 1.5 , 1.75 ]]) >>> right.nodes array([[1.125, 1.625, 2. ], [1.75 , 2. , 1. ]]) .. testcleanup:: curve-subdivide import make_images make_images.curve_subdivide(curve, left, right) Returns: Tuple[Curve, Curve]: The left and right sub-curves.
[ "r", "Split", "the", "curve", ":", "math", ":", "B", "(", "s", ")", "into", "a", "left", "and", "right", "half", "." ]
python
train
geophysics-ubonn/reda
lib/reda/utils/geometric_factors.py
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/utils/geometric_factors.py#L29-L74
def compute_K_numerical(dataframe, settings=None, keep_dir=None): """Use a finite-element modeling code to infer geometric factors for meshes with topography or irregular electrode spacings. Parameters ---------- dataframe : pandas.DataFrame the data frame that contains the data settings : dict The settings required to compute the geometric factors. See examples down below for more information in the required content. keep_dir : path if not None, copy modeling dir here Returns ------- K : :class:`numpy.ndarray` K factors (are also directly written to the dataframe) Examples -------- :: settings = { 'rho': 100, 'elem': 'elem.dat', 'elec': 'elec.dat', 'sink_node': '100', '2D': False, } """ inversion_code = reda.rcParams.get('geom_factor.inversion_code', 'crtomo') if inversion_code == 'crtomo': import reda.utils.geom_fac_crtomo as geom_fac_crtomo if keep_dir is not None: keep_dir = os.path.abspath(keep_dir) K = geom_fac_crtomo.compute_K( dataframe, settings, keep_dir) else: raise Exception( 'Inversion code {0} not implemented for K computation'.format( inversion_code )) return K
[ "def", "compute_K_numerical", "(", "dataframe", ",", "settings", "=", "None", ",", "keep_dir", "=", "None", ")", ":", "inversion_code", "=", "reda", ".", "rcParams", ".", "get", "(", "'geom_factor.inversion_code'", ",", "'crtomo'", ")", "if", "inversion_code", "==", "'crtomo'", ":", "import", "reda", ".", "utils", ".", "geom_fac_crtomo", "as", "geom_fac_crtomo", "if", "keep_dir", "is", "not", "None", ":", "keep_dir", "=", "os", ".", "path", ".", "abspath", "(", "keep_dir", ")", "K", "=", "geom_fac_crtomo", ".", "compute_K", "(", "dataframe", ",", "settings", ",", "keep_dir", ")", "else", ":", "raise", "Exception", "(", "'Inversion code {0} not implemented for K computation'", ".", "format", "(", "inversion_code", ")", ")", "return", "K" ]
Use a finite-element modeling code to infer geometric factors for meshes with topography or irregular electrode spacings. Parameters ---------- dataframe : pandas.DataFrame the data frame that contains the data settings : dict The settings required to compute the geometric factors. See examples down below for more information in the required content. keep_dir : path if not None, copy modeling dir here Returns ------- K : :class:`numpy.ndarray` K factors (are also directly written to the dataframe) Examples -------- :: settings = { 'rho': 100, 'elem': 'elem.dat', 'elec': 'elec.dat', 'sink_node': '100', '2D': False, }
[ "Use", "a", "finite", "-", "element", "modeling", "code", "to", "infer", "geometric", "factors", "for", "meshes", "with", "topography", "or", "irregular", "electrode", "spacings", "." ]
python
train
koenedaele/skosprovider
skosprovider/registry.py
https://github.com/koenedaele/skosprovider/blob/7304a37953978ca8227febc2d3cc2b2be178f215/skosprovider/registry.py#L37-L55
def register_provider(self, provider): ''' Register a :class:`skosprovider.providers.VocabularyProvider`. :param skosprovider.providers.VocabularyProvider provider: The provider to register. :raises RegistryException: A provider with this id or uri has already been registered. ''' if provider.get_vocabulary_id() in self.providers: raise RegistryException( 'A provider with this id has already been registered.' ) self.providers[provider.get_vocabulary_id()] = provider if provider.concept_scheme.uri in self.concept_scheme_uri_map: raise RegistryException( 'A provider with URI %s has already been registered.' % provider.concept_scheme.uri ) self.concept_scheme_uri_map[provider.concept_scheme.uri] = provider.get_vocabulary_id()
[ "def", "register_provider", "(", "self", ",", "provider", ")", ":", "if", "provider", ".", "get_vocabulary_id", "(", ")", "in", "self", ".", "providers", ":", "raise", "RegistryException", "(", "'A provider with this id has already been registered.'", ")", "self", ".", "providers", "[", "provider", ".", "get_vocabulary_id", "(", ")", "]", "=", "provider", "if", "provider", ".", "concept_scheme", ".", "uri", "in", "self", ".", "concept_scheme_uri_map", ":", "raise", "RegistryException", "(", "'A provider with URI %s has already been registered.'", "%", "provider", ".", "concept_scheme", ".", "uri", ")", "self", ".", "concept_scheme_uri_map", "[", "provider", ".", "concept_scheme", ".", "uri", "]", "=", "provider", ".", "get_vocabulary_id", "(", ")" ]
Register a :class:`skosprovider.providers.VocabularyProvider`. :param skosprovider.providers.VocabularyProvider provider: The provider to register. :raises RegistryException: A provider with this id or uri has already been registered.
[ "Register", "a", ":", "class", ":", "skosprovider", ".", "providers", ".", "VocabularyProvider", "." ]
python
valid
h2non/paco
paco/curry.py
https://github.com/h2non/paco/blob/1e5ef4df317e7cbbcefdf67d8dee28ce90538f3d/paco/curry.py#L8-L143
def curry(arity_or_fn=None, ignore_kwargs=False, evaluator=None, *args, **kw): """ Creates a function that accepts one or more arguments of a function and either invokes func returning its result if at least arity number of arguments have been provided, or returns a function that accepts the remaining function arguments until the function arity is satisfied. This function is overloaded: you can pass a function or coroutine function as first argument or an `int` indicating the explicit function arity. Function arity can be inferred via function signature or explicitly passed via `arity_or_fn` param. You can optionally ignore keyword based arguments as well passsing the `ignore_kwargs` param with `True` value. This function can be used as decorator. Arguments: arity_or_fn (int|function|coroutinefunction): function arity to curry or function to curry. ignore_kwargs (bool): ignore keyword arguments as arity to satisfy during curry. evaluator (function): use a custom arity evaluator function. *args (mixed): mixed variadic arguments for partial function application. *kwargs (mixed): keyword variadic arguments for partial function application. Raises: TypeError: if function is not a function or a coroutine function. Returns: function or coroutinefunction: function will be returned until all the function arity is satisfied, where a coroutine function will be returned instead. Usage:: # Function signature inferred function arity @paco.curry async def task(x, y, z=0): return x * y + z await task(4)(4)(z=8) # => 24 # User defined function arity @paco.curry(4) async def task(x, y, *args, **kw): return x * y + args[0] * args[1] await task(4)(4)(8)(8) # => 80 # Ignore keyword arguments from arity @paco.curry(ignore_kwargs=True) async def task(x, y, z=0): return x * y await task(4)(4) # => 16 """ def isvalidarg(x): return all([ x.kind != x.VAR_KEYWORD, x.kind != x.VAR_POSITIONAL, any([ not ignore_kwargs, ignore_kwargs and x.default == x.empty ]) ]) def params(fn): return inspect.signature(fn).parameters.values() def infer_arity(fn): return len([x for x in params(fn) if isvalidarg(x)]) def merge_args(acc, args, kw): _args, _kw = acc _args = _args + args _kw = _kw or {} _kw.update(kw) return _args, _kw def currier(arity, acc, fn, *args, **kw): """ Function either continues curring of the arguments or executes function if desired arguments have being collected. If function curried is variadic then execution without arguments will finish curring and trigger the function """ # Merge call arguments with accumulated ones _args, _kw = merge_args(acc, args, kw) # Get current function call accumulated arity current_arity = len(args) # Count keyword params as arity to satisfy, if required if not ignore_kwargs: current_arity += len(kw) # Decrease function arity to satisfy arity -= current_arity # Use user-defined custom arity evaluator strategy, if present currify = evaluator and evaluator(acc, fn) # If arity is not satisfied, return recursive partial function if currify is not False and arity > 0: return functools.partial(currier, arity, (_args, _kw), fn) # If arity is satisfied, instanciate coroutine and return it return fn(*_args, **_kw) def wrapper(fn, *args, **kw): if not iscallable(fn): raise TypeError('paco: first argument must a coroutine function, ' 'a function or a method.') # Infer function arity, if required arity = (arity_or_fn if isinstance(arity_or_fn, int) else infer_arity(fn)) # Wraps function as coroutine function, if needed. fn = wraps(fn) if isfunc(fn) else fn # Otherwise return recursive currier function return currier(arity, (args, kw), fn, *args, **kw) if arity > 0 else fn # Return currier function or decorator wrapper return (wrapper(arity_or_fn, *args, **kw) if iscallable(arity_or_fn) else wrapper)
[ "def", "curry", "(", "arity_or_fn", "=", "None", ",", "ignore_kwargs", "=", "False", ",", "evaluator", "=", "None", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "def", "isvalidarg", "(", "x", ")", ":", "return", "all", "(", "[", "x", ".", "kind", "!=", "x", ".", "VAR_KEYWORD", ",", "x", ".", "kind", "!=", "x", ".", "VAR_POSITIONAL", ",", "any", "(", "[", "not", "ignore_kwargs", ",", "ignore_kwargs", "and", "x", ".", "default", "==", "x", ".", "empty", "]", ")", "]", ")", "def", "params", "(", "fn", ")", ":", "return", "inspect", ".", "signature", "(", "fn", ")", ".", "parameters", ".", "values", "(", ")", "def", "infer_arity", "(", "fn", ")", ":", "return", "len", "(", "[", "x", "for", "x", "in", "params", "(", "fn", ")", "if", "isvalidarg", "(", "x", ")", "]", ")", "def", "merge_args", "(", "acc", ",", "args", ",", "kw", ")", ":", "_args", ",", "_kw", "=", "acc", "_args", "=", "_args", "+", "args", "_kw", "=", "_kw", "or", "{", "}", "_kw", ".", "update", "(", "kw", ")", "return", "_args", ",", "_kw", "def", "currier", "(", "arity", ",", "acc", ",", "fn", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "\"\"\"\n Function either continues curring of the arguments\n or executes function if desired arguments have being collected.\n If function curried is variadic then execution without arguments\n will finish curring and trigger the function\n \"\"\"", "# Merge call arguments with accumulated ones", "_args", ",", "_kw", "=", "merge_args", "(", "acc", ",", "args", ",", "kw", ")", "# Get current function call accumulated arity", "current_arity", "=", "len", "(", "args", ")", "# Count keyword params as arity to satisfy, if required", "if", "not", "ignore_kwargs", ":", "current_arity", "+=", "len", "(", "kw", ")", "# Decrease function arity to satisfy", "arity", "-=", "current_arity", "# Use user-defined custom arity evaluator strategy, if present", "currify", "=", "evaluator", "and", "evaluator", "(", "acc", ",", "fn", ")", "# If arity is not satisfied, return recursive partial function", "if", "currify", "is", "not", "False", "and", "arity", ">", "0", ":", "return", "functools", ".", "partial", "(", "currier", ",", "arity", ",", "(", "_args", ",", "_kw", ")", ",", "fn", ")", "# If arity is satisfied, instanciate coroutine and return it", "return", "fn", "(", "*", "_args", ",", "*", "*", "_kw", ")", "def", "wrapper", "(", "fn", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "if", "not", "iscallable", "(", "fn", ")", ":", "raise", "TypeError", "(", "'paco: first argument must a coroutine function, '", "'a function or a method.'", ")", "# Infer function arity, if required", "arity", "=", "(", "arity_or_fn", "if", "isinstance", "(", "arity_or_fn", ",", "int", ")", "else", "infer_arity", "(", "fn", ")", ")", "# Wraps function as coroutine function, if needed.", "fn", "=", "wraps", "(", "fn", ")", "if", "isfunc", "(", "fn", ")", "else", "fn", "# Otherwise return recursive currier function", "return", "currier", "(", "arity", ",", "(", "args", ",", "kw", ")", ",", "fn", ",", "*", "args", ",", "*", "*", "kw", ")", "if", "arity", ">", "0", "else", "fn", "# Return currier function or decorator wrapper", "return", "(", "wrapper", "(", "arity_or_fn", ",", "*", "args", ",", "*", "*", "kw", ")", "if", "iscallable", "(", "arity_or_fn", ")", "else", "wrapper", ")" ]
Creates a function that accepts one or more arguments of a function and either invokes func returning its result if at least arity number of arguments have been provided, or returns a function that accepts the remaining function arguments until the function arity is satisfied. This function is overloaded: you can pass a function or coroutine function as first argument or an `int` indicating the explicit function arity. Function arity can be inferred via function signature or explicitly passed via `arity_or_fn` param. You can optionally ignore keyword based arguments as well passsing the `ignore_kwargs` param with `True` value. This function can be used as decorator. Arguments: arity_or_fn (int|function|coroutinefunction): function arity to curry or function to curry. ignore_kwargs (bool): ignore keyword arguments as arity to satisfy during curry. evaluator (function): use a custom arity evaluator function. *args (mixed): mixed variadic arguments for partial function application. *kwargs (mixed): keyword variadic arguments for partial function application. Raises: TypeError: if function is not a function or a coroutine function. Returns: function or coroutinefunction: function will be returned until all the function arity is satisfied, where a coroutine function will be returned instead. Usage:: # Function signature inferred function arity @paco.curry async def task(x, y, z=0): return x * y + z await task(4)(4)(z=8) # => 24 # User defined function arity @paco.curry(4) async def task(x, y, *args, **kw): return x * y + args[0] * args[1] await task(4)(4)(8)(8) # => 80 # Ignore keyword arguments from arity @paco.curry(ignore_kwargs=True) async def task(x, y, z=0): return x * y await task(4)(4) # => 16
[ "Creates", "a", "function", "that", "accepts", "one", "or", "more", "arguments", "of", "a", "function", "and", "either", "invokes", "func", "returning", "its", "result", "if", "at", "least", "arity", "number", "of", "arguments", "have", "been", "provided", "or", "returns", "a", "function", "that", "accepts", "the", "remaining", "function", "arguments", "until", "the", "function", "arity", "is", "satisfied", "." ]
python
train
jbloomlab/phydms
phydmslib/models.py
https://github.com/jbloomlab/phydms/blob/9cdebc10bafbe543c552d79486c7f950780ed3c0/phydmslib/models.py#L1281-L1295
def _update_phi(self): """Compute `phi`, `dphi_dbeta`, and `eta` from `g` and `frxy`.""" self.phi = self._compute_empirical_phi(self.beta) _checkParam('phi', self.phi, self.PARAMLIMITS, self.PARAMTYPES) self._eta_from_phi() dbeta = 1.0e-3 self.dphi_dbeta = scipy.misc.derivative(self._compute_empirical_phi, self.beta, dx=dbeta, n=1, order=5) dphi_dbeta_halfdx = scipy.misc.derivative(self._compute_empirical_phi, self.beta, dx=dbeta / 2, n=1, order=5) assert scipy.allclose(self.dphi_dbeta, dphi_dbeta_halfdx, atol=1e-5, rtol=1e-4), ("The numerical derivative dphi_dbeta differs " "considerably in value for step dbeta = {0} and a step " "half that size, giving values of {1} and {2}.").format( dbeta, self.dphi_dbeta, dphi_dbeta_halfdx)
[ "def", "_update_phi", "(", "self", ")", ":", "self", ".", "phi", "=", "self", ".", "_compute_empirical_phi", "(", "self", ".", "beta", ")", "_checkParam", "(", "'phi'", ",", "self", ".", "phi", ",", "self", ".", "PARAMLIMITS", ",", "self", ".", "PARAMTYPES", ")", "self", ".", "_eta_from_phi", "(", ")", "dbeta", "=", "1.0e-3", "self", ".", "dphi_dbeta", "=", "scipy", ".", "misc", ".", "derivative", "(", "self", ".", "_compute_empirical_phi", ",", "self", ".", "beta", ",", "dx", "=", "dbeta", ",", "n", "=", "1", ",", "order", "=", "5", ")", "dphi_dbeta_halfdx", "=", "scipy", ".", "misc", ".", "derivative", "(", "self", ".", "_compute_empirical_phi", ",", "self", ".", "beta", ",", "dx", "=", "dbeta", "/", "2", ",", "n", "=", "1", ",", "order", "=", "5", ")", "assert", "scipy", ".", "allclose", "(", "self", ".", "dphi_dbeta", ",", "dphi_dbeta_halfdx", ",", "atol", "=", "1e-5", ",", "rtol", "=", "1e-4", ")", ",", "(", "\"The numerical derivative dphi_dbeta differs \"", "\"considerably in value for step dbeta = {0} and a step \"", "\"half that size, giving values of {1} and {2}.\"", ")", ".", "format", "(", "dbeta", ",", "self", ".", "dphi_dbeta", ",", "dphi_dbeta_halfdx", ")" ]
Compute `phi`, `dphi_dbeta`, and `eta` from `g` and `frxy`.
[ "Compute", "phi", "dphi_dbeta", "and", "eta", "from", "g", "and", "frxy", "." ]
python
train
IdentityPython/pysaml2
src/saml2/attribute_converter.py
https://github.com/IdentityPython/pysaml2/blob/d3aa78eeb7d37c12688f783cb4db1c7263a14ad6/src/saml2/attribute_converter.py#L335-L358
def fro(self, statement): """ Get the attributes and the attribute values. :param statement: The AttributeStatement. :return: A dictionary containing attributes and values """ if not self.name_format: return self.fail_safe_fro(statement) result = {} for attribute in statement.attribute: if attribute.name_format and self.name_format and \ attribute.name_format != self.name_format: continue try: (key, val) = self.ava_from(attribute) except (KeyError, AttributeError): pass else: result[key] = val return result
[ "def", "fro", "(", "self", ",", "statement", ")", ":", "if", "not", "self", ".", "name_format", ":", "return", "self", ".", "fail_safe_fro", "(", "statement", ")", "result", "=", "{", "}", "for", "attribute", "in", "statement", ".", "attribute", ":", "if", "attribute", ".", "name_format", "and", "self", ".", "name_format", "and", "attribute", ".", "name_format", "!=", "self", ".", "name_format", ":", "continue", "try", ":", "(", "key", ",", "val", ")", "=", "self", ".", "ava_from", "(", "attribute", ")", "except", "(", "KeyError", ",", "AttributeError", ")", ":", "pass", "else", ":", "result", "[", "key", "]", "=", "val", "return", "result" ]
Get the attributes and the attribute values. :param statement: The AttributeStatement. :return: A dictionary containing attributes and values
[ "Get", "the", "attributes", "and", "the", "attribute", "values", "." ]
python
train
MAVENSDC/cdflib
cdflib/cdfwrite.py
https://github.com/MAVENSDC/cdflib/blob/d237c60e5db67db0f92d96054209c25c4042465c/cdflib/cdfwrite.py#L2304-L2312
def _update_offset_value(self, f, offset, size, value): ''' Writes "value" into location "offset" in file "f". ''' f.seek(offset, 0) if (size == 8): f.write(struct.pack('>q', value)) else: f.write(struct.pack('>i', value))
[ "def", "_update_offset_value", "(", "self", ",", "f", ",", "offset", ",", "size", ",", "value", ")", ":", "f", ".", "seek", "(", "offset", ",", "0", ")", "if", "(", "size", "==", "8", ")", ":", "f", ".", "write", "(", "struct", ".", "pack", "(", "'>q'", ",", "value", ")", ")", "else", ":", "f", ".", "write", "(", "struct", ".", "pack", "(", "'>i'", ",", "value", ")", ")" ]
Writes "value" into location "offset" in file "f".
[ "Writes", "value", "into", "location", "offset", "in", "file", "f", "." ]
python
train
belbio/bel
bel/lang/ast.py
https://github.com/belbio/bel/blob/60333e8815625b942b4836903f3b618cf44b3771/bel/lang/ast.py#L358-L380
def subcomponents(self, subcomponents): """Generate subcomponents of the BEL subject or object These subcomponents are used for matching parts of a BEL subject or Object in the Edgestore. Args: AST subcomponents: Pass an empty list to start a new subcomponents request Returns: List[str]: subcomponents of BEL subject or object """ for arg in self.args: if arg.__class__.__name__ == "Function": subcomponents.append(arg.to_string()) if arg.function_type == "primary": arg.subcomponents(subcomponents) else: subcomponents.append(arg.to_string()) return subcomponents
[ "def", "subcomponents", "(", "self", ",", "subcomponents", ")", ":", "for", "arg", "in", "self", ".", "args", ":", "if", "arg", ".", "__class__", ".", "__name__", "==", "\"Function\"", ":", "subcomponents", ".", "append", "(", "arg", ".", "to_string", "(", ")", ")", "if", "arg", ".", "function_type", "==", "\"primary\"", ":", "arg", ".", "subcomponents", "(", "subcomponents", ")", "else", ":", "subcomponents", ".", "append", "(", "arg", ".", "to_string", "(", ")", ")", "return", "subcomponents" ]
Generate subcomponents of the BEL subject or object These subcomponents are used for matching parts of a BEL subject or Object in the Edgestore. Args: AST subcomponents: Pass an empty list to start a new subcomponents request Returns: List[str]: subcomponents of BEL subject or object
[ "Generate", "subcomponents", "of", "the", "BEL", "subject", "or", "object" ]
python
train
tensorflow/datasets
tensorflow_datasets/core/tf_compat.py
https://github.com/tensorflow/datasets/blob/46ceb0cf7b4690f38ecbbc689e4d659a903d08dc/tensorflow_datasets/core/tf_compat.py#L135-L152
def _patch_for_tf1_13(tf): """Monkey patch tf 1.13 so tfds can use it.""" if not hasattr(tf.io.gfile, "GFile"): tf.io.gfile.GFile = tf.gfile.GFile if not hasattr(tf, "nest"): tf.nest = tf.contrib.framework.nest if not hasattr(tf.compat, "v2"): tf.compat.v2 = types.ModuleType("tf.compat.v2") tf.compat.v2.data = types.ModuleType("tf.compat.v2.data") from tensorflow.python.data.ops import dataset_ops tf.compat.v2.data.Dataset = dataset_ops.DatasetV2 if not hasattr(tf.compat.v2.data.Dataset, "output_shapes"): from tensorflow.python.data.ops import dataset_ops if hasattr(dataset_ops, "get_legacy_output_shapes"): tf.compat.v2.data.Dataset.output_shapes = property( dataset_ops.get_legacy_output_shapes) tf.compat.v2.data.Dataset.output_types = property( dataset_ops.get_legacy_output_types)
[ "def", "_patch_for_tf1_13", "(", "tf", ")", ":", "if", "not", "hasattr", "(", "tf", ".", "io", ".", "gfile", ",", "\"GFile\"", ")", ":", "tf", ".", "io", ".", "gfile", ".", "GFile", "=", "tf", ".", "gfile", ".", "GFile", "if", "not", "hasattr", "(", "tf", ",", "\"nest\"", ")", ":", "tf", ".", "nest", "=", "tf", ".", "contrib", ".", "framework", ".", "nest", "if", "not", "hasattr", "(", "tf", ".", "compat", ",", "\"v2\"", ")", ":", "tf", ".", "compat", ".", "v2", "=", "types", ".", "ModuleType", "(", "\"tf.compat.v2\"", ")", "tf", ".", "compat", ".", "v2", ".", "data", "=", "types", ".", "ModuleType", "(", "\"tf.compat.v2.data\"", ")", "from", "tensorflow", ".", "python", ".", "data", ".", "ops", "import", "dataset_ops", "tf", ".", "compat", ".", "v2", ".", "data", ".", "Dataset", "=", "dataset_ops", ".", "DatasetV2", "if", "not", "hasattr", "(", "tf", ".", "compat", ".", "v2", ".", "data", ".", "Dataset", ",", "\"output_shapes\"", ")", ":", "from", "tensorflow", ".", "python", ".", "data", ".", "ops", "import", "dataset_ops", "if", "hasattr", "(", "dataset_ops", ",", "\"get_legacy_output_shapes\"", ")", ":", "tf", ".", "compat", ".", "v2", ".", "data", ".", "Dataset", ".", "output_shapes", "=", "property", "(", "dataset_ops", ".", "get_legacy_output_shapes", ")", "tf", ".", "compat", ".", "v2", ".", "data", ".", "Dataset", ".", "output_types", "=", "property", "(", "dataset_ops", ".", "get_legacy_output_types", ")" ]
Monkey patch tf 1.13 so tfds can use it.
[ "Monkey", "patch", "tf", "1", ".", "13", "so", "tfds", "can", "use", "it", "." ]
python
train
ynop/audiomate
audiomate/corpus/io/mailabs.py
https://github.com/ynop/audiomate/blob/61727920b23a708293c3d526fa3000d4de9c6c21/audiomate/corpus/io/mailabs.py#L132-L151
def load_speaker(corpus, path): """ Create a speaker instance for the given path. """ base_path, speaker_name = os.path.split(path) base_path, gender_desc = os.path.split(base_path) base_path, __ = os.path.split(base_path) base_path, tag = os.path.split(base_path) gender = issuers.Gender.UNKNOWN if gender_desc == 'male': gender = issuers.Gender.MALE elif gender_desc == 'female': gender = issuers.Gender.FEMALE speaker = issuers.Speaker(speaker_name, gender=gender) corpus.import_issuers(speaker) return speaker
[ "def", "load_speaker", "(", "corpus", ",", "path", ")", ":", "base_path", ",", "speaker_name", "=", "os", ".", "path", ".", "split", "(", "path", ")", "base_path", ",", "gender_desc", "=", "os", ".", "path", ".", "split", "(", "base_path", ")", "base_path", ",", "__", "=", "os", ".", "path", ".", "split", "(", "base_path", ")", "base_path", ",", "tag", "=", "os", ".", "path", ".", "split", "(", "base_path", ")", "gender", "=", "issuers", ".", "Gender", ".", "UNKNOWN", "if", "gender_desc", "==", "'male'", ":", "gender", "=", "issuers", ".", "Gender", ".", "MALE", "elif", "gender_desc", "==", "'female'", ":", "gender", "=", "issuers", ".", "Gender", ".", "FEMALE", "speaker", "=", "issuers", ".", "Speaker", "(", "speaker_name", ",", "gender", "=", "gender", ")", "corpus", ".", "import_issuers", "(", "speaker", ")", "return", "speaker" ]
Create a speaker instance for the given path.
[ "Create", "a", "speaker", "instance", "for", "the", "given", "path", "." ]
python
train
mvn23/pyotgw
pyotgw/pyotgw.py
https://github.com/mvn23/pyotgw/blob/7612378ef4332b250176505af33e7536d6c9da78/pyotgw/pyotgw.py#L458-L500
async def set_gpio_mode(self, gpio_id, mode, timeout=OTGW_DEFAULT_TIMEOUT): """ Configure the functions of the two GPIO pins of the gateway. The following functions are available: 0 No function, default for both ports on a freshly flashed chip 1 Ground - A permanently low output (0V). Could be used for a power LED 2 Vcc - A permanently high output (5V). Can be used as a short-proof power supply for some external circuitry used by the other GPIO port 3 LED E - An additional LED if you want to present more than 4 LED functions 4 LED F - An additional LED if you want to present more than 5 LED functions 5 Home - Set thermostat to setback temperature when pulled low 6 Away - Set thermostat to setback temperature when pulled high 7 DS1820 (GPIO port B only) - Data line for a DS18S20 or DS18B20 temperature sensor used to measure the outside temperature. A 4k7 resistor should be connected between GPIO port B and Vcc Return the new mode for the specified gpio, or None on failure. This method is a coroutine """ if gpio_id in "AB" and mode in range(8): if mode == 7 and gpio_id != "B": return None cmd = globals().get("OTGW_CMD_GPIO_{}".format(gpio_id)) status = {} ret = await self._wait_for_cmd(cmd, mode, timeout) if ret is None: return ret = int(ret) var = globals().get("OTGW_GPIO_{}".format(gpio_id)) status[var] = ret self._update_status(status) asyncio.ensure_future( self._poll_gpio(self._protocol.status.get(OTGW_GPIO_A) or self._protocol.status.get(OTGW_GPIO_B))) return ret
[ "async", "def", "set_gpio_mode", "(", "self", ",", "gpio_id", ",", "mode", ",", "timeout", "=", "OTGW_DEFAULT_TIMEOUT", ")", ":", "if", "gpio_id", "in", "\"AB\"", "and", "mode", "in", "range", "(", "8", ")", ":", "if", "mode", "==", "7", "and", "gpio_id", "!=", "\"B\"", ":", "return", "None", "cmd", "=", "globals", "(", ")", ".", "get", "(", "\"OTGW_CMD_GPIO_{}\"", ".", "format", "(", "gpio_id", ")", ")", "status", "=", "{", "}", "ret", "=", "await", "self", ".", "_wait_for_cmd", "(", "cmd", ",", "mode", ",", "timeout", ")", "if", "ret", "is", "None", ":", "return", "ret", "=", "int", "(", "ret", ")", "var", "=", "globals", "(", ")", ".", "get", "(", "\"OTGW_GPIO_{}\"", ".", "format", "(", "gpio_id", ")", ")", "status", "[", "var", "]", "=", "ret", "self", ".", "_update_status", "(", "status", ")", "asyncio", ".", "ensure_future", "(", "self", ".", "_poll_gpio", "(", "self", ".", "_protocol", ".", "status", ".", "get", "(", "OTGW_GPIO_A", ")", "or", "self", ".", "_protocol", ".", "status", ".", "get", "(", "OTGW_GPIO_B", ")", ")", ")", "return", "ret" ]
Configure the functions of the two GPIO pins of the gateway. The following functions are available: 0 No function, default for both ports on a freshly flashed chip 1 Ground - A permanently low output (0V). Could be used for a power LED 2 Vcc - A permanently high output (5V). Can be used as a short-proof power supply for some external circuitry used by the other GPIO port 3 LED E - An additional LED if you want to present more than 4 LED functions 4 LED F - An additional LED if you want to present more than 5 LED functions 5 Home - Set thermostat to setback temperature when pulled low 6 Away - Set thermostat to setback temperature when pulled high 7 DS1820 (GPIO port B only) - Data line for a DS18S20 or DS18B20 temperature sensor used to measure the outside temperature. A 4k7 resistor should be connected between GPIO port B and Vcc Return the new mode for the specified gpio, or None on failure. This method is a coroutine
[ "Configure", "the", "functions", "of", "the", "two", "GPIO", "pins", "of", "the", "gateway", ".", "The", "following", "functions", "are", "available", ":" ]
python
train
RudolfCardinal/pythonlib
cardinal_pythonlib/psychiatry/drugs.py
https://github.com/RudolfCardinal/pythonlib/blob/0b84cb35f38bd7d8723958dae51b480a829b7227/cardinal_pythonlib/psychiatry/drugs.py#L1324-L1334
def drug_name_to_generic(drug_name: str, unknown_to_default: bool = False, default: str = None, include_categories: bool = False) -> str: """ Converts a drug name to the name of its generic equivalent. """ drug = get_drug(drug_name, include_categories=include_categories) if drug is not None: return drug.generic_name return default if unknown_to_default else drug_name
[ "def", "drug_name_to_generic", "(", "drug_name", ":", "str", ",", "unknown_to_default", ":", "bool", "=", "False", ",", "default", ":", "str", "=", "None", ",", "include_categories", ":", "bool", "=", "False", ")", "->", "str", ":", "drug", "=", "get_drug", "(", "drug_name", ",", "include_categories", "=", "include_categories", ")", "if", "drug", "is", "not", "None", ":", "return", "drug", ".", "generic_name", "return", "default", "if", "unknown_to_default", "else", "drug_name" ]
Converts a drug name to the name of its generic equivalent.
[ "Converts", "a", "drug", "name", "to", "the", "name", "of", "its", "generic", "equivalent", "." ]
python
train
SKA-ScienceDataProcessor/integration-prototype
sip/execution_control/docker_api/sip_docker_swarm/docker_swarm_client.py
https://github.com/SKA-ScienceDataProcessor/integration-prototype/blob/8c8006de6ad71dcd44114b0338780738079c87d4/sip/execution_control/docker_api/sip_docker_swarm/docker_swarm_client.py#L178-L191
def delete_all_services(self): """Removes/stops a service. Only the manager nodes can delete a service """ # Raise an exception if we are not a manager if not self._manager: raise RuntimeError('Services can only be deleted ' 'on swarm manager nodes') service_list = self.get_service_list() for services in service_list: # Remove all the services self._api_client.remove_service(services)
[ "def", "delete_all_services", "(", "self", ")", ":", "# Raise an exception if we are not a manager", "if", "not", "self", ".", "_manager", ":", "raise", "RuntimeError", "(", "'Services can only be deleted '", "'on swarm manager nodes'", ")", "service_list", "=", "self", ".", "get_service_list", "(", ")", "for", "services", "in", "service_list", ":", "# Remove all the services", "self", ".", "_api_client", ".", "remove_service", "(", "services", ")" ]
Removes/stops a service. Only the manager nodes can delete a service
[ "Removes", "/", "stops", "a", "service", "." ]
python
train
aiidateam/aiida-nwchem
aiida_nwchem/tools/dbexporters/tcod_plugins/nwcpymatgen.py
https://github.com/aiidateam/aiida-nwchem/blob/21034e7f8ea8249948065c28030f4b572a6ecf05/aiida_nwchem/tools/dbexporters/tcod_plugins/nwcpymatgen.py#L46-L55
def get_atom_type_symbol(cls,calc,**kwargs): """ Returns a list of atom types. Each atom site MUST occur only once in this list. List MUST be sorted. """ parameters = calc.out.output dictionary = parameters.get_dict() if 'basis_set' not in dictionary.keys(): return None return sorted(dictionary['basis_set'].keys())
[ "def", "get_atom_type_symbol", "(", "cls", ",", "calc", ",", "*", "*", "kwargs", ")", ":", "parameters", "=", "calc", ".", "out", ".", "output", "dictionary", "=", "parameters", ".", "get_dict", "(", ")", "if", "'basis_set'", "not", "in", "dictionary", ".", "keys", "(", ")", ":", "return", "None", "return", "sorted", "(", "dictionary", "[", "'basis_set'", "]", ".", "keys", "(", ")", ")" ]
Returns a list of atom types. Each atom site MUST occur only once in this list. List MUST be sorted.
[ "Returns", "a", "list", "of", "atom", "types", ".", "Each", "atom", "site", "MUST", "occur", "only", "once", "in", "this", "list", ".", "List", "MUST", "be", "sorted", "." ]
python
train
pydata/xarray
xarray/core/indexing.py
https://github.com/pydata/xarray/blob/6d93a95d05bdbfc33fff24064f67d29dd891ab58/xarray/core/indexing.py#L716-L740
def _combine_indexers(old_key, shape, new_key): """ Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key] """ if not isinstance(old_key, VectorizedIndexer): old_key = _outer_to_vectorized_indexer(old_key, shape) if len(old_key.tuple) == 0: return new_key new_shape = np.broadcast(*old_key.tuple).shape if isinstance(new_key, VectorizedIndexer): new_key = _arrayize_vectorized_indexer(new_key, new_shape) else: new_key = _outer_to_vectorized_indexer(new_key, new_shape) return VectorizedIndexer(tuple(o[new_key.tuple] for o in np.broadcast_arrays(*old_key.tuple)))
[ "def", "_combine_indexers", "(", "old_key", ",", "shape", ",", "new_key", ")", ":", "if", "not", "isinstance", "(", "old_key", ",", "VectorizedIndexer", ")", ":", "old_key", "=", "_outer_to_vectorized_indexer", "(", "old_key", ",", "shape", ")", "if", "len", "(", "old_key", ".", "tuple", ")", "==", "0", ":", "return", "new_key", "new_shape", "=", "np", ".", "broadcast", "(", "*", "old_key", ".", "tuple", ")", ".", "shape", "if", "isinstance", "(", "new_key", ",", "VectorizedIndexer", ")", ":", "new_key", "=", "_arrayize_vectorized_indexer", "(", "new_key", ",", "new_shape", ")", "else", ":", "new_key", "=", "_outer_to_vectorized_indexer", "(", "new_key", ",", "new_shape", ")", "return", "VectorizedIndexer", "(", "tuple", "(", "o", "[", "new_key", ".", "tuple", "]", "for", "o", "in", "np", ".", "broadcast_arrays", "(", "*", "old_key", ".", "tuple", ")", ")", ")" ]
Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key]
[ "Combine", "two", "indexers", "." ]
python
train
saltstack/salt
salt/modules/state.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/state.py#L411-L422
def _check_queue(queue, kwargs): ''' Utility function to queue the state run if requested and to check for conflicts in currently running states ''' if queue: _wait(kwargs.get('__pub_jid')) else: conflict = running(concurrent=kwargs.get('concurrent', False)) if conflict: __context__['retcode'] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return conflict
[ "def", "_check_queue", "(", "queue", ",", "kwargs", ")", ":", "if", "queue", ":", "_wait", "(", "kwargs", ".", "get", "(", "'__pub_jid'", ")", ")", "else", ":", "conflict", "=", "running", "(", "concurrent", "=", "kwargs", ".", "get", "(", "'concurrent'", ",", "False", ")", ")", "if", "conflict", ":", "__context__", "[", "'retcode'", "]", "=", "salt", ".", "defaults", ".", "exitcodes", ".", "EX_STATE_COMPILER_ERROR", "return", "conflict" ]
Utility function to queue the state run if requested and to check for conflicts in currently running states
[ "Utility", "function", "to", "queue", "the", "state", "run", "if", "requested", "and", "to", "check", "for", "conflicts", "in", "currently", "running", "states" ]
python
train
pickleshare/pickleshare
pickleshare.py
https://github.com/pickleshare/pickleshare/blob/f7950a9a359774c0190abde8da729b1810bdf3f4/pickleshare.py#L137-L154
def hget(self, hashroot, key, default = _sentinel, fast_only = True): """ hashed get """ hroot = self.root / hashroot hfile = hroot / gethashfile(key) d = self.get(hfile, _sentinel ) #print "got dict",d,"from",hfile if d is _sentinel: if fast_only: if default is _sentinel: raise KeyError(key) return default # slow mode ok, works even after hcompress() d = self.hdict(hashroot) return d.get(key, default)
[ "def", "hget", "(", "self", ",", "hashroot", ",", "key", ",", "default", "=", "_sentinel", ",", "fast_only", "=", "True", ")", ":", "hroot", "=", "self", ".", "root", "/", "hashroot", "hfile", "=", "hroot", "/", "gethashfile", "(", "key", ")", "d", "=", "self", ".", "get", "(", "hfile", ",", "_sentinel", ")", "#print \"got dict\",d,\"from\",hfile", "if", "d", "is", "_sentinel", ":", "if", "fast_only", ":", "if", "default", "is", "_sentinel", ":", "raise", "KeyError", "(", "key", ")", "return", "default", "# slow mode ok, works even after hcompress()", "d", "=", "self", ".", "hdict", "(", "hashroot", ")", "return", "d", ".", "get", "(", "key", ",", "default", ")" ]
hashed get
[ "hashed", "get" ]
python
train
arne-cl/discoursegraphs
src/discoursegraphs/discoursegraph.py
https://github.com/arne-cl/discoursegraphs/blob/842f0068a3190be2c75905754521b176b25a54fb/src/discoursegraphs/discoursegraph.py#L1257-L1295
def select_edges_by(docgraph, layer=None, edge_type=None, data=False): """ get all edges with the given edge type and layer. Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted layer : str name of the layer edge_type : str Type of the edges to be extracted (Edge types are defined in the Enum ``EdgeTypes``). data : bool If True, results will include edge attributes. Returns ------- edges : generator of str a container/list of edges (represented as (source node ID, target node ID) tuples). If data is True, edges are represented as (source node ID, target node ID, edge attribute dict) tuples. """ edge_type_eval = "edge_attribs['edge_type'] == '{}'".format(edge_type) layer_eval = "'{}' in edge_attribs['layers']".format(layer) if layer is not None: if edge_type is not None: return select_edges(docgraph, data=data, conditions=[edge_type_eval, layer_eval]) else: # filter by layer, but not by edge type return select_edges(docgraph, conditions=[layer_eval], data=data) else: # don't filter layers if edge_type is not None: # filter by edge type, but not by layer return select_edges(docgraph, data=data, conditions=[edge_type_eval]) else: # neither layer, nor edge type is filtered return docgraph.edges_iter(data=data)
[ "def", "select_edges_by", "(", "docgraph", ",", "layer", "=", "None", ",", "edge_type", "=", "None", ",", "data", "=", "False", ")", ":", "edge_type_eval", "=", "\"edge_attribs['edge_type'] == '{}'\"", ".", "format", "(", "edge_type", ")", "layer_eval", "=", "\"'{}' in edge_attribs['layers']\"", ".", "format", "(", "layer", ")", "if", "layer", "is", "not", "None", ":", "if", "edge_type", "is", "not", "None", ":", "return", "select_edges", "(", "docgraph", ",", "data", "=", "data", ",", "conditions", "=", "[", "edge_type_eval", ",", "layer_eval", "]", ")", "else", ":", "# filter by layer, but not by edge type", "return", "select_edges", "(", "docgraph", ",", "conditions", "=", "[", "layer_eval", "]", ",", "data", "=", "data", ")", "else", ":", "# don't filter layers", "if", "edge_type", "is", "not", "None", ":", "# filter by edge type, but not by layer", "return", "select_edges", "(", "docgraph", ",", "data", "=", "data", ",", "conditions", "=", "[", "edge_type_eval", "]", ")", "else", ":", "# neither layer, nor edge type is filtered", "return", "docgraph", ".", "edges_iter", "(", "data", "=", "data", ")" ]
get all edges with the given edge type and layer. Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted layer : str name of the layer edge_type : str Type of the edges to be extracted (Edge types are defined in the Enum ``EdgeTypes``). data : bool If True, results will include edge attributes. Returns ------- edges : generator of str a container/list of edges (represented as (source node ID, target node ID) tuples). If data is True, edges are represented as (source node ID, target node ID, edge attribute dict) tuples.
[ "get", "all", "edges", "with", "the", "given", "edge", "type", "and", "layer", "." ]
python
train
vtkiorg/vtki
vtki/common.py
https://github.com/vtkiorg/vtki/blob/5ccad7ae6d64a03e9594c9c7474c8aab3eb22dd1/vtki/common.py#L403-L413
def rotate_z(self, angle): """ Rotates mesh about the z-axis. Parameters ---------- angle : float Angle in degrees to rotate about the z-axis. """ axis_rotation(self.points, angle, inplace=True, axis='z')
[ "def", "rotate_z", "(", "self", ",", "angle", ")", ":", "axis_rotation", "(", "self", ".", "points", ",", "angle", ",", "inplace", "=", "True", ",", "axis", "=", "'z'", ")" ]
Rotates mesh about the z-axis. Parameters ---------- angle : float Angle in degrees to rotate about the z-axis.
[ "Rotates", "mesh", "about", "the", "z", "-", "axis", "." ]
python
train
spyder-ide/spyder
spyder/widgets/mixins.py
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/widgets/mixins.py#L375-L392
def get_position(self, subject): """Get offset in character for the given subject from the start of text edit area""" cursor = self.textCursor() if subject == 'cursor': pass elif subject == 'sol': cursor.movePosition(QTextCursor.StartOfBlock) elif subject == 'eol': cursor.movePosition(QTextCursor.EndOfBlock) elif subject == 'eof': cursor.movePosition(QTextCursor.End) elif subject == 'sof': cursor.movePosition(QTextCursor.Start) else: # Assuming that input argument was already a position return subject return cursor.position()
[ "def", "get_position", "(", "self", ",", "subject", ")", ":", "cursor", "=", "self", ".", "textCursor", "(", ")", "if", "subject", "==", "'cursor'", ":", "pass", "elif", "subject", "==", "'sol'", ":", "cursor", ".", "movePosition", "(", "QTextCursor", ".", "StartOfBlock", ")", "elif", "subject", "==", "'eol'", ":", "cursor", ".", "movePosition", "(", "QTextCursor", ".", "EndOfBlock", ")", "elif", "subject", "==", "'eof'", ":", "cursor", ".", "movePosition", "(", "QTextCursor", ".", "End", ")", "elif", "subject", "==", "'sof'", ":", "cursor", ".", "movePosition", "(", "QTextCursor", ".", "Start", ")", "else", ":", "# Assuming that input argument was already a position\r", "return", "subject", "return", "cursor", ".", "position", "(", ")" ]
Get offset in character for the given subject from the start of text edit area
[ "Get", "offset", "in", "character", "for", "the", "given", "subject", "from", "the", "start", "of", "text", "edit", "area" ]
python
train
Pytwitcher/pytwitcherapi
src/pytwitcherapi/models.py
https://github.com/Pytwitcher/pytwitcherapi/blob/d53ac5ad5ca113ecb7da542e8cdcbbf8c762b336/src/pytwitcherapi/models.py#L375-L390
def wrap_json(cls, json): """Create a User instance for the given json :param json: the dict with the information of the user :type json: :class:`dict` | None :returns: the new user instance :rtype: :class:`User` :raises: None """ u = User(usertype=json['type'], name=json['name'], logo=json['logo'], twitchid=json['_id'], displayname=json['display_name'], bio=json['bio']) return u
[ "def", "wrap_json", "(", "cls", ",", "json", ")", ":", "u", "=", "User", "(", "usertype", "=", "json", "[", "'type'", "]", ",", "name", "=", "json", "[", "'name'", "]", ",", "logo", "=", "json", "[", "'logo'", "]", ",", "twitchid", "=", "json", "[", "'_id'", "]", ",", "displayname", "=", "json", "[", "'display_name'", "]", ",", "bio", "=", "json", "[", "'bio'", "]", ")", "return", "u" ]
Create a User instance for the given json :param json: the dict with the information of the user :type json: :class:`dict` | None :returns: the new user instance :rtype: :class:`User` :raises: None
[ "Create", "a", "User", "instance", "for", "the", "given", "json" ]
python
train
boriel/zxbasic
zxbparser.py
https://github.com/boriel/zxbasic/blob/23b28db10e41117805bdb3c0f78543590853b132/zxbparser.py#L2226-L2229
def p_expr_mod_expr(p): """ expr : expr MOD expr """ p[0] = make_binary(p.lineno(2), 'MOD', p[1], p[3], lambda x, y: x % y)
[ "def", "p_expr_mod_expr", "(", "p", ")", ":", "p", "[", "0", "]", "=", "make_binary", "(", "p", ".", "lineno", "(", "2", ")", ",", "'MOD'", ",", "p", "[", "1", "]", ",", "p", "[", "3", "]", ",", "lambda", "x", ",", "y", ":", "x", "%", "y", ")" ]
expr : expr MOD expr
[ "expr", ":", "expr", "MOD", "expr" ]
python
train
CitrineInformatics/python-citrination-client
citrination_client/models/client.py
https://github.com/CitrineInformatics/python-citrination-client/blob/409984fc65ce101a620f069263f155303492465c/citrination_client/models/client.py#L117-L126
def _data_analysis(self, data_view_id): """ Data analysis endpoint. :param data_view_id: The model identifier (id number for data views) :type data_view_id: str :return: dictionary containing information about the data, e.g. dCorr and tsne """ failure_message = "Error while retrieving data analysis for data view {}".format(data_view_id) return self._get_success_json(self._get(routes.data_analysis(data_view_id), failure_message=failure_message))
[ "def", "_data_analysis", "(", "self", ",", "data_view_id", ")", ":", "failure_message", "=", "\"Error while retrieving data analysis for data view {}\"", ".", "format", "(", "data_view_id", ")", "return", "self", ".", "_get_success_json", "(", "self", ".", "_get", "(", "routes", ".", "data_analysis", "(", "data_view_id", ")", ",", "failure_message", "=", "failure_message", ")", ")" ]
Data analysis endpoint. :param data_view_id: The model identifier (id number for data views) :type data_view_id: str :return: dictionary containing information about the data, e.g. dCorr and tsne
[ "Data", "analysis", "endpoint", "." ]
python
valid
swimlane/swimlane-python
swimlane/core/fields/base/field.py
https://github.com/swimlane/swimlane-python/blob/588fc503a76799bcdb5aecdf2f64a6ee05e3922d/swimlane/core/fields/base/field.py#L57-L68
def get_report(self, value): """Return provided field Python value formatted for use in report filter""" if self.multiselect: value = value or [] children = [] for child in value: children.append(self.cast_to_report(child)) return children return self.cast_to_report(value)
[ "def", "get_report", "(", "self", ",", "value", ")", ":", "if", "self", ".", "multiselect", ":", "value", "=", "value", "or", "[", "]", "children", "=", "[", "]", "for", "child", "in", "value", ":", "children", ".", "append", "(", "self", ".", "cast_to_report", "(", "child", ")", ")", "return", "children", "return", "self", ".", "cast_to_report", "(", "value", ")" ]
Return provided field Python value formatted for use in report filter
[ "Return", "provided", "field", "Python", "value", "formatted", "for", "use", "in", "report", "filter" ]
python
train
pywbem/pywbem
pywbem/mof_compiler.py
https://github.com/pywbem/pywbem/blob/e54ecb82c2211e289a268567443d60fdd489f1e4/pywbem/mof_compiler.py#L1128-L1136
def p_parameter_3(p): """parameter_3 : objectRef parameterName | objectRef parameterName array """ args = {} if len(p) == 4: args['is_array'] = True args['array_size'] = p[3] p[0] = CIMParameter(p[2], 'reference', reference_class=p[1], **args)
[ "def", "p_parameter_3", "(", "p", ")", ":", "args", "=", "{", "}", "if", "len", "(", "p", ")", "==", "4", ":", "args", "[", "'is_array'", "]", "=", "True", "args", "[", "'array_size'", "]", "=", "p", "[", "3", "]", "p", "[", "0", "]", "=", "CIMParameter", "(", "p", "[", "2", "]", ",", "'reference'", ",", "reference_class", "=", "p", "[", "1", "]", ",", "*", "*", "args", ")" ]
parameter_3 : objectRef parameterName | objectRef parameterName array
[ "parameter_3", ":", "objectRef", "parameterName", "|", "objectRef", "parameterName", "array" ]
python
train
tkf/rash
rash/record.py
https://github.com/tkf/rash/blob/585da418ec37dd138f1a4277718b6f507e9536a2/rash/record.py#L86-L99
def generate_session_id(data): """ Generate session ID based on HOST, TTY, PID [#]_ and start time. :type data: dict :rtype: str .. [#] PID of the shell, i.e., PPID of this Python process. """ host = data['environ']['HOST'] tty = data['environ'].get('TTY') or 'NO_TTY' return ':'.join(map(str, [ host, tty, os.getppid(), data['start']]))
[ "def", "generate_session_id", "(", "data", ")", ":", "host", "=", "data", "[", "'environ'", "]", "[", "'HOST'", "]", "tty", "=", "data", "[", "'environ'", "]", ".", "get", "(", "'TTY'", ")", "or", "'NO_TTY'", "return", "':'", ".", "join", "(", "map", "(", "str", ",", "[", "host", ",", "tty", ",", "os", ".", "getppid", "(", ")", ",", "data", "[", "'start'", "]", "]", ")", ")" ]
Generate session ID based on HOST, TTY, PID [#]_ and start time. :type data: dict :rtype: str .. [#] PID of the shell, i.e., PPID of this Python process.
[ "Generate", "session", "ID", "based", "on", "HOST", "TTY", "PID", "[", "#", "]", "_", "and", "start", "time", "." ]
python
train
gabfl/dbschema
src/schema_change.py
https://github.com/gabfl/dbschema/blob/37722e6654e9f0374fac5518ebdca22f4c39f92f/src/schema_change.py#L221-L242
def get_migrations_applied(engine, connection): """ Get list of migrations already applied """ try: # Get cursor based on engine if engine == 'postgresql': cursor = connection.cursor( cursor_factory=psycopg2.extras.RealDictCursor) else: cursor = connection.cursor() sql = "SELECT id, name, date FROM migrations_applied" cursor.execute(sql) rows = cursor.fetchall() # print (rows); return rows except psycopg2.ProgrammingError: raise RuntimeError( 'The table `migrations_applied` is missing. Please refer to the project documentation at https://github.com/gabfl/dbschema.') except pymysql.err.ProgrammingError: raise RuntimeError( 'The table `migrations_applied` is missing. Please refer to the project documentation at https://github.com/gabfl/dbschema.')
[ "def", "get_migrations_applied", "(", "engine", ",", "connection", ")", ":", "try", ":", "# Get cursor based on engine", "if", "engine", "==", "'postgresql'", ":", "cursor", "=", "connection", ".", "cursor", "(", "cursor_factory", "=", "psycopg2", ".", "extras", ".", "RealDictCursor", ")", "else", ":", "cursor", "=", "connection", ".", "cursor", "(", ")", "sql", "=", "\"SELECT id, name, date FROM migrations_applied\"", "cursor", ".", "execute", "(", "sql", ")", "rows", "=", "cursor", ".", "fetchall", "(", ")", "# print (rows);", "return", "rows", "except", "psycopg2", ".", "ProgrammingError", ":", "raise", "RuntimeError", "(", "'The table `migrations_applied` is missing. Please refer to the project documentation at https://github.com/gabfl/dbschema.'", ")", "except", "pymysql", ".", "err", ".", "ProgrammingError", ":", "raise", "RuntimeError", "(", "'The table `migrations_applied` is missing. Please refer to the project documentation at https://github.com/gabfl/dbschema.'", ")" ]
Get list of migrations already applied
[ "Get", "list", "of", "migrations", "already", "applied" ]
python
train
quantopian/zipline
zipline/utils/argcheck.py
https://github.com/quantopian/zipline/blob/77ad15e6dc4c1cbcdc133653bac8a63fc704f7fe/zipline/utils/argcheck.py#L131-L140
def _expect_extra(expected, present, exc_unexpected, exc_missing, exc_args): """ Checks for the presence of an extra to the argument list. Raises expections if this is unexpected or if it is missing and expected. """ if present: if not expected: raise exc_unexpected(*exc_args) elif expected and expected is not Argument.ignore: raise exc_missing(*exc_args)
[ "def", "_expect_extra", "(", "expected", ",", "present", ",", "exc_unexpected", ",", "exc_missing", ",", "exc_args", ")", ":", "if", "present", ":", "if", "not", "expected", ":", "raise", "exc_unexpected", "(", "*", "exc_args", ")", "elif", "expected", "and", "expected", "is", "not", "Argument", ".", "ignore", ":", "raise", "exc_missing", "(", "*", "exc_args", ")" ]
Checks for the presence of an extra to the argument list. Raises expections if this is unexpected or if it is missing and expected.
[ "Checks", "for", "the", "presence", "of", "an", "extra", "to", "the", "argument", "list", ".", "Raises", "expections", "if", "this", "is", "unexpected", "or", "if", "it", "is", "missing", "and", "expected", "." ]
python
train
sernst/cauldron
cauldron/runner/markdown_file.py
https://github.com/sernst/cauldron/blob/4086aec9c038c402ea212c79fe8bd0d27104f9cf/cauldron/runner/markdown_file.py#L6-L32
def run( project: 'projects.Project', step: 'projects.ProjectStep' ) -> dict: """ Runs the markdown file and renders the contents to the notebook display :param project: :param step: :return: A run response dictionary containing """ with open(step.source_path, 'r') as f: code = f.read() try: cauldron.display.markdown(code, **project.shared.fetch(None)) return {'success': True} except Exception as err: return dict( success=False, html_message=templating.render_template( 'markdown-error.html', error=err ) )
[ "def", "run", "(", "project", ":", "'projects.Project'", ",", "step", ":", "'projects.ProjectStep'", ")", "->", "dict", ":", "with", "open", "(", "step", ".", "source_path", ",", "'r'", ")", "as", "f", ":", "code", "=", "f", ".", "read", "(", ")", "try", ":", "cauldron", ".", "display", ".", "markdown", "(", "code", ",", "*", "*", "project", ".", "shared", ".", "fetch", "(", "None", ")", ")", "return", "{", "'success'", ":", "True", "}", "except", "Exception", "as", "err", ":", "return", "dict", "(", "success", "=", "False", ",", "html_message", "=", "templating", ".", "render_template", "(", "'markdown-error.html'", ",", "error", "=", "err", ")", ")" ]
Runs the markdown file and renders the contents to the notebook display :param project: :param step: :return: A run response dictionary containing
[ "Runs", "the", "markdown", "file", "and", "renders", "the", "contents", "to", "the", "notebook", "display" ]
python
train
SoftwareDefinedBuildings/XBOS
apps/Data_quality_analysis/Clean_Data.py
https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Clean_Data.py#L907-L946
def count_if(self, data, condition, val, output="number"): """ Count the number of values that match the condition. Parameters ---------- data : pd.DataFrame() Input dataframe. condition : str Condition to match. val : float Value to compare against. output : str Sting indicating the output of function (number or percent) Returns ------- int/float Count of values that match the condition (int or float) """ if condition == "=": count = self._find_equal_to_values(data,val).sum() elif condition == ">": count = self._find_greater_than_values(data,val).sum() elif condition == "<": count = self._find_less_than_values(data,val).sum() elif condition == ">=": count = self._find_greater_than_or_equal_to_values(data,val).sum() elif condition == "<=": count = self._find_less_than_or_equal_to_values(data,val).sum() elif condition == "!=": count = self._find_different_from_values(data,val).sum() if output == "number": return count elif output == "percent": return count/data.shape[0]*1.0*100 return count
[ "def", "count_if", "(", "self", ",", "data", ",", "condition", ",", "val", ",", "output", "=", "\"number\"", ")", ":", "if", "condition", "==", "\"=\"", ":", "count", "=", "self", ".", "_find_equal_to_values", "(", "data", ",", "val", ")", ".", "sum", "(", ")", "elif", "condition", "==", "\">\"", ":", "count", "=", "self", ".", "_find_greater_than_values", "(", "data", ",", "val", ")", ".", "sum", "(", ")", "elif", "condition", "==", "\"<\"", ":", "count", "=", "self", ".", "_find_less_than_values", "(", "data", ",", "val", ")", ".", "sum", "(", ")", "elif", "condition", "==", "\">=\"", ":", "count", "=", "self", ".", "_find_greater_than_or_equal_to_values", "(", "data", ",", "val", ")", ".", "sum", "(", ")", "elif", "condition", "==", "\"<=\"", ":", "count", "=", "self", ".", "_find_less_than_or_equal_to_values", "(", "data", ",", "val", ")", ".", "sum", "(", ")", "elif", "condition", "==", "\"!=\"", ":", "count", "=", "self", ".", "_find_different_from_values", "(", "data", ",", "val", ")", ".", "sum", "(", ")", "if", "output", "==", "\"number\"", ":", "return", "count", "elif", "output", "==", "\"percent\"", ":", "return", "count", "/", "data", ".", "shape", "[", "0", "]", "*", "1.0", "*", "100", "return", "count" ]
Count the number of values that match the condition. Parameters ---------- data : pd.DataFrame() Input dataframe. condition : str Condition to match. val : float Value to compare against. output : str Sting indicating the output of function (number or percent) Returns ------- int/float Count of values that match the condition (int or float)
[ "Count", "the", "number", "of", "values", "that", "match", "the", "condition", ".", "Parameters", "----------", "data", ":", "pd", ".", "DataFrame", "()", "Input", "dataframe", ".", "condition", ":", "str", "Condition", "to", "match", ".", "val", ":", "float", "Value", "to", "compare", "against", ".", "output", ":", "str", "Sting", "indicating", "the", "output", "of", "function", "(", "number", "or", "percent", ")" ]
python
train
flowersteam/explauto
explauto/sensorimotor_model/inverse/cma.py
https://github.com/flowersteam/explauto/blob/cf0f81ecb9f6412f7276a95bd27359000e1e26b6/explauto/sensorimotor_model/inverse/cma.py#L8411-L8423
def fun_as_arg(self, x, *args): """``fun_as_arg(x, fun, *more_args)`` calls ``fun(x, *more_args)``. Use case:: fmin(cma.fun_as_arg, args=(fun,), gradf=grad_numerical) calls fun_as_args(x, args) and grad_numerical(x, fun, args=args) """ fun = args[0] more_args = args[1:] if len(args) > 1 else () return fun(x, *more_args)
[ "def", "fun_as_arg", "(", "self", ",", "x", ",", "*", "args", ")", ":", "fun", "=", "args", "[", "0", "]", "more_args", "=", "args", "[", "1", ":", "]", "if", "len", "(", "args", ")", ">", "1", "else", "(", ")", "return", "fun", "(", "x", ",", "*", "more_args", ")" ]
``fun_as_arg(x, fun, *more_args)`` calls ``fun(x, *more_args)``. Use case:: fmin(cma.fun_as_arg, args=(fun,), gradf=grad_numerical) calls fun_as_args(x, args) and grad_numerical(x, fun, args=args)
[ "fun_as_arg", "(", "x", "fun", "*", "more_args", ")", "calls", "fun", "(", "x", "*", "more_args", ")", "." ]
python
train
CalebBell/thermo
thermo/chemical.py
https://github.com/CalebBell/thermo/blob/3857ed023a3e64fd3039a32d53576c24990ef1c3/thermo/chemical.py#L1314-L1330
def legal_status(self): r'''Dictionary of legal status indicators for the chemical. Examples -------- >>> pprint(Chemical('benzene').legal_status) {'DSL': 'LISTED', 'EINECS': 'LISTED', 'NLP': 'UNLISTED', 'SPIN': 'LISTED', 'TSCA': 'LISTED'} ''' if self.__legal_status: return self.__legal_status else: self.__legal_status = legal_status(self.CAS, Method='COMBINED') return self.__legal_status
[ "def", "legal_status", "(", "self", ")", ":", "if", "self", ".", "__legal_status", ":", "return", "self", ".", "__legal_status", "else", ":", "self", ".", "__legal_status", "=", "legal_status", "(", "self", ".", "CAS", ",", "Method", "=", "'COMBINED'", ")", "return", "self", ".", "__legal_status" ]
r'''Dictionary of legal status indicators for the chemical. Examples -------- >>> pprint(Chemical('benzene').legal_status) {'DSL': 'LISTED', 'EINECS': 'LISTED', 'NLP': 'UNLISTED', 'SPIN': 'LISTED', 'TSCA': 'LISTED'}
[ "r", "Dictionary", "of", "legal", "status", "indicators", "for", "the", "chemical", "." ]
python
valid
senaite/senaite.core
bika/lims/api/__init__.py
https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/api/__init__.py#L968-L981
def get_group(group_or_groupname): """Return Plone Group :param group_or_groupname: Plone group or the name of the group :type groupname: GroupData/str :returns: Plone GroupData """ if not group_or_groupname: return None if hasattr(group_or_groupname, "_getGroup"): return group_or_groupname gtool = get_tool("portal_groups") return gtool.getGroupById(group_or_groupname)
[ "def", "get_group", "(", "group_or_groupname", ")", ":", "if", "not", "group_or_groupname", ":", "return", "None", "if", "hasattr", "(", "group_or_groupname", ",", "\"_getGroup\"", ")", ":", "return", "group_or_groupname", "gtool", "=", "get_tool", "(", "\"portal_groups\"", ")", "return", "gtool", ".", "getGroupById", "(", "group_or_groupname", ")" ]
Return Plone Group :param group_or_groupname: Plone group or the name of the group :type groupname: GroupData/str :returns: Plone GroupData
[ "Return", "Plone", "Group" ]
python
train
cmcqueen/simplerandom
python/python2/simplerandom/random/_random_py.py
https://github.com/cmcqueen/simplerandom/blob/3f19ffdfeaa8256986adf7173f08c1c719164d01/python/python2/simplerandom/random/_random_py.py#L65-L68
def setbpf(self, bpf): """Set number of bits per float output""" self._bpf = min(bpf, self.BPF) self._rng_n = int((self._bpf + self.RNG_RANGE_BITS - 1) / self.RNG_RANGE_BITS)
[ "def", "setbpf", "(", "self", ",", "bpf", ")", ":", "self", ".", "_bpf", "=", "min", "(", "bpf", ",", "self", ".", "BPF", ")", "self", ".", "_rng_n", "=", "int", "(", "(", "self", ".", "_bpf", "+", "self", ".", "RNG_RANGE_BITS", "-", "1", ")", "/", "self", ".", "RNG_RANGE_BITS", ")" ]
Set number of bits per float output
[ "Set", "number", "of", "bits", "per", "float", "output" ]
python
train
StanfordBioinformatics/loom
client/loomengine/playbooks/gce.py
https://github.com/StanfordBioinformatics/loom/blob/db2031a1a87124fee1aeb7414a668c03d774a698/client/loomengine/playbooks/gce.py#L198-L254
def get_config(self): """ Reads the settings from the gce.ini file. Populates a SafeConfigParser object with defaults and attempts to read an .ini-style configuration from the filename specified in GCE_INI_PATH. If the environment variable is not present, the filename defaults to gce.ini in the current working directory. """ gce_ini_default_path = os.path.join( os.path.dirname(os.path.realpath(__file__)), "gce.ini") gce_ini_path = os.environ.get('GCE_INI_PATH', gce_ini_default_path) # Create a ConfigParser. # This provides empty defaults to each key, so that environment # variable configuration (as opposed to INI configuration) is able # to work. config = ConfigParser.SafeConfigParser(defaults={ 'gce_service_account_email_address': '', 'gce_service_account_pem_file_path': '', 'gce_project_id': '', 'libcloud_secrets': '', 'inventory_ip_type': '', 'cache_path': '~/.ansible/tmp', 'cache_max_age': '300' }) if 'gce' not in config.sections(): config.add_section('gce') if 'inventory' not in config.sections(): config.add_section('inventory') if 'cache' not in config.sections(): config.add_section('cache') config.read(gce_ini_path) ######### # Section added for processing ini settings ######### # Set the instance_states filter based on config file options self.instance_states = [] if config.has_option('gce', 'instance_states'): states = config.get('gce', 'instance_states') # Ignore if instance_states is an empty string. if states: self.instance_states = states.split(',') # Caching cache_path = config.get('cache', 'cache_path') cache_max_age = config.getint('cache', 'cache_max_age') # TOOD(supertom): support project-specific caches cache_name = 'ansible-gce.cache' self.cache = CloudInventoryCache(cache_path=cache_path, cache_max_age=cache_max_age, cache_name=cache_name) return config
[ "def", "get_config", "(", "self", ")", ":", "gce_ini_default_path", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "realpath", "(", "__file__", ")", ")", ",", "\"gce.ini\"", ")", "gce_ini_path", "=", "os", ".", "environ", ".", "get", "(", "'GCE_INI_PATH'", ",", "gce_ini_default_path", ")", "# Create a ConfigParser.", "# This provides empty defaults to each key, so that environment", "# variable configuration (as opposed to INI configuration) is able", "# to work.", "config", "=", "ConfigParser", ".", "SafeConfigParser", "(", "defaults", "=", "{", "'gce_service_account_email_address'", ":", "''", ",", "'gce_service_account_pem_file_path'", ":", "''", ",", "'gce_project_id'", ":", "''", ",", "'libcloud_secrets'", ":", "''", ",", "'inventory_ip_type'", ":", "''", ",", "'cache_path'", ":", "'~/.ansible/tmp'", ",", "'cache_max_age'", ":", "'300'", "}", ")", "if", "'gce'", "not", "in", "config", ".", "sections", "(", ")", ":", "config", ".", "add_section", "(", "'gce'", ")", "if", "'inventory'", "not", "in", "config", ".", "sections", "(", ")", ":", "config", ".", "add_section", "(", "'inventory'", ")", "if", "'cache'", "not", "in", "config", ".", "sections", "(", ")", ":", "config", ".", "add_section", "(", "'cache'", ")", "config", ".", "read", "(", "gce_ini_path", ")", "#########", "# Section added for processing ini settings", "#########", "# Set the instance_states filter based on config file options", "self", ".", "instance_states", "=", "[", "]", "if", "config", ".", "has_option", "(", "'gce'", ",", "'instance_states'", ")", ":", "states", "=", "config", ".", "get", "(", "'gce'", ",", "'instance_states'", ")", "# Ignore if instance_states is an empty string.", "if", "states", ":", "self", ".", "instance_states", "=", "states", ".", "split", "(", "','", ")", "# Caching", "cache_path", "=", "config", ".", "get", "(", "'cache'", ",", "'cache_path'", ")", "cache_max_age", "=", "config", ".", "getint", "(", "'cache'", ",", "'cache_max_age'", ")", "# TOOD(supertom): support project-specific caches", "cache_name", "=", "'ansible-gce.cache'", "self", ".", "cache", "=", "CloudInventoryCache", "(", "cache_path", "=", "cache_path", ",", "cache_max_age", "=", "cache_max_age", ",", "cache_name", "=", "cache_name", ")", "return", "config" ]
Reads the settings from the gce.ini file. Populates a SafeConfigParser object with defaults and attempts to read an .ini-style configuration from the filename specified in GCE_INI_PATH. If the environment variable is not present, the filename defaults to gce.ini in the current working directory.
[ "Reads", "the", "settings", "from", "the", "gce", ".", "ini", "file", "." ]
python
train
pypa/pipenv
pipenv/patched/notpip/_internal/req/req_install.py
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/patched/notpip/_internal/req/req_install.py#L255-L275
def hashes(self, trust_internet=True): # type: (bool) -> Hashes """Return a hash-comparer that considers my option- and URL-based hashes to be known-good. Hashes in URLs--ones embedded in the requirements file, not ones downloaded from an index server--are almost peers with ones from flags. They satisfy --require-hashes (whether it was implicitly or explicitly activated) but do not activate it. md5 and sha224 are not allowed in flags, which should nudge people toward good algos. We always OR all hashes together, even ones from URLs. :param trust_internet: Whether to trust URL-based (#md5=...) hashes downloaded from the internet, as by populate_link() """ good_hashes = self.options.get('hashes', {}).copy() link = self.link if trust_internet else self.original_link if link and link.hash: good_hashes.setdefault(link.hash_name, []).append(link.hash) return Hashes(good_hashes)
[ "def", "hashes", "(", "self", ",", "trust_internet", "=", "True", ")", ":", "# type: (bool) -> Hashes", "good_hashes", "=", "self", ".", "options", ".", "get", "(", "'hashes'", ",", "{", "}", ")", ".", "copy", "(", ")", "link", "=", "self", ".", "link", "if", "trust_internet", "else", "self", ".", "original_link", "if", "link", "and", "link", ".", "hash", ":", "good_hashes", ".", "setdefault", "(", "link", ".", "hash_name", ",", "[", "]", ")", ".", "append", "(", "link", ".", "hash", ")", "return", "Hashes", "(", "good_hashes", ")" ]
Return a hash-comparer that considers my option- and URL-based hashes to be known-good. Hashes in URLs--ones embedded in the requirements file, not ones downloaded from an index server--are almost peers with ones from flags. They satisfy --require-hashes (whether it was implicitly or explicitly activated) but do not activate it. md5 and sha224 are not allowed in flags, which should nudge people toward good algos. We always OR all hashes together, even ones from URLs. :param trust_internet: Whether to trust URL-based (#md5=...) hashes downloaded from the internet, as by populate_link()
[ "Return", "a", "hash", "-", "comparer", "that", "considers", "my", "option", "-", "and", "URL", "-", "based", "hashes", "to", "be", "known", "-", "good", "." ]
python
train
yyuu/botornado
boto/s3/bucket.py
https://github.com/yyuu/botornado/blob/fffb056f5ff2324d1d5c1304014cfb1d899f602e/boto/s3/bucket.py#L1155-L1186
def configure_website(self, suffix, error_key='', headers=None): """ Configure this bucket to act as a website :type suffix: str :param suffix: Suffix that is appended to a request that is for a "directory" on the website endpoint (e.g. if the suffix is index.html and you make a request to samplebucket/images/ the data that is returned will be for the object with the key name images/index.html). The suffix must not be empty and must not include a slash character. :type error_key: str :param error_key: The object key name to use when a 4XX class error occurs. This is optional. """ if error_key: error_frag = self.WebsiteErrorFragment % error_key else: error_frag = '' body = self.WebsiteBody % (suffix, error_frag) response = self.connection.make_request('PUT', self.name, data=body, query_args='website', headers=headers) body = response.read() if response.status == 200: return True else: raise self.connection.provider.storage_response_error( response.status, response.reason, body)
[ "def", "configure_website", "(", "self", ",", "suffix", ",", "error_key", "=", "''", ",", "headers", "=", "None", ")", ":", "if", "error_key", ":", "error_frag", "=", "self", ".", "WebsiteErrorFragment", "%", "error_key", "else", ":", "error_frag", "=", "''", "body", "=", "self", ".", "WebsiteBody", "%", "(", "suffix", ",", "error_frag", ")", "response", "=", "self", ".", "connection", ".", "make_request", "(", "'PUT'", ",", "self", ".", "name", ",", "data", "=", "body", ",", "query_args", "=", "'website'", ",", "headers", "=", "headers", ")", "body", "=", "response", ".", "read", "(", ")", "if", "response", ".", "status", "==", "200", ":", "return", "True", "else", ":", "raise", "self", ".", "connection", ".", "provider", ".", "storage_response_error", "(", "response", ".", "status", ",", "response", ".", "reason", ",", "body", ")" ]
Configure this bucket to act as a website :type suffix: str :param suffix: Suffix that is appended to a request that is for a "directory" on the website endpoint (e.g. if the suffix is index.html and you make a request to samplebucket/images/ the data that is returned will be for the object with the key name images/index.html). The suffix must not be empty and must not include a slash character. :type error_key: str :param error_key: The object key name to use when a 4XX class error occurs. This is optional.
[ "Configure", "this", "bucket", "to", "act", "as", "a", "website" ]
python
train
fredRos/pypmc
pypmc/sampler/markov_chain.py
https://github.com/fredRos/pypmc/blob/9138b67c976f0d58edd080353d16769a47794d09/pypmc/sampler/markov_chain.py#L98-L163
def run(self, N=1): '''Run the chain and store the history of visited points into the member variable ``self.samples``. Returns the number of accepted points during the run. .. seealso:: :py:class:`pypmc.tools.History` :param N: An int which defines the number of steps to run the chain. ''' if N == 0: return 0 # set the accept function if self.proposal.symmetric: get_log_rho = self._get_log_rho_metropolis else: get_log_rho = self._get_log_rho_metropolis_hastings # allocate an empty numpy array to store the run if self.target_values is not None: this_target_values = self.target_values.append(N) this_run = self.samples.append(N) accept_count = 0 for i_N in range(N): # propose new point proposed_point = self.proposal.propose(self.current_point, self.rng) proposed_eval = self.target(proposed_point) # log_rho := log(probability to accept point), where log_rho > 0 is meant to imply rho = 1 log_rho = get_log_rho(proposed_point, proposed_eval) # check for NaN if _np.isnan(log_rho): raise ValueError('encountered NaN') # accept if rho = 1 if log_rho >=0: accept_count += 1 this_run[i_N] = proposed_point self.current_point = proposed_point self.current_target_eval = proposed_eval # accept with probability rho elif log_rho >= _np.log(self.rng.rand()): accept_count += 1 this_run[i_N] = proposed_point self.current_point = proposed_point self.current_target_eval = proposed_eval # reject if not accepted else: this_run[i_N] = self.current_point #do not need to update self.current #self.current = self.current # save target value if desired if self.target_values is not None: this_target_values[i_N] = self.current_target_eval # ---------------------- end for -------------------------------- return accept_count
[ "def", "run", "(", "self", ",", "N", "=", "1", ")", ":", "if", "N", "==", "0", ":", "return", "0", "# set the accept function", "if", "self", ".", "proposal", ".", "symmetric", ":", "get_log_rho", "=", "self", ".", "_get_log_rho_metropolis", "else", ":", "get_log_rho", "=", "self", ".", "_get_log_rho_metropolis_hastings", "# allocate an empty numpy array to store the run", "if", "self", ".", "target_values", "is", "not", "None", ":", "this_target_values", "=", "self", ".", "target_values", ".", "append", "(", "N", ")", "this_run", "=", "self", ".", "samples", ".", "append", "(", "N", ")", "accept_count", "=", "0", "for", "i_N", "in", "range", "(", "N", ")", ":", "# propose new point", "proposed_point", "=", "self", ".", "proposal", ".", "propose", "(", "self", ".", "current_point", ",", "self", ".", "rng", ")", "proposed_eval", "=", "self", ".", "target", "(", "proposed_point", ")", "# log_rho := log(probability to accept point), where log_rho > 0 is meant to imply rho = 1", "log_rho", "=", "get_log_rho", "(", "proposed_point", ",", "proposed_eval", ")", "# check for NaN", "if", "_np", ".", "isnan", "(", "log_rho", ")", ":", "raise", "ValueError", "(", "'encountered NaN'", ")", "# accept if rho = 1", "if", "log_rho", ">=", "0", ":", "accept_count", "+=", "1", "this_run", "[", "i_N", "]", "=", "proposed_point", "self", ".", "current_point", "=", "proposed_point", "self", ".", "current_target_eval", "=", "proposed_eval", "# accept with probability rho", "elif", "log_rho", ">=", "_np", ".", "log", "(", "self", ".", "rng", ".", "rand", "(", ")", ")", ":", "accept_count", "+=", "1", "this_run", "[", "i_N", "]", "=", "proposed_point", "self", ".", "current_point", "=", "proposed_point", "self", ".", "current_target_eval", "=", "proposed_eval", "# reject if not accepted", "else", ":", "this_run", "[", "i_N", "]", "=", "self", ".", "current_point", "#do not need to update self.current", "#self.current = self.current", "# save target value if desired", "if", "self", ".", "target_values", "is", "not", "None", ":", "this_target_values", "[", "i_N", "]", "=", "self", ".", "current_target_eval", "# ---------------------- end for --------------------------------", "return", "accept_count" ]
Run the chain and store the history of visited points into the member variable ``self.samples``. Returns the number of accepted points during the run. .. seealso:: :py:class:`pypmc.tools.History` :param N: An int which defines the number of steps to run the chain.
[ "Run", "the", "chain", "and", "store", "the", "history", "of", "visited", "points", "into", "the", "member", "variable", "self", ".", "samples", ".", "Returns", "the", "number", "of", "accepted", "points", "during", "the", "run", "." ]
python
train
jxtech/wechatpy
wechatpy/client/api/shakearound.py
https://github.com/jxtech/wechatpy/blob/4df0da795618c0895a10f1c2cde9e9d5c0a93aaa/wechatpy/client/api/shakearound.py#L234-L254
def add_material(self, media_file, media_type='icon'): """ 上传图片素材 详情请参考 http://mp.weixin.qq.com/wiki/5/e997428269ff189d8f9a4b9e177be2d9.html :param media_file: 要上传的文件,一个 File-object :param media_type: 摇一摇素材类型, 取值为 icon或者 license, 默认 icon. :return: 上传的素材信息 """ res = self._post( 'shakearound/material/add', files={ 'media': media_file }, params={ 'type': media_type }, result_processor=lambda x: x['data'] ) return res
[ "def", "add_material", "(", "self", ",", "media_file", ",", "media_type", "=", "'icon'", ")", ":", "res", "=", "self", ".", "_post", "(", "'shakearound/material/add'", ",", "files", "=", "{", "'media'", ":", "media_file", "}", ",", "params", "=", "{", "'type'", ":", "media_type", "}", ",", "result_processor", "=", "lambda", "x", ":", "x", "[", "'data'", "]", ")", "return", "res" ]
上传图片素材 详情请参考 http://mp.weixin.qq.com/wiki/5/e997428269ff189d8f9a4b9e177be2d9.html :param media_file: 要上传的文件,一个 File-object :param media_type: 摇一摇素材类型, 取值为 icon或者 license, 默认 icon. :return: 上传的素材信息
[ "上传图片素材", "详情请参考", "http", ":", "//", "mp", ".", "weixin", ".", "qq", ".", "com", "/", "wiki", "/", "5", "/", "e997428269ff189d8f9a4b9e177be2d9", ".", "html" ]
python
train
neherlab/treetime
treetime/treeanc.py
https://github.com/neherlab/treetime/blob/f6cdb58d19243a18ffdaa2b2ec71872fa00e65c0/treetime/treeanc.py#L1324-L1461
def _ml_anc_marginal(self, store_compressed=False, final=True, sample_from_profile=False, debug=False, **kwargs): """ Perform marginal ML reconstruction of the ancestral states. In contrast to joint reconstructions, this needs to access the probabilities rather than only log probabilities and is hence handled by a separate function. Parameters ---------- store_compressed : bool, default True attach a reduced representation of sequence changed to each branch final : bool, default True stop full length by expanding sites with identical alignment patterns sample_from_profile : bool or str assign sequences probabilistically according to the inferred probabilities of ancestral states instead of to their ML value. This parameter can also take the value 'root' in which case probabilistic sampling will happen at the root but at no other node. """ tree = self.tree # number of nucleotides changed from prev reconstruction N_diff = 0 L = self.multiplicity.shape[0] n_states = self.gtr.alphabet.shape[0] self.logger("TreeAnc._ml_anc_marginal: type of reconstruction: Marginal", 2) self.logger("Attaching sequence profiles to leafs... ", 3) # set the leaves profiles for leaf in tree.get_terminals(): # in any case, set the profile leaf.marginal_subtree_LH = seq2prof(leaf.original_cseq, self.gtr.profile_map) leaf.marginal_subtree_LH_prefactor = np.zeros(L) self.logger("Walking up the tree, computing likelihoods... ", 3) # propagate leaves --> root, set the marginal-likelihood messages for node in tree.get_nonterminals(order='postorder'): #leaves -> root # regardless of what was before, set the profile to ones tmp_log_subtree_LH = np.zeros((L,n_states), dtype=float) node.marginal_subtree_LH_prefactor = np.zeros(L, dtype=float) for ch in node.clades: ch.marginal_log_Lx = self.gtr.propagate_profile(ch.marginal_subtree_LH, self._branch_length_to_gtr(ch), return_log=True) # raw prob to transfer prob up tmp_log_subtree_LH += ch.marginal_log_Lx node.marginal_subtree_LH_prefactor += ch.marginal_subtree_LH_prefactor node.marginal_subtree_LH, offset = normalize_profile(tmp_log_subtree_LH, log=True) node.marginal_subtree_LH_prefactor += offset # and store log-prefactor self.logger("Computing root node sequence and total tree likelihood...",3) # Msg to the root from the distant part (equ frequencies) if len(self.gtr.Pi.shape)==1: tree.root.marginal_outgroup_LH = np.repeat([self.gtr.Pi], tree.root.marginal_subtree_LH.shape[0], axis=0) else: tree.root.marginal_outgroup_LH = np.copy(self.gtr.Pi.T) tree.root.marginal_profile, pre = normalize_profile(tree.root.marginal_outgroup_LH*tree.root.marginal_subtree_LH) marginal_LH_prefactor = tree.root.marginal_subtree_LH_prefactor + pre # choose sequence characters from this profile. # treat root node differently to avoid piling up mutations on the longer branch if sample_from_profile=='root': root_sample_from_profile = True other_sample_from_profile = False elif isinstance(sample_from_profile, bool): root_sample_from_profile = sample_from_profile other_sample_from_profile = sample_from_profile seq, prof_vals, idxs = prof2seq(tree.root.marginal_profile, self.gtr, sample_from_prof=root_sample_from_profile, normalize=False) self.tree.sequence_LH = marginal_LH_prefactor self.tree.total_sequence_LH = (self.tree.sequence_LH*self.multiplicity).sum() self.tree.root.cseq = seq gc.collect() if final: if self.is_vcf: self.tree.root.sequence = self.dict_sequence(self.tree.root) else: self.tree.root.sequence = self.expanded_sequence(self.tree.root) self.logger("Walking down the tree, computing maximum likelihood sequences...",3) # propagate root -->> leaves, reconstruct the internal node sequences # provided the upstream message + the message from the complementary subtree for node in tree.find_clades(order='preorder'): if node.up is None: # skip if node is root continue # integrate the information coming from parents with the information # of all children my multiplying it to the prev computed profile node.marginal_outgroup_LH, pre = normalize_profile(np.log(node.up.marginal_profile) - node.marginal_log_Lx, log=True, return_offset=False) tmp_msg_from_parent = self.gtr.evolve(node.marginal_outgroup_LH, self._branch_length_to_gtr(node), return_log=False) node.marginal_profile, pre = normalize_profile(node.marginal_subtree_LH * tmp_msg_from_parent, return_offset=False) # choose sequence based maximal marginal LH. seq, prof_vals, idxs = prof2seq(node.marginal_profile, self.gtr, sample_from_prof=other_sample_from_profile, normalize=False) if hasattr(node, 'cseq') and node.cseq is not None: N_diff += (seq!=node.cseq).sum() else: N_diff += L #assign new sequence node.cseq = seq if final: if self.is_vcf: node.sequence = self.dict_sequence(node) else: node.sequence = self.expanded_sequence(node) node.mutations = self.get_mutations(node) # note that the root doesn't contribute to N_diff (intended, since root sequence is often ambiguous) self.logger("TreeAnc._ml_anc_marginal: ...done", 3) if store_compressed: self._store_compressed_sequence_pairs() # do clean-up: if not debug: for node in self.tree.find_clades(): try: del node.marginal_log_Lx del node.marginal_subtree_LH_prefactor except: pass gc.collect() return N_diff
[ "def", "_ml_anc_marginal", "(", "self", ",", "store_compressed", "=", "False", ",", "final", "=", "True", ",", "sample_from_profile", "=", "False", ",", "debug", "=", "False", ",", "*", "*", "kwargs", ")", ":", "tree", "=", "self", ".", "tree", "# number of nucleotides changed from prev reconstruction", "N_diff", "=", "0", "L", "=", "self", ".", "multiplicity", ".", "shape", "[", "0", "]", "n_states", "=", "self", ".", "gtr", ".", "alphabet", ".", "shape", "[", "0", "]", "self", ".", "logger", "(", "\"TreeAnc._ml_anc_marginal: type of reconstruction: Marginal\"", ",", "2", ")", "self", ".", "logger", "(", "\"Attaching sequence profiles to leafs... \"", ",", "3", ")", "# set the leaves profiles", "for", "leaf", "in", "tree", ".", "get_terminals", "(", ")", ":", "# in any case, set the profile", "leaf", ".", "marginal_subtree_LH", "=", "seq2prof", "(", "leaf", ".", "original_cseq", ",", "self", ".", "gtr", ".", "profile_map", ")", "leaf", ".", "marginal_subtree_LH_prefactor", "=", "np", ".", "zeros", "(", "L", ")", "self", ".", "logger", "(", "\"Walking up the tree, computing likelihoods... \"", ",", "3", ")", "# propagate leaves --> root, set the marginal-likelihood messages", "for", "node", "in", "tree", ".", "get_nonterminals", "(", "order", "=", "'postorder'", ")", ":", "#leaves -> root", "# regardless of what was before, set the profile to ones", "tmp_log_subtree_LH", "=", "np", ".", "zeros", "(", "(", "L", ",", "n_states", ")", ",", "dtype", "=", "float", ")", "node", ".", "marginal_subtree_LH_prefactor", "=", "np", ".", "zeros", "(", "L", ",", "dtype", "=", "float", ")", "for", "ch", "in", "node", ".", "clades", ":", "ch", ".", "marginal_log_Lx", "=", "self", ".", "gtr", ".", "propagate_profile", "(", "ch", ".", "marginal_subtree_LH", ",", "self", ".", "_branch_length_to_gtr", "(", "ch", ")", ",", "return_log", "=", "True", ")", "# raw prob to transfer prob up", "tmp_log_subtree_LH", "+=", "ch", ".", "marginal_log_Lx", "node", ".", "marginal_subtree_LH_prefactor", "+=", "ch", ".", "marginal_subtree_LH_prefactor", "node", ".", "marginal_subtree_LH", ",", "offset", "=", "normalize_profile", "(", "tmp_log_subtree_LH", ",", "log", "=", "True", ")", "node", ".", "marginal_subtree_LH_prefactor", "+=", "offset", "# and store log-prefactor", "self", ".", "logger", "(", "\"Computing root node sequence and total tree likelihood...\"", ",", "3", ")", "# Msg to the root from the distant part (equ frequencies)", "if", "len", "(", "self", ".", "gtr", ".", "Pi", ".", "shape", ")", "==", "1", ":", "tree", ".", "root", ".", "marginal_outgroup_LH", "=", "np", ".", "repeat", "(", "[", "self", ".", "gtr", ".", "Pi", "]", ",", "tree", ".", "root", ".", "marginal_subtree_LH", ".", "shape", "[", "0", "]", ",", "axis", "=", "0", ")", "else", ":", "tree", ".", "root", ".", "marginal_outgroup_LH", "=", "np", ".", "copy", "(", "self", ".", "gtr", ".", "Pi", ".", "T", ")", "tree", ".", "root", ".", "marginal_profile", ",", "pre", "=", "normalize_profile", "(", "tree", ".", "root", ".", "marginal_outgroup_LH", "*", "tree", ".", "root", ".", "marginal_subtree_LH", ")", "marginal_LH_prefactor", "=", "tree", ".", "root", ".", "marginal_subtree_LH_prefactor", "+", "pre", "# choose sequence characters from this profile.", "# treat root node differently to avoid piling up mutations on the longer branch", "if", "sample_from_profile", "==", "'root'", ":", "root_sample_from_profile", "=", "True", "other_sample_from_profile", "=", "False", "elif", "isinstance", "(", "sample_from_profile", ",", "bool", ")", ":", "root_sample_from_profile", "=", "sample_from_profile", "other_sample_from_profile", "=", "sample_from_profile", "seq", ",", "prof_vals", ",", "idxs", "=", "prof2seq", "(", "tree", ".", "root", ".", "marginal_profile", ",", "self", ".", "gtr", ",", "sample_from_prof", "=", "root_sample_from_profile", ",", "normalize", "=", "False", ")", "self", ".", "tree", ".", "sequence_LH", "=", "marginal_LH_prefactor", "self", ".", "tree", ".", "total_sequence_LH", "=", "(", "self", ".", "tree", ".", "sequence_LH", "*", "self", ".", "multiplicity", ")", ".", "sum", "(", ")", "self", ".", "tree", ".", "root", ".", "cseq", "=", "seq", "gc", ".", "collect", "(", ")", "if", "final", ":", "if", "self", ".", "is_vcf", ":", "self", ".", "tree", ".", "root", ".", "sequence", "=", "self", ".", "dict_sequence", "(", "self", ".", "tree", ".", "root", ")", "else", ":", "self", ".", "tree", ".", "root", ".", "sequence", "=", "self", ".", "expanded_sequence", "(", "self", ".", "tree", ".", "root", ")", "self", ".", "logger", "(", "\"Walking down the tree, computing maximum likelihood sequences...\"", ",", "3", ")", "# propagate root -->> leaves, reconstruct the internal node sequences", "# provided the upstream message + the message from the complementary subtree", "for", "node", "in", "tree", ".", "find_clades", "(", "order", "=", "'preorder'", ")", ":", "if", "node", ".", "up", "is", "None", ":", "# skip if node is root", "continue", "# integrate the information coming from parents with the information", "# of all children my multiplying it to the prev computed profile", "node", ".", "marginal_outgroup_LH", ",", "pre", "=", "normalize_profile", "(", "np", ".", "log", "(", "node", ".", "up", ".", "marginal_profile", ")", "-", "node", ".", "marginal_log_Lx", ",", "log", "=", "True", ",", "return_offset", "=", "False", ")", "tmp_msg_from_parent", "=", "self", ".", "gtr", ".", "evolve", "(", "node", ".", "marginal_outgroup_LH", ",", "self", ".", "_branch_length_to_gtr", "(", "node", ")", ",", "return_log", "=", "False", ")", "node", ".", "marginal_profile", ",", "pre", "=", "normalize_profile", "(", "node", ".", "marginal_subtree_LH", "*", "tmp_msg_from_parent", ",", "return_offset", "=", "False", ")", "# choose sequence based maximal marginal LH.", "seq", ",", "prof_vals", ",", "idxs", "=", "prof2seq", "(", "node", ".", "marginal_profile", ",", "self", ".", "gtr", ",", "sample_from_prof", "=", "other_sample_from_profile", ",", "normalize", "=", "False", ")", "if", "hasattr", "(", "node", ",", "'cseq'", ")", "and", "node", ".", "cseq", "is", "not", "None", ":", "N_diff", "+=", "(", "seq", "!=", "node", ".", "cseq", ")", ".", "sum", "(", ")", "else", ":", "N_diff", "+=", "L", "#assign new sequence", "node", ".", "cseq", "=", "seq", "if", "final", ":", "if", "self", ".", "is_vcf", ":", "node", ".", "sequence", "=", "self", ".", "dict_sequence", "(", "node", ")", "else", ":", "node", ".", "sequence", "=", "self", ".", "expanded_sequence", "(", "node", ")", "node", ".", "mutations", "=", "self", ".", "get_mutations", "(", "node", ")", "# note that the root doesn't contribute to N_diff (intended, since root sequence is often ambiguous)", "self", ".", "logger", "(", "\"TreeAnc._ml_anc_marginal: ...done\"", ",", "3", ")", "if", "store_compressed", ":", "self", ".", "_store_compressed_sequence_pairs", "(", ")", "# do clean-up:", "if", "not", "debug", ":", "for", "node", "in", "self", ".", "tree", ".", "find_clades", "(", ")", ":", "try", ":", "del", "node", ".", "marginal_log_Lx", "del", "node", ".", "marginal_subtree_LH_prefactor", "except", ":", "pass", "gc", ".", "collect", "(", ")", "return", "N_diff" ]
Perform marginal ML reconstruction of the ancestral states. In contrast to joint reconstructions, this needs to access the probabilities rather than only log probabilities and is hence handled by a separate function. Parameters ---------- store_compressed : bool, default True attach a reduced representation of sequence changed to each branch final : bool, default True stop full length by expanding sites with identical alignment patterns sample_from_profile : bool or str assign sequences probabilistically according to the inferred probabilities of ancestral states instead of to their ML value. This parameter can also take the value 'root' in which case probabilistic sampling will happen at the root but at no other node.
[ "Perform", "marginal", "ML", "reconstruction", "of", "the", "ancestral", "states", ".", "In", "contrast", "to", "joint", "reconstructions", "this", "needs", "to", "access", "the", "probabilities", "rather", "than", "only", "log", "probabilities", "and", "is", "hence", "handled", "by", "a", "separate", "function", "." ]
python
test
rbit/pydtls
dtls/sslconnection.py
https://github.com/rbit/pydtls/blob/41a71fccd990347d0de5f42418fea1e4e733359c/dtls/sslconnection.py#L206-L217
def set_curves(self, curves): u''' Set supported curves by name, nid or nist. :param str | tuple(int) curves: Example "secp384r1:secp256k1", (715, 714), "P-384", "K-409:B-409:K-571", ... :return: 1 for success and 0 for failure ''' retVal = None if isinstance(curves, str): retVal = SSL_CTX_set1_curves_list(self._ctx, curves) elif isinstance(curves, tuple): retVal = SSL_CTX_set1_curves(self._ctx, curves, len(curves)) return retVal
[ "def", "set_curves", "(", "self", ",", "curves", ")", ":", "retVal", "=", "None", "if", "isinstance", "(", "curves", ",", "str", ")", ":", "retVal", "=", "SSL_CTX_set1_curves_list", "(", "self", ".", "_ctx", ",", "curves", ")", "elif", "isinstance", "(", "curves", ",", "tuple", ")", ":", "retVal", "=", "SSL_CTX_set1_curves", "(", "self", ".", "_ctx", ",", "curves", ",", "len", "(", "curves", ")", ")", "return", "retVal" ]
u''' Set supported curves by name, nid or nist. :param str | tuple(int) curves: Example "secp384r1:secp256k1", (715, 714), "P-384", "K-409:B-409:K-571", ... :return: 1 for success and 0 for failure
[ "u", "Set", "supported", "curves", "by", "name", "nid", "or", "nist", "." ]
python
train
SoCo/SoCo
dev_tools/analyse_ws.py
https://github.com/SoCo/SoCo/blob/671937e07d7973b78c0cbee153d4f3ad68ec48c6/dev_tools/analyse_ws.py#L86-L125
def set_file(self, filename): """ Analyse the file with the captured content """ # Use the file name as prefix if none is given if self.output_prefix is None: _, self.output_prefix = os.path.split(filename) # Check if the file is present, since rdpcap will not do that if not (os.path.isfile(filename) and os.access(filename, os.R_OK)): print 'The file \'{0}\' is either not present or not readable. '\ 'Exiting!'.format(filename) sys.exit(1) try: packets = rdpcap(filename) except NameError: # Due probably to a bug in rdpcap, this kind of error raises a # NameError, because the exception that is tried to raise, is not # defined print 'The file \'{}\' is not a pcap capture file. Exiting!'\ .format(filename) sys.exit(2) for number, packet in enumerate(packets): # See if there is a field called load self._debug('\nNUMBER {0}'.format(number), no_prefix=True) try: # Will cause AttributeError if there is no load packet.getfieldval('load') # Get the full load load = packet.sprintf('%TCP.payload%') self._debug('PAYLOAD LENGTH {0}'.format(len(load)), no_prefix=True) self._debug(load, load=True) self._parse_load(load) except AttributeError: self._debug('LOAD EXCEPTION', no_prefix=True) if len(self.messages) > 0 and not self.messages[-1].write_closed: self._debug('DELETE LAST OPEN FILE') del self.messages[-1] if self.args.debug_analysis: sys.exit(0)
[ "def", "set_file", "(", "self", ",", "filename", ")", ":", "# Use the file name as prefix if none is given", "if", "self", ".", "output_prefix", "is", "None", ":", "_", ",", "self", ".", "output_prefix", "=", "os", ".", "path", ".", "split", "(", "filename", ")", "# Check if the file is present, since rdpcap will not do that", "if", "not", "(", "os", ".", "path", ".", "isfile", "(", "filename", ")", "and", "os", ".", "access", "(", "filename", ",", "os", ".", "R_OK", ")", ")", ":", "print", "'The file \\'{0}\\' is either not present or not readable. '", "'Exiting!'", ".", "format", "(", "filename", ")", "sys", ".", "exit", "(", "1", ")", "try", ":", "packets", "=", "rdpcap", "(", "filename", ")", "except", "NameError", ":", "# Due probably to a bug in rdpcap, this kind of error raises a", "# NameError, because the exception that is tried to raise, is not", "# defined", "print", "'The file \\'{}\\' is not a pcap capture file. Exiting!'", ".", "format", "(", "filename", ")", "sys", ".", "exit", "(", "2", ")", "for", "number", ",", "packet", "in", "enumerate", "(", "packets", ")", ":", "# See if there is a field called load", "self", ".", "_debug", "(", "'\\nNUMBER {0}'", ".", "format", "(", "number", ")", ",", "no_prefix", "=", "True", ")", "try", ":", "# Will cause AttributeError if there is no load", "packet", ".", "getfieldval", "(", "'load'", ")", "# Get the full load", "load", "=", "packet", ".", "sprintf", "(", "'%TCP.payload%'", ")", "self", ".", "_debug", "(", "'PAYLOAD LENGTH {0}'", ".", "format", "(", "len", "(", "load", ")", ")", ",", "no_prefix", "=", "True", ")", "self", ".", "_debug", "(", "load", ",", "load", "=", "True", ")", "self", ".", "_parse_load", "(", "load", ")", "except", "AttributeError", ":", "self", ".", "_debug", "(", "'LOAD EXCEPTION'", ",", "no_prefix", "=", "True", ")", "if", "len", "(", "self", ".", "messages", ")", ">", "0", "and", "not", "self", ".", "messages", "[", "-", "1", "]", ".", "write_closed", ":", "self", ".", "_debug", "(", "'DELETE LAST OPEN FILE'", ")", "del", "self", ".", "messages", "[", "-", "1", "]", "if", "self", ".", "args", ".", "debug_analysis", ":", "sys", ".", "exit", "(", "0", ")" ]
Analyse the file with the captured content
[ "Analyse", "the", "file", "with", "the", "captured", "content" ]
python
train
Microsoft/LightGBM
python-package/lightgbm/basic.py
https://github.com/Microsoft/LightGBM/blob/8d2ec69f4f685b0ab1c4624d59ee2d3287bb3147/python-package/lightgbm/basic.py#L1054-L1077
def subset(self, used_indices, params=None): """Get subset of current Dataset. Parameters ---------- used_indices : list of int Indices used to create the subset. params : dict or None, optional (default=None) These parameters will be passed to Dataset constructor. Returns ------- subset : Dataset Subset of the current Dataset. """ if params is None: params = self.params ret = Dataset(None, reference=self, feature_name=self.feature_name, categorical_feature=self.categorical_feature, params=params, free_raw_data=self.free_raw_data) ret._predictor = self._predictor ret.pandas_categorical = self.pandas_categorical ret.used_indices = used_indices return ret
[ "def", "subset", "(", "self", ",", "used_indices", ",", "params", "=", "None", ")", ":", "if", "params", "is", "None", ":", "params", "=", "self", ".", "params", "ret", "=", "Dataset", "(", "None", ",", "reference", "=", "self", ",", "feature_name", "=", "self", ".", "feature_name", ",", "categorical_feature", "=", "self", ".", "categorical_feature", ",", "params", "=", "params", ",", "free_raw_data", "=", "self", ".", "free_raw_data", ")", "ret", ".", "_predictor", "=", "self", ".", "_predictor", "ret", ".", "pandas_categorical", "=", "self", ".", "pandas_categorical", "ret", ".", "used_indices", "=", "used_indices", "return", "ret" ]
Get subset of current Dataset. Parameters ---------- used_indices : list of int Indices used to create the subset. params : dict or None, optional (default=None) These parameters will be passed to Dataset constructor. Returns ------- subset : Dataset Subset of the current Dataset.
[ "Get", "subset", "of", "current", "Dataset", "." ]
python
train
StackStorm/pybind
pybind/slxos/v17r_1_01a/ipv6_acl/ipv6/access_list/extended/seq/__init__.py
https://github.com/StackStorm/pybind/blob/44c467e71b2b425be63867aba6e6fa28b2cfe7fb/pybind/slxos/v17r_1_01a/ipv6_acl/ipv6/access_list/extended/seq/__init__.py#L206-L227
def _set_protocol_type(self, v, load=False): """ Setter method for protocol_type, mapped from YANG variable /ipv6_acl/ipv6/access_list/extended/seq/protocol_type (union) If this variable is read-only (config: false) in the source YANG file, then _set_protocol_type is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_protocol_type() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=[RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'udp': {'value': 17}, u'ipv6-icmp': {'value': 58}, u'tcp': {'value': 6}, u'ipv6': {'value': 41}},),RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..255']}),], is_leaf=True, yang_name="protocol-type", rest_name="protocol-type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'cli-suppress-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-access-list', defining_module='brocade-ipv6-access-list', yang_type='union', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """protocol_type must be of a type compatible with union""", 'defined-type': "brocade-ipv6-access-list:union", 'generated-type': """YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'udp': {'value': 17}, u'ipv6-icmp': {'value': 58}, u'tcp': {'value': 6}, u'ipv6': {'value': 41}},),RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..255']}),], is_leaf=True, yang_name="protocol-type", rest_name="protocol-type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'cli-suppress-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-access-list', defining_module='brocade-ipv6-access-list', yang_type='union', is_config=True)""", }) self.__protocol_type = t if hasattr(self, '_set'): self._set()
[ "def", "_set_protocol_type", "(", "self", ",", "v", ",", "load", "=", "False", ")", ":", "if", "hasattr", "(", "v", ",", "\"_utype\"", ")", ":", "v", "=", "v", ".", "_utype", "(", "v", ")", "try", ":", "t", "=", "YANGDynClass", "(", "v", ",", "base", "=", "[", "RestrictedClassType", "(", "base_type", "=", "unicode", ",", "restriction_type", "=", "\"dict_key\"", ",", "restriction_arg", "=", "{", "u'udp'", ":", "{", "'value'", ":", "17", "}", ",", "u'ipv6-icmp'", ":", "{", "'value'", ":", "58", "}", ",", "u'tcp'", ":", "{", "'value'", ":", "6", "}", ",", "u'ipv6'", ":", "{", "'value'", ":", "41", "}", "}", ",", ")", ",", "RestrictedClassType", "(", "base_type", "=", "RestrictedClassType", "(", "base_type", "=", "long", ",", "restriction_dict", "=", "{", "'range'", ":", "[", "'0..4294967295'", "]", "}", ",", "int_size", "=", "32", ")", ",", "restriction_dict", "=", "{", "'range'", ":", "[", "u'0..255'", "]", "}", ")", ",", "]", ",", "is_leaf", "=", "True", ",", "yang_name", "=", "\"protocol-type\"", ",", "rest_name", "=", "\"protocol-type\"", ",", "parent", "=", "self", ",", "path_helper", "=", "self", ".", "_path_helper", ",", "extmethods", "=", "self", ".", "_extmethods", ",", "register_paths", "=", "True", ",", "extensions", "=", "{", "u'tailf-common'", ":", "{", "u'cli-drop-node-name'", ":", "None", ",", "u'cli-suppress-no'", ":", "None", ",", "u'cli-incomplete-command'", ":", "None", "}", "}", ",", "namespace", "=", "'urn:brocade.com:mgmt:brocade-ipv6-access-list'", ",", "defining_module", "=", "'brocade-ipv6-access-list'", ",", "yang_type", "=", "'union'", ",", "is_config", "=", "True", ")", "except", "(", "TypeError", ",", "ValueError", ")", ":", "raise", "ValueError", "(", "{", "'error-string'", ":", "\"\"\"protocol_type must be of a type compatible with union\"\"\"", ",", "'defined-type'", ":", "\"brocade-ipv6-access-list:union\"", ",", "'generated-type'", ":", "\"\"\"YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_type=\"dict_key\", restriction_arg={u'udp': {'value': 17}, u'ipv6-icmp': {'value': 58}, u'tcp': {'value': 6}, u'ipv6': {'value': 41}},),RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..255']}),], is_leaf=True, yang_name=\"protocol-type\", rest_name=\"protocol-type\", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'cli-suppress-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-access-list', defining_module='brocade-ipv6-access-list', yang_type='union', is_config=True)\"\"\"", ",", "}", ")", "self", ".", "__protocol_type", "=", "t", "if", "hasattr", "(", "self", ",", "'_set'", ")", ":", "self", ".", "_set", "(", ")" ]
Setter method for protocol_type, mapped from YANG variable /ipv6_acl/ipv6/access_list/extended/seq/protocol_type (union) If this variable is read-only (config: false) in the source YANG file, then _set_protocol_type is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_protocol_type() directly.
[ "Setter", "method", "for", "protocol_type", "mapped", "from", "YANG", "variable", "/", "ipv6_acl", "/", "ipv6", "/", "access_list", "/", "extended", "/", "seq", "/", "protocol_type", "(", "union", ")", "If", "this", "variable", "is", "read", "-", "only", "(", "config", ":", "false", ")", "in", "the", "source", "YANG", "file", "then", "_set_protocol_type", "is", "considered", "as", "a", "private", "method", ".", "Backends", "looking", "to", "populate", "this", "variable", "should", "do", "so", "via", "calling", "thisObj", ".", "_set_protocol_type", "()", "directly", "." ]
python
train
dereneaton/ipyrad
ipyrad/analysis/tetrad.py
https://github.com/dereneaton/ipyrad/blob/5eeb8a178160f45faf71bf47cec4abe998a575d1/ipyrad/analysis/tetrad.py#L707-L740
def _dump_qmc(self): """ Makes a reduced array that excludes quartets with no information and prints the quartets and weights to a file formatted for wQMC """ ## open the h5 database io5 = h5py.File(self.database.output, 'r') ## create an output file for writing self.files.qdump = os.path.join(self.dirs, self.name+".quartets.txt") LOGGER.info("qdump file %s", self.files.qdump) outfile = open(self.files.qdump, 'w') ## todo: should pull quarts order in randomly? or doesn't matter? for idx in xrange(0, self.params.nquartets, self._chunksize): ## get mask of zero weight quartets #mask = io5["weights"][idx:idx+self.chunksize] != 0 #weight = io5["weights"][idx:idx+self.chunksize][mask] #LOGGER.info("exluded = %s, mask shape %s", # self._chunksize - mask.shape[0], mask.shape) #LOGGER.info('q shape %s', io5["quartets"][idx:idx+self._chunksize].shape) masked_quartets = io5["quartets"][idx:idx+self._chunksize, :]#[mask, :] quarts = [list(j) for j in masked_quartets] ## format and print #chunk = ["{},{}|{},{}:{}".format(*i+[j]) for i, j \ # in zip(quarts, weight)] chunk = ["{},{}|{},{}".format(*i) for i in quarts] outfile.write("\n".join(chunk)+"\n") ## close output file and h5 database outfile.close() io5.close()
[ "def", "_dump_qmc", "(", "self", ")", ":", "## open the h5 database", "io5", "=", "h5py", ".", "File", "(", "self", ".", "database", ".", "output", ",", "'r'", ")", "## create an output file for writing", "self", ".", "files", ".", "qdump", "=", "os", ".", "path", ".", "join", "(", "self", ".", "dirs", ",", "self", ".", "name", "+", "\".quartets.txt\"", ")", "LOGGER", ".", "info", "(", "\"qdump file %s\"", ",", "self", ".", "files", ".", "qdump", ")", "outfile", "=", "open", "(", "self", ".", "files", ".", "qdump", ",", "'w'", ")", "## todo: should pull quarts order in randomly? or doesn't matter?", "for", "idx", "in", "xrange", "(", "0", ",", "self", ".", "params", ".", "nquartets", ",", "self", ".", "_chunksize", ")", ":", "## get mask of zero weight quartets", "#mask = io5[\"weights\"][idx:idx+self.chunksize] != 0", "#weight = io5[\"weights\"][idx:idx+self.chunksize][mask]", "#LOGGER.info(\"exluded = %s, mask shape %s\", ", "# self._chunksize - mask.shape[0], mask.shape)", "#LOGGER.info('q shape %s', io5[\"quartets\"][idx:idx+self._chunksize].shape)", "masked_quartets", "=", "io5", "[", "\"quartets\"", "]", "[", "idx", ":", "idx", "+", "self", ".", "_chunksize", ",", ":", "]", "#[mask, :]", "quarts", "=", "[", "list", "(", "j", ")", "for", "j", "in", "masked_quartets", "]", "## format and print", "#chunk = [\"{},{}|{},{}:{}\".format(*i+[j]) for i, j \\", "# in zip(quarts, weight)]", "chunk", "=", "[", "\"{},{}|{},{}\"", ".", "format", "(", "*", "i", ")", "for", "i", "in", "quarts", "]", "outfile", ".", "write", "(", "\"\\n\"", ".", "join", "(", "chunk", ")", "+", "\"\\n\"", ")", "## close output file and h5 database", "outfile", ".", "close", "(", ")", "io5", ".", "close", "(", ")" ]
Makes a reduced array that excludes quartets with no information and prints the quartets and weights to a file formatted for wQMC
[ "Makes", "a", "reduced", "array", "that", "excludes", "quartets", "with", "no", "information", "and", "prints", "the", "quartets", "and", "weights", "to", "a", "file", "formatted", "for", "wQMC" ]
python
valid
abilian/abilian-core
abilian/services/security/service.py
https://github.com/abilian/abilian-core/blob/0a71275bf108c3d51e13ca9e093c0249235351e3/abilian/services/security/service.py#L210-L247
def get_roles(self, principal, object=None, no_group_roles=False): """Get all the roles attached to given `principal`, on a given `object`. :param principal: a :class:`User` or :class:`Group` :param object: an :class:`Entity` :param no_group_roles: If `True`, return only direct roles, not roles acquired through group membership. """ assert principal if hasattr(principal, "is_anonymous") and principal.is_anonymous: return [AnonymousRole] query = db.session.query(RoleAssignment.role) if isinstance(principal, Group): filter_principal = RoleAssignment.group == principal else: filter_principal = RoleAssignment.user == principal if not no_group_roles: groups = [g.id for g in principal.groups] if groups: filter_principal |= RoleAssignment.group_id.in_(groups) query = query.filter(filter_principal) if object is not None: assert isinstance(object, Entity) query = query.filter(RoleAssignment.object == object) roles = {i[0] for i in query.all()} if object is not None: for attr, role in (("creator", Creator), ("owner", Owner)): if getattr(object, attr) == principal: roles.add(role) return list(roles)
[ "def", "get_roles", "(", "self", ",", "principal", ",", "object", "=", "None", ",", "no_group_roles", "=", "False", ")", ":", "assert", "principal", "if", "hasattr", "(", "principal", ",", "\"is_anonymous\"", ")", "and", "principal", ".", "is_anonymous", ":", "return", "[", "AnonymousRole", "]", "query", "=", "db", ".", "session", ".", "query", "(", "RoleAssignment", ".", "role", ")", "if", "isinstance", "(", "principal", ",", "Group", ")", ":", "filter_principal", "=", "RoleAssignment", ".", "group", "==", "principal", "else", ":", "filter_principal", "=", "RoleAssignment", ".", "user", "==", "principal", "if", "not", "no_group_roles", ":", "groups", "=", "[", "g", ".", "id", "for", "g", "in", "principal", ".", "groups", "]", "if", "groups", ":", "filter_principal", "|=", "RoleAssignment", ".", "group_id", ".", "in_", "(", "groups", ")", "query", "=", "query", ".", "filter", "(", "filter_principal", ")", "if", "object", "is", "not", "None", ":", "assert", "isinstance", "(", "object", ",", "Entity", ")", "query", "=", "query", ".", "filter", "(", "RoleAssignment", ".", "object", "==", "object", ")", "roles", "=", "{", "i", "[", "0", "]", "for", "i", "in", "query", ".", "all", "(", ")", "}", "if", "object", "is", "not", "None", ":", "for", "attr", ",", "role", "in", "(", "(", "\"creator\"", ",", "Creator", ")", ",", "(", "\"owner\"", ",", "Owner", ")", ")", ":", "if", "getattr", "(", "object", ",", "attr", ")", "==", "principal", ":", "roles", ".", "add", "(", "role", ")", "return", "list", "(", "roles", ")" ]
Get all the roles attached to given `principal`, on a given `object`. :param principal: a :class:`User` or :class:`Group` :param object: an :class:`Entity` :param no_group_roles: If `True`, return only direct roles, not roles acquired through group membership.
[ "Get", "all", "the", "roles", "attached", "to", "given", "principal", "on", "a", "given", "object", "." ]
python
train
ellmetha/django-machina
machina/apps/forum_conversation/forum_attachments/cache.py
https://github.com/ellmetha/django-machina/blob/89ac083c1eaf1cfdeae6686ee094cc86362e8c69/machina/apps/forum_conversation/forum_attachments/cache.py#L82-L120
def get(self, key): """ Regenerates a MultiValueDict instance containing the files related to all file states stored for the given key. """ upload = None files_states = self.backend.get(key) files = MultiValueDict() if files_states: for name, state in files_states.items(): f = BytesIO() f.write(state['content']) # If the post is too large, we cannot use a # InMemoryUploadedFile instance. if state['size'] > settings.FILE_UPLOAD_MAX_MEMORY_SIZE: upload = TemporaryUploadedFile( state['name'], state['content_type'], state['size'], state['charset'], ) upload.file = f else: f = BytesIO() f.write(state['content']) upload = InMemoryUploadedFile( file=f, field_name=name, name=state['name'], content_type=state['content_type'], size=state['size'], charset=state['charset'], ) files[name] = upload # Go to the first byte in the file for future use upload.file.seek(0) return files
[ "def", "get", "(", "self", ",", "key", ")", ":", "upload", "=", "None", "files_states", "=", "self", ".", "backend", ".", "get", "(", "key", ")", "files", "=", "MultiValueDict", "(", ")", "if", "files_states", ":", "for", "name", ",", "state", "in", "files_states", ".", "items", "(", ")", ":", "f", "=", "BytesIO", "(", ")", "f", ".", "write", "(", "state", "[", "'content'", "]", ")", "# If the post is too large, we cannot use a", "# InMemoryUploadedFile instance.", "if", "state", "[", "'size'", "]", ">", "settings", ".", "FILE_UPLOAD_MAX_MEMORY_SIZE", ":", "upload", "=", "TemporaryUploadedFile", "(", "state", "[", "'name'", "]", ",", "state", "[", "'content_type'", "]", ",", "state", "[", "'size'", "]", ",", "state", "[", "'charset'", "]", ",", ")", "upload", ".", "file", "=", "f", "else", ":", "f", "=", "BytesIO", "(", ")", "f", ".", "write", "(", "state", "[", "'content'", "]", ")", "upload", "=", "InMemoryUploadedFile", "(", "file", "=", "f", ",", "field_name", "=", "name", ",", "name", "=", "state", "[", "'name'", "]", ",", "content_type", "=", "state", "[", "'content_type'", "]", ",", "size", "=", "state", "[", "'size'", "]", ",", "charset", "=", "state", "[", "'charset'", "]", ",", ")", "files", "[", "name", "]", "=", "upload", "# Go to the first byte in the file for future use", "upload", ".", "file", ".", "seek", "(", "0", ")", "return", "files" ]
Regenerates a MultiValueDict instance containing the files related to all file states stored for the given key.
[ "Regenerates", "a", "MultiValueDict", "instance", "containing", "the", "files", "related", "to", "all", "file", "states", "stored", "for", "the", "given", "key", "." ]
python
train
markovmodel/msmtools
msmtools/flux/api.py
https://github.com/markovmodel/msmtools/blob/54dc76dd2113a0e8f3d15d5316abab41402941be/msmtools/flux/api.py#L233-L267
def to_netflux(flux): r"""Compute the netflux from the gross flux. Parameters ---------- flux : (M, M) ndarray Matrix of flux values between pairs of states. Returns ------- netflux : (M, M) ndarray Matrix of netflux values between pairs of states. Notes ----- The netflux or effective current is defined as .. math:: f_{ij}^{+}=\max \{ f_{ij}-f_{ji}, 0 \} :math:`f_{ij}` is the flux for the transition from :math:`A` to :math:`B`. References ---------- .. [1] P. Metzner, C. Schuette and E. Vanden-Eijnden. Transition Path Theory for Markov Jump Processes. Multiscale Model Simul 7: 1192-1219 (2009) """ if issparse(flux): return sparse.tpt.to_netflux(flux) elif isdense(flux): return dense.tpt.to_netflux(flux) else: raise _type_not_supported
[ "def", "to_netflux", "(", "flux", ")", ":", "if", "issparse", "(", "flux", ")", ":", "return", "sparse", ".", "tpt", ".", "to_netflux", "(", "flux", ")", "elif", "isdense", "(", "flux", ")", ":", "return", "dense", ".", "tpt", ".", "to_netflux", "(", "flux", ")", "else", ":", "raise", "_type_not_supported" ]
r"""Compute the netflux from the gross flux. Parameters ---------- flux : (M, M) ndarray Matrix of flux values between pairs of states. Returns ------- netflux : (M, M) ndarray Matrix of netflux values between pairs of states. Notes ----- The netflux or effective current is defined as .. math:: f_{ij}^{+}=\max \{ f_{ij}-f_{ji}, 0 \} :math:`f_{ij}` is the flux for the transition from :math:`A` to :math:`B`. References ---------- .. [1] P. Metzner, C. Schuette and E. Vanden-Eijnden. Transition Path Theory for Markov Jump Processes. Multiscale Model Simul 7: 1192-1219 (2009)
[ "r", "Compute", "the", "netflux", "from", "the", "gross", "flux", "." ]
python
train
tensorflow/hub
examples/image_retraining/retrain.py
https://github.com/tensorflow/hub/blob/09f45963f6787322967b6fec61459f3ac56fbb27/examples/image_retraining/retrain.py#L270-L291
def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category, module_name): """Returns a path to a bottleneck file for a label at the given index. Args: image_lists: OrderedDict of training images for each label. label_name: Label string we want to get an image for. index: Integer offset of the image we want. This will be moduloed by the available number of images for the label, so it can be arbitrarily large. bottleneck_dir: Folder string holding cached files of bottleneck values. category: Name string of set to pull images from - training, testing, or validation. module_name: The name of the image module being used. Returns: File system path string to an image that meets the requested parameters. """ module_name = (module_name.replace('://', '~') # URL scheme. .replace('/', '~') # URL and Unix paths. .replace(':', '~').replace('\\', '~')) # Windows paths. return get_image_path(image_lists, label_name, index, bottleneck_dir, category) + '_' + module_name + '.txt'
[ "def", "get_bottleneck_path", "(", "image_lists", ",", "label_name", ",", "index", ",", "bottleneck_dir", ",", "category", ",", "module_name", ")", ":", "module_name", "=", "(", "module_name", ".", "replace", "(", "'://'", ",", "'~'", ")", "# URL scheme.", ".", "replace", "(", "'/'", ",", "'~'", ")", "# URL and Unix paths.", ".", "replace", "(", "':'", ",", "'~'", ")", ".", "replace", "(", "'\\\\'", ",", "'~'", ")", ")", "# Windows paths.", "return", "get_image_path", "(", "image_lists", ",", "label_name", ",", "index", ",", "bottleneck_dir", ",", "category", ")", "+", "'_'", "+", "module_name", "+", "'.txt'" ]
Returns a path to a bottleneck file for a label at the given index. Args: image_lists: OrderedDict of training images for each label. label_name: Label string we want to get an image for. index: Integer offset of the image we want. This will be moduloed by the available number of images for the label, so it can be arbitrarily large. bottleneck_dir: Folder string holding cached files of bottleneck values. category: Name string of set to pull images from - training, testing, or validation. module_name: The name of the image module being used. Returns: File system path string to an image that meets the requested parameters.
[ "Returns", "a", "path", "to", "a", "bottleneck", "file", "for", "a", "label", "at", "the", "given", "index", "." ]
python
train
bmcfee/muda
muda/deformers/util.py
https://github.com/bmcfee/muda/blob/ff82efdfaeb98da0a9f9124845826eb20536a9ba/muda/deformers/util.py#L40-L59
def transform(self, jam): '''Bypass transformations. Parameters ---------- jam : pyjams.JAMS A muda-enabled JAMS object Yields ------ jam_out : pyjams.JAMS iterator The first result is `jam` (unmodified), by reference All subsequent results are generated by `transformer` ''' # Step 1: yield the unmodified jam yield jam # Step 2: yield from the transformer for jam_out in self.transformer.transform(jam): yield jam_out
[ "def", "transform", "(", "self", ",", "jam", ")", ":", "# Step 1: yield the unmodified jam", "yield", "jam", "# Step 2: yield from the transformer", "for", "jam_out", "in", "self", ".", "transformer", ".", "transform", "(", "jam", ")", ":", "yield", "jam_out" ]
Bypass transformations. Parameters ---------- jam : pyjams.JAMS A muda-enabled JAMS object Yields ------ jam_out : pyjams.JAMS iterator The first result is `jam` (unmodified), by reference All subsequent results are generated by `transformer`
[ "Bypass", "transformations", "." ]
python
valid
bokeh/bokeh
bokeh/models/sources.py
https://github.com/bokeh/bokeh/blob/dc8cf49e4e4302fd38537ad089ece81fbcca4737/bokeh/models/sources.py#L519-L674
def patch(self, patches, setter=None): ''' Efficiently update data source columns at specific locations If it is only necessary to update a small subset of data in a ``ColumnDataSource``, this method can be used to efficiently update only the subset, instead of requiring the entire data set to be sent. This method should be passed a dictionary that maps column names to lists of tuples that describe a patch change to apply. To replace individual items in columns entirely, the tuples should be of the form: .. code-block:: python (index, new_value) # replace a single column value # or (slice, new_values) # replace several column values Values at an index or slice will be replaced with the corresponding new values. In the case of columns whose values are other arrays or lists, (e.g. image or patches glyphs), it is also possible to patch "subregions". In this case the first item of the tuple should be a whose first element is the index of the array item in the CDS patch, and whose subsequent elements are integer indices or slices into the array item: .. code-block:: python # replace the entire 10th column of the 2nd array: +----------------- index of item in column data source | | +--------- row subindex into array item | | | | +- column subindex into array item V V V ([2, slice(None), 10], new_values) Imagining a list of 2d NumPy arrays, the patch above is roughly equivalent to: .. code-block:: python data = [arr1, arr2, ...] # list of 2d arrays data[2][:, 10] = new_data There are some limitations to the kinds of slices and data that can be accepted. * Negative ``start``, ``stop``, or ``step`` values for slices will result in a ``ValueError``. * In a slice, ``start > stop`` will result in a ``ValueError`` * When patching 1d or 2d subitems, the subitems must be NumPy arrays. * New values must be supplied as a **flattened one-dimensional array** of the appropriate size. Args: patches (dict[str, list[tuple]]) : lists of patches for each column Returns: None Raises: ValueError Example: The following example shows how to patch entire column elements. In this case, .. code-block:: python source = ColumnDataSource(data=dict(foo=[10, 20, 30], bar=[100, 200, 300])) patches = { 'foo' : [ (slice(2), [11, 12]) ], 'bar' : [ (0, 101), (2, 301) ], } source.patch(patches) After this operation, the value of the ``source.data`` will be: .. code-block:: python dict(foo=[11, 12, 30], bar=[101, 200, 301]) For a more comprehensive complete example, see :bokeh-tree:`examples/howto/patch_app.py`. ''' import numpy as np extra = set(patches.keys()) - set(self.data.keys()) if extra: raise ValueError("Can only patch existing columns (extra: %s)" % ", ".join(sorted(extra))) for name, patch in patches.items(): col_len = len(self.data[name]) for ind, value in patch: # integer index, patch single value of 1d column if isinstance(ind, int): if ind > col_len or ind < 0: raise ValueError("Out-of bounds index (%d) in patch for column: %s" % (ind, name)) # slice index, patch multiple values of 1d column elif isinstance(ind, slice): _check_slice(ind) if ind.stop is not None and ind.stop > col_len: raise ValueError("Out-of bounds slice index stop (%d) in patch for column: %s" % (ind.stop, name)) # multi-index, patch sub-regions of "n-d" column elif isinstance(ind, (list, tuple)): if len(ind) == 0: raise ValueError("Empty (length zero) patch multi-index") if len(ind) == 1: raise ValueError("Patch multi-index must contain more than one subindex") if not isinstance(ind[0], int): raise ValueError("Initial patch sub-index may only be integer, got: %s" % ind[0]) if ind[0] > col_len or ind[0] < 0: raise ValueError("Out-of bounds initial sub-index (%d) in patch for column: %s" % (ind, name)) if not isinstance(self.data[name][ind[0]], np.ndarray): raise ValueError("Can only sub-patch into columns with NumPy array items") if len(self.data[name][ind[0]].shape) != (len(ind)-1): raise ValueError("Shape mismatch between patch slice and sliced data") elif isinstance(ind[0], slice): _check_slice(ind[0]) if ind[0].stop is not None and ind[0].stop > col_len: raise ValueError("Out-of bounds initial slice sub-index stop (%d) in patch for column: %s" % (ind.stop, name)) # Note: bounds of sub-indices after the first are not checked! for subind in ind[1:]: if not isinstance(subind, (int, slice)): raise ValueError("Invalid patch sub-index: %s" % subind) if isinstance(subind, slice): _check_slice(subind) else: raise ValueError("Invalid patch index: %s" % ind) self.data._patch(self.document, self, patches, setter)
[ "def", "patch", "(", "self", ",", "patches", ",", "setter", "=", "None", ")", ":", "import", "numpy", "as", "np", "extra", "=", "set", "(", "patches", ".", "keys", "(", ")", ")", "-", "set", "(", "self", ".", "data", ".", "keys", "(", ")", ")", "if", "extra", ":", "raise", "ValueError", "(", "\"Can only patch existing columns (extra: %s)\"", "%", "\", \"", ".", "join", "(", "sorted", "(", "extra", ")", ")", ")", "for", "name", ",", "patch", "in", "patches", ".", "items", "(", ")", ":", "col_len", "=", "len", "(", "self", ".", "data", "[", "name", "]", ")", "for", "ind", ",", "value", "in", "patch", ":", "# integer index, patch single value of 1d column", "if", "isinstance", "(", "ind", ",", "int", ")", ":", "if", "ind", ">", "col_len", "or", "ind", "<", "0", ":", "raise", "ValueError", "(", "\"Out-of bounds index (%d) in patch for column: %s\"", "%", "(", "ind", ",", "name", ")", ")", "# slice index, patch multiple values of 1d column", "elif", "isinstance", "(", "ind", ",", "slice", ")", ":", "_check_slice", "(", "ind", ")", "if", "ind", ".", "stop", "is", "not", "None", "and", "ind", ".", "stop", ">", "col_len", ":", "raise", "ValueError", "(", "\"Out-of bounds slice index stop (%d) in patch for column: %s\"", "%", "(", "ind", ".", "stop", ",", "name", ")", ")", "# multi-index, patch sub-regions of \"n-d\" column", "elif", "isinstance", "(", "ind", ",", "(", "list", ",", "tuple", ")", ")", ":", "if", "len", "(", "ind", ")", "==", "0", ":", "raise", "ValueError", "(", "\"Empty (length zero) patch multi-index\"", ")", "if", "len", "(", "ind", ")", "==", "1", ":", "raise", "ValueError", "(", "\"Patch multi-index must contain more than one subindex\"", ")", "if", "not", "isinstance", "(", "ind", "[", "0", "]", ",", "int", ")", ":", "raise", "ValueError", "(", "\"Initial patch sub-index may only be integer, got: %s\"", "%", "ind", "[", "0", "]", ")", "if", "ind", "[", "0", "]", ">", "col_len", "or", "ind", "[", "0", "]", "<", "0", ":", "raise", "ValueError", "(", "\"Out-of bounds initial sub-index (%d) in patch for column: %s\"", "%", "(", "ind", ",", "name", ")", ")", "if", "not", "isinstance", "(", "self", ".", "data", "[", "name", "]", "[", "ind", "[", "0", "]", "]", ",", "np", ".", "ndarray", ")", ":", "raise", "ValueError", "(", "\"Can only sub-patch into columns with NumPy array items\"", ")", "if", "len", "(", "self", ".", "data", "[", "name", "]", "[", "ind", "[", "0", "]", "]", ".", "shape", ")", "!=", "(", "len", "(", "ind", ")", "-", "1", ")", ":", "raise", "ValueError", "(", "\"Shape mismatch between patch slice and sliced data\"", ")", "elif", "isinstance", "(", "ind", "[", "0", "]", ",", "slice", ")", ":", "_check_slice", "(", "ind", "[", "0", "]", ")", "if", "ind", "[", "0", "]", ".", "stop", "is", "not", "None", "and", "ind", "[", "0", "]", ".", "stop", ">", "col_len", ":", "raise", "ValueError", "(", "\"Out-of bounds initial slice sub-index stop (%d) in patch for column: %s\"", "%", "(", "ind", ".", "stop", ",", "name", ")", ")", "# Note: bounds of sub-indices after the first are not checked!", "for", "subind", "in", "ind", "[", "1", ":", "]", ":", "if", "not", "isinstance", "(", "subind", ",", "(", "int", ",", "slice", ")", ")", ":", "raise", "ValueError", "(", "\"Invalid patch sub-index: %s\"", "%", "subind", ")", "if", "isinstance", "(", "subind", ",", "slice", ")", ":", "_check_slice", "(", "subind", ")", "else", ":", "raise", "ValueError", "(", "\"Invalid patch index: %s\"", "%", "ind", ")", "self", ".", "data", ".", "_patch", "(", "self", ".", "document", ",", "self", ",", "patches", ",", "setter", ")" ]
Efficiently update data source columns at specific locations If it is only necessary to update a small subset of data in a ``ColumnDataSource``, this method can be used to efficiently update only the subset, instead of requiring the entire data set to be sent. This method should be passed a dictionary that maps column names to lists of tuples that describe a patch change to apply. To replace individual items in columns entirely, the tuples should be of the form: .. code-block:: python (index, new_value) # replace a single column value # or (slice, new_values) # replace several column values Values at an index or slice will be replaced with the corresponding new values. In the case of columns whose values are other arrays or lists, (e.g. image or patches glyphs), it is also possible to patch "subregions". In this case the first item of the tuple should be a whose first element is the index of the array item in the CDS patch, and whose subsequent elements are integer indices or slices into the array item: .. code-block:: python # replace the entire 10th column of the 2nd array: +----------------- index of item in column data source | | +--------- row subindex into array item | | | | +- column subindex into array item V V V ([2, slice(None), 10], new_values) Imagining a list of 2d NumPy arrays, the patch above is roughly equivalent to: .. code-block:: python data = [arr1, arr2, ...] # list of 2d arrays data[2][:, 10] = new_data There are some limitations to the kinds of slices and data that can be accepted. * Negative ``start``, ``stop``, or ``step`` values for slices will result in a ``ValueError``. * In a slice, ``start > stop`` will result in a ``ValueError`` * When patching 1d or 2d subitems, the subitems must be NumPy arrays. * New values must be supplied as a **flattened one-dimensional array** of the appropriate size. Args: patches (dict[str, list[tuple]]) : lists of patches for each column Returns: None Raises: ValueError Example: The following example shows how to patch entire column elements. In this case, .. code-block:: python source = ColumnDataSource(data=dict(foo=[10, 20, 30], bar=[100, 200, 300])) patches = { 'foo' : [ (slice(2), [11, 12]) ], 'bar' : [ (0, 101), (2, 301) ], } source.patch(patches) After this operation, the value of the ``source.data`` will be: .. code-block:: python dict(foo=[11, 12, 30], bar=[101, 200, 301]) For a more comprehensive complete example, see :bokeh-tree:`examples/howto/patch_app.py`.
[ "Efficiently", "update", "data", "source", "columns", "at", "specific", "locations" ]
python
train
lablup/backend.ai-client-py
src/ai/backend/client/resource_policy.py
https://github.com/lablup/backend.ai-client-py/blob/a063d774fea6f4350b89498c40d3c837ec3029a7/src/ai/backend/client/resource_policy.py#L23-L66
async def create(cls, name: str, default_for_unspecified: int, total_resource_slots: int, max_concurrent_sessions: int, max_containers_per_session: int, max_vfolder_count: int, max_vfolder_size: int, idle_timeout: int, allowed_vfolder_hosts: Sequence[str], fields: Iterable[str] = None) -> dict: """ Creates a new keypair resource policy with the given options. You need an admin privilege for this operation. """ if fields is None: fields = ('name',) q = 'mutation($name: String!, $input: CreateKeyPairResourcePolicyInput!) {' \ + \ ' create_keypair_resource_policy(name: $name, props: $input) {' \ ' ok msg resource_policy { $fields }' \ ' }' \ '}' q = q.replace('$fields', ' '.join(fields)) variables = { 'name': name, 'input': { 'default_for_unspecified': default_for_unspecified, 'total_resource_slots': total_resource_slots, 'max_concurrent_sessions': max_concurrent_sessions, 'max_containers_per_session': max_containers_per_session, 'max_vfolder_count': max_vfolder_count, 'max_vfolder_size': max_vfolder_size, 'idle_timeout': idle_timeout, 'allowed_vfolder_hosts': allowed_vfolder_hosts, }, } rqst = Request(cls.session, 'POST', '/admin/graphql') rqst.set_json({ 'query': q, 'variables': variables, }) async with rqst.fetch() as resp: data = await resp.json() return data['create_keypair_resource_policy']
[ "async", "def", "create", "(", "cls", ",", "name", ":", "str", ",", "default_for_unspecified", ":", "int", ",", "total_resource_slots", ":", "int", ",", "max_concurrent_sessions", ":", "int", ",", "max_containers_per_session", ":", "int", ",", "max_vfolder_count", ":", "int", ",", "max_vfolder_size", ":", "int", ",", "idle_timeout", ":", "int", ",", "allowed_vfolder_hosts", ":", "Sequence", "[", "str", "]", ",", "fields", ":", "Iterable", "[", "str", "]", "=", "None", ")", "->", "dict", ":", "if", "fields", "is", "None", ":", "fields", "=", "(", "'name'", ",", ")", "q", "=", "'mutation($name: String!, $input: CreateKeyPairResourcePolicyInput!) {'", "+", "' create_keypair_resource_policy(name: $name, props: $input) {'", "' ok msg resource_policy { $fields }'", "' }'", "'}'", "q", "=", "q", ".", "replace", "(", "'$fields'", ",", "' '", ".", "join", "(", "fields", ")", ")", "variables", "=", "{", "'name'", ":", "name", ",", "'input'", ":", "{", "'default_for_unspecified'", ":", "default_for_unspecified", ",", "'total_resource_slots'", ":", "total_resource_slots", ",", "'max_concurrent_sessions'", ":", "max_concurrent_sessions", ",", "'max_containers_per_session'", ":", "max_containers_per_session", ",", "'max_vfolder_count'", ":", "max_vfolder_count", ",", "'max_vfolder_size'", ":", "max_vfolder_size", ",", "'idle_timeout'", ":", "idle_timeout", ",", "'allowed_vfolder_hosts'", ":", "allowed_vfolder_hosts", ",", "}", ",", "}", "rqst", "=", "Request", "(", "cls", ".", "session", ",", "'POST'", ",", "'/admin/graphql'", ")", "rqst", ".", "set_json", "(", "{", "'query'", ":", "q", ",", "'variables'", ":", "variables", ",", "}", ")", "async", "with", "rqst", ".", "fetch", "(", ")", "as", "resp", ":", "data", "=", "await", "resp", ".", "json", "(", ")", "return", "data", "[", "'create_keypair_resource_policy'", "]" ]
Creates a new keypair resource policy with the given options. You need an admin privilege for this operation.
[ "Creates", "a", "new", "keypair", "resource", "policy", "with", "the", "given", "options", ".", "You", "need", "an", "admin", "privilege", "for", "this", "operation", "." ]
python
train
Qiskit/qiskit-terra
qiskit/visualization/text.py
https://github.com/Qiskit/qiskit-terra/blob/d4f58d903bc96341b816f7c35df936d6421267d1/qiskit/visualization/text.py#L483-L549
def lines(self, line_length=None): """ Generates a list with lines. These lines form the text drawing. Args: line_length (int): Optional. Breaks the circuit drawing to this length. This useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using shutil.get_terminal_size(). If you don't want pagination at all, set line_length=-1. Returns: list: A list of lines with the text drawing. """ if line_length is None: line_length = self.line_length if line_length is None: if ('ipykernel' in sys.modules) and ('spyder' not in sys.modules): line_length = 80 else: line_length, _ = get_terminal_size() noqubits = len(self.qregs) layers = self.build_layers() if not line_length: line_length = self.line_length layer_groups = [[]] rest_of_the_line = line_length for layerno, layer in enumerate(layers): # Replace the Nones with EmptyWire layers[layerno] = EmptyWire.fillup_layer(layer, noqubits) TextDrawing.normalize_width(layer) if line_length == -1: # Do not use pagination (aka line breaking. aka ignore line_length). layer_groups[-1].append(layer) continue # chop the layer to the line_length (pager) layer_length = layers[layerno][0].length if layer_length < rest_of_the_line: layer_groups[-1].append(layer) rest_of_the_line -= layer_length else: layer_groups[-1].append(BreakWire.fillup_layer(len(layer), '»')) # New group layer_groups.append([BreakWire.fillup_layer(len(layer), '«')]) rest_of_the_line = line_length - layer_groups[-1][-1][0].length layer_groups[-1].append( InputWire.fillup_layer(self.wire_names(with_initial_value=False))) rest_of_the_line -= layer_groups[-1][-1][0].length layer_groups[-1].append(layer) rest_of_the_line -= layer_groups[-1][-1][0].length lines = [] for layer_group in layer_groups: wires = [i for i in zip(*layer_group)] lines += TextDrawing.draw_wires(wires, self.vertically_compressed) return lines
[ "def", "lines", "(", "self", ",", "line_length", "=", "None", ")", ":", "if", "line_length", "is", "None", ":", "line_length", "=", "self", ".", "line_length", "if", "line_length", "is", "None", ":", "if", "(", "'ipykernel'", "in", "sys", ".", "modules", ")", "and", "(", "'spyder'", "not", "in", "sys", ".", "modules", ")", ":", "line_length", "=", "80", "else", ":", "line_length", ",", "_", "=", "get_terminal_size", "(", ")", "noqubits", "=", "len", "(", "self", ".", "qregs", ")", "layers", "=", "self", ".", "build_layers", "(", ")", "if", "not", "line_length", ":", "line_length", "=", "self", ".", "line_length", "layer_groups", "=", "[", "[", "]", "]", "rest_of_the_line", "=", "line_length", "for", "layerno", ",", "layer", "in", "enumerate", "(", "layers", ")", ":", "# Replace the Nones with EmptyWire", "layers", "[", "layerno", "]", "=", "EmptyWire", ".", "fillup_layer", "(", "layer", ",", "noqubits", ")", "TextDrawing", ".", "normalize_width", "(", "layer", ")", "if", "line_length", "==", "-", "1", ":", "# Do not use pagination (aka line breaking. aka ignore line_length).", "layer_groups", "[", "-", "1", "]", ".", "append", "(", "layer", ")", "continue", "# chop the layer to the line_length (pager)", "layer_length", "=", "layers", "[", "layerno", "]", "[", "0", "]", ".", "length", "if", "layer_length", "<", "rest_of_the_line", ":", "layer_groups", "[", "-", "1", "]", ".", "append", "(", "layer", ")", "rest_of_the_line", "-=", "layer_length", "else", ":", "layer_groups", "[", "-", "1", "]", ".", "append", "(", "BreakWire", ".", "fillup_layer", "(", "len", "(", "layer", ")", ",", "'»')", ")", "", "# New group", "layer_groups", ".", "append", "(", "[", "BreakWire", ".", "fillup_layer", "(", "len", "(", "layer", ")", ",", "'«')", "]", ")", "", "rest_of_the_line", "=", "line_length", "-", "layer_groups", "[", "-", "1", "]", "[", "-", "1", "]", "[", "0", "]", ".", "length", "layer_groups", "[", "-", "1", "]", ".", "append", "(", "InputWire", ".", "fillup_layer", "(", "self", ".", "wire_names", "(", "with_initial_value", "=", "False", ")", ")", ")", "rest_of_the_line", "-=", "layer_groups", "[", "-", "1", "]", "[", "-", "1", "]", "[", "0", "]", ".", "length", "layer_groups", "[", "-", "1", "]", ".", "append", "(", "layer", ")", "rest_of_the_line", "-=", "layer_groups", "[", "-", "1", "]", "[", "-", "1", "]", "[", "0", "]", ".", "length", "lines", "=", "[", "]", "for", "layer_group", "in", "layer_groups", ":", "wires", "=", "[", "i", "for", "i", "in", "zip", "(", "*", "layer_group", ")", "]", "lines", "+=", "TextDrawing", ".", "draw_wires", "(", "wires", ",", "self", ".", "vertically_compressed", ")", "return", "lines" ]
Generates a list with lines. These lines form the text drawing. Args: line_length (int): Optional. Breaks the circuit drawing to this length. This useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using shutil.get_terminal_size(). If you don't want pagination at all, set line_length=-1. Returns: list: A list of lines with the text drawing.
[ "Generates", "a", "list", "with", "lines", ".", "These", "lines", "form", "the", "text", "drawing", ".", "Args", ":", "line_length", "(", "int", ")", ":", "Optional", ".", "Breaks", "the", "circuit", "drawing", "to", "this", "length", ".", "This", "useful", "when", "the", "drawing", "does", "not", "fit", "in", "the", "console", ".", "If", "None", "(", "default", ")", "it", "will", "try", "to", "guess", "the", "console", "width", "using", "shutil", ".", "get_terminal_size", "()", ".", "If", "you", "don", "t", "want", "pagination", "at", "all", "set", "line_length", "=", "-", "1", "." ]
python
test
simpleai-team/simpleai
samples/search/missioners.py
https://github.com/simpleai-team/simpleai/blob/2836befa7e970013f62e0ee75562652aacac6f65/samples/search/missioners.py#L27-L34
def _is_valid(self, s): '''Check if a state is valid.''' # valid states: no more cannibals than missioners on each side, # and numbers between 0 and 3 return ((s[0] >= s[1] or s[0] == 0)) and \ ((3 - s[0]) >= (3 - s[1]) or s[0] == 3) and \ (0 <= s[0] <= 3) and \ (0 <= s[1] <= 3)
[ "def", "_is_valid", "(", "self", ",", "s", ")", ":", "# valid states: no more cannibals than missioners on each side,", "# and numbers between 0 and 3", "return", "(", "(", "s", "[", "0", "]", ">=", "s", "[", "1", "]", "or", "s", "[", "0", "]", "==", "0", ")", ")", "and", "(", "(", "3", "-", "s", "[", "0", "]", ")", ">=", "(", "3", "-", "s", "[", "1", "]", ")", "or", "s", "[", "0", "]", "==", "3", ")", "and", "(", "0", "<=", "s", "[", "0", "]", "<=", "3", ")", "and", "(", "0", "<=", "s", "[", "1", "]", "<=", "3", ")" ]
Check if a state is valid.
[ "Check", "if", "a", "state", "is", "valid", "." ]
python
train
rosenbrockc/fortpy
fortpy/isense/builtin.py
https://github.com/rosenbrockc/fortpy/blob/1ed0757c52d549e41d9d44bdea68cb89529293a5/fortpy/isense/builtin.py#L11-L33
def load(parser, serializer): """Returns a dictionary of builtin functions for Fortran. Checks the cache first to see if we have a serialized version. If we don't, it loads it from the XML file. :arg parser: the DocParser instance for parsing the XML tags. :arg serializer: a Serializer instance from the CodeParser to cache the loaded XML file. """ fortdir = os.path.dirname(fortpy.__file__) xmlpath = os.path.join(fortdir, "isense", "builtin.xml") if not os.path.isfile(xmlpath): return {} changed_time = os.path.getmtime(xmlpath) cached = serializer.load_module("builtin.xml", changed_time) if cached is None: result = _load_builtin_xml(xmlpath, parser) serializer.save_module("builtin.xml", result, changed_time) else: result = cached return result
[ "def", "load", "(", "parser", ",", "serializer", ")", ":", "fortdir", "=", "os", ".", "path", ".", "dirname", "(", "fortpy", ".", "__file__", ")", "xmlpath", "=", "os", ".", "path", ".", "join", "(", "fortdir", ",", "\"isense\"", ",", "\"builtin.xml\"", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "xmlpath", ")", ":", "return", "{", "}", "changed_time", "=", "os", ".", "path", ".", "getmtime", "(", "xmlpath", ")", "cached", "=", "serializer", ".", "load_module", "(", "\"builtin.xml\"", ",", "changed_time", ")", "if", "cached", "is", "None", ":", "result", "=", "_load_builtin_xml", "(", "xmlpath", ",", "parser", ")", "serializer", ".", "save_module", "(", "\"builtin.xml\"", ",", "result", ",", "changed_time", ")", "else", ":", "result", "=", "cached", "return", "result" ]
Returns a dictionary of builtin functions for Fortran. Checks the cache first to see if we have a serialized version. If we don't, it loads it from the XML file. :arg parser: the DocParser instance for parsing the XML tags. :arg serializer: a Serializer instance from the CodeParser to cache the loaded XML file.
[ "Returns", "a", "dictionary", "of", "builtin", "functions", "for", "Fortran", ".", "Checks", "the", "cache", "first", "to", "see", "if", "we", "have", "a", "serialized", "version", ".", "If", "we", "don", "t", "it", "loads", "it", "from", "the", "XML", "file", "." ]
python
train
ktbyers/netmiko
netmiko/citrix/netscaler_ssh.py
https://github.com/ktbyers/netmiko/blob/54e6116c0b4664de2123081937e0a9a27bdfdfea/netmiko/citrix/netscaler_ssh.py#L53-L60
def strip_prompt(self, a_string): """ Strip 'Done' from command output """ output = super(NetscalerSSH, self).strip_prompt(a_string) lines = output.split(self.RESPONSE_RETURN) if "Done" in lines[-1]: return self.RESPONSE_RETURN.join(lines[:-1]) else: return output
[ "def", "strip_prompt", "(", "self", ",", "a_string", ")", ":", "output", "=", "super", "(", "NetscalerSSH", ",", "self", ")", ".", "strip_prompt", "(", "a_string", ")", "lines", "=", "output", ".", "split", "(", "self", ".", "RESPONSE_RETURN", ")", "if", "\"Done\"", "in", "lines", "[", "-", "1", "]", ":", "return", "self", ".", "RESPONSE_RETURN", ".", "join", "(", "lines", "[", ":", "-", "1", "]", ")", "else", ":", "return", "output" ]
Strip 'Done' from command output
[ "Strip", "Done", "from", "command", "output" ]
python
train
mfcloud/python-zvm-sdk
zvmsdk/database.py
https://github.com/mfcloud/python-zvm-sdk/blob/de9994ceca764f5460ce51bd74237986341d8e3c/zvmsdk/database.py#L670-L683
def get_comments_by_userid(self, userid): """ Get comments record. output should be like: {'k1': 'v1', 'k2': 'v2'}' """ userid = userid with get_guest_conn() as conn: res = conn.execute("SELECT comments FROM guests " "WHERE userid=?", (userid,)) result = res.fetchall() comments = {} if result[0][0]: comments = json.loads(result[0][0]) return comments
[ "def", "get_comments_by_userid", "(", "self", ",", "userid", ")", ":", "userid", "=", "userid", "with", "get_guest_conn", "(", ")", "as", "conn", ":", "res", "=", "conn", ".", "execute", "(", "\"SELECT comments FROM guests \"", "\"WHERE userid=?\"", ",", "(", "userid", ",", ")", ")", "result", "=", "res", ".", "fetchall", "(", ")", "comments", "=", "{", "}", "if", "result", "[", "0", "]", "[", "0", "]", ":", "comments", "=", "json", ".", "loads", "(", "result", "[", "0", "]", "[", "0", "]", ")", "return", "comments" ]
Get comments record. output should be like: {'k1': 'v1', 'k2': 'v2'}'
[ "Get", "comments", "record", ".", "output", "should", "be", "like", ":", "{", "k1", ":", "v1", "k2", ":", "v2", "}" ]
python
train
cloudmesh/cloudmesh-common
cloudmesh/common/StopWatch.py
https://github.com/cloudmesh/cloudmesh-common/blob/ae4fae09cd78205d179ea692dc58f0b0c8fea2b8/cloudmesh/common/StopWatch.py#L57-L70
def get(cls, name): """ returns the time of the timer. :param name: the name of the timer :type name: string :rtype: the elapsed time """ if name in cls.timer_end: cls.timer_elapsed[name] = cls.timer_end[name] - \ cls.timer_start[name] return cls.timer_elapsed[name] else: return "undefined"
[ "def", "get", "(", "cls", ",", "name", ")", ":", "if", "name", "in", "cls", ".", "timer_end", ":", "cls", ".", "timer_elapsed", "[", "name", "]", "=", "cls", ".", "timer_end", "[", "name", "]", "-", "cls", ".", "timer_start", "[", "name", "]", "return", "cls", ".", "timer_elapsed", "[", "name", "]", "else", ":", "return", "\"undefined\"" ]
returns the time of the timer. :param name: the name of the timer :type name: string :rtype: the elapsed time
[ "returns", "the", "time", "of", "the", "timer", "." ]
python
train