repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
sequence
docstring
stringlengths
1
46.9k
docstring_tokens
sequence
language
stringclasses
1 value
partition
stringclasses
3 values
cocaine/cocaine-tools
cocaine/tools/dispatch.py
https://github.com/cocaine/cocaine-tools/blob/d8834f8e04ca42817d5f4e368d471484d4b3419f/cocaine/tools/dispatch.py#L579-L645
def metrics(ty, query, query_type, **kwargs): """ Outputs runtime metrics collected from cocaine-runtime and its services. This command shows runtime metrics collected from cocaine-runtime and its services during their lifetime. There are four kind of metrics available: gauges, counters, meters and timers. \b - Gauges - an instantaneous measurement of a value. - Counters - just a gauge for an atomic integer instance. - Meters - measures the rate of events over time (e.g., "requests per second"). In addition to the mean rate, meters also track 1-, 5-, and 15-minute moving averages. - Timers - measures both the rate that a particular piece of code is called and the distribution of its duration. Every metric in has a unique name, which is just a dotted-name string like "connections.count" or "node.queue.size". An output type can be configured using --type option. The default one results in plain formatting where there is only one depth level. As an alternative you can expanded the JSON tree by specifying --type=json option. The depth of the result tree depends on metric name which is split by dot symbol. The result output will be probably too large without any customization. To reduce this output there are custom filters, which can be specified using --query option. Technically it's a special metrics query language (MQL) which supports the following operations and functions: \b - contains(<expr>, <expr>) - checks whether the result of second expression contains in the result of first expression. These expressions must resolve in strings. An output type of this function is bool. - name() - resolves in metric name. - type() - resolves in metric type (counter, meter, etc.). - tag(<expr>) - extracts custom metric tag and results in string. - && - combines several expressions in one, which applies when all of them apply. - || - combines several expressions in one, which applies when any of them apply. - == - compares two expressions for equality. - != - compares two expressions for an non-equality. - Also string literals (alphanumeric with dots) can be used as an expressions, for example "name() == locator.connections.accepted". Priorities can be specified using braces as in usual math expressions. The grammar for this query language is: \b expr ::= term ((AND | OR) term)* term ::= factor ((EQ | NE) factor)* factor ::= func | literal | number | LPAREN expr RPAREN func ::= literal LPAREN expr (,expr)* RPAREN literal ::= alphanum | . number ::= <floating point number> An example of the query, which returns all meters (for all services) and the number of accepted connections for the Locator service: "contains(type(), meter) || name() == locator.connections.accepted". """ ctx = Context(**kwargs) ctx.execute_action('metrics', **{ 'metrics': ctx.repo.create_secure_service('metrics'), 'ty': ty, 'query': query, 'query_type': query_type, })
[ "def", "metrics", "(", "ty", ",", "query", ",", "query_type", ",", "*", "*", "kwargs", ")", ":", "ctx", "=", "Context", "(", "*", "*", "kwargs", ")", "ctx", ".", "execute_action", "(", "'metrics'", ",", "*", "*", "{", "'metrics'", ":", "ctx", ".", "repo", ".", "create_secure_service", "(", "'metrics'", ")", ",", "'ty'", ":", "ty", ",", "'query'", ":", "query", ",", "'query_type'", ":", "query_type", ",", "}", ")" ]
Outputs runtime metrics collected from cocaine-runtime and its services. This command shows runtime metrics collected from cocaine-runtime and its services during their lifetime. There are four kind of metrics available: gauges, counters, meters and timers. \b - Gauges - an instantaneous measurement of a value. - Counters - just a gauge for an atomic integer instance. - Meters - measures the rate of events over time (e.g., "requests per second"). In addition to the mean rate, meters also track 1-, 5-, and 15-minute moving averages. - Timers - measures both the rate that a particular piece of code is called and the distribution of its duration. Every metric in has a unique name, which is just a dotted-name string like "connections.count" or "node.queue.size". An output type can be configured using --type option. The default one results in plain formatting where there is only one depth level. As an alternative you can expanded the JSON tree by specifying --type=json option. The depth of the result tree depends on metric name which is split by dot symbol. The result output will be probably too large without any customization. To reduce this output there are custom filters, which can be specified using --query option. Technically it's a special metrics query language (MQL) which supports the following operations and functions: \b - contains(<expr>, <expr>) - checks whether the result of second expression contains in the result of first expression. These expressions must resolve in strings. An output type of this function is bool. - name() - resolves in metric name. - type() - resolves in metric type (counter, meter, etc.). - tag(<expr>) - extracts custom metric tag and results in string. - && - combines several expressions in one, which applies when all of them apply. - || - combines several expressions in one, which applies when any of them apply. - == - compares two expressions for equality. - != - compares two expressions for an non-equality. - Also string literals (alphanumeric with dots) can be used as an expressions, for example "name() == locator.connections.accepted". Priorities can be specified using braces as in usual math expressions. The grammar for this query language is: \b expr ::= term ((AND | OR) term)* term ::= factor ((EQ | NE) factor)* factor ::= func | literal | number | LPAREN expr RPAREN func ::= literal LPAREN expr (,expr)* RPAREN literal ::= alphanum | . number ::= <floating point number> An example of the query, which returns all meters (for all services) and the number of accepted connections for the Locator service: "contains(type(), meter) || name() == locator.connections.accepted".
[ "Outputs", "runtime", "metrics", "collected", "from", "cocaine", "-", "runtime", "and", "its", "services", "." ]
python
train
twisted/epsilon
epsilon/ampauth.py
https://github.com/twisted/epsilon/blob/e85fa985a41983ef06e1d3bb26639181e1f78b24/epsilon/ampauth.py#L275-L301
def login(client, credentials): """ Authenticate using the given L{AMP} instance. The protocol must be connected to a server with responders for L{PasswordLogin} and L{PasswordChallengeResponse}. @param client: A connected L{AMP} instance which will be used to issue authentication commands. @param credentials: An object providing L{IUsernamePassword} which will be used to authenticate this connection to the server. @return: A L{Deferred} which fires when authentication has succeeded or which fails with L{UnauthorizedLogin} if the server rejects the authentication attempt. """ if not IUsernamePassword.providedBy(credentials): raise UnhandledCredentials() d = client.callRemote( PasswordLogin, username=credentials.username) def cbChallenge(response): args = PasswordChallengeResponse.determineFrom( response['challenge'], credentials.password) d = client.callRemote(PasswordChallengeResponse, **args) return d.addCallback(lambda ignored: client) d.addCallback(cbChallenge) return d
[ "def", "login", "(", "client", ",", "credentials", ")", ":", "if", "not", "IUsernamePassword", ".", "providedBy", "(", "credentials", ")", ":", "raise", "UnhandledCredentials", "(", ")", "d", "=", "client", ".", "callRemote", "(", "PasswordLogin", ",", "username", "=", "credentials", ".", "username", ")", "def", "cbChallenge", "(", "response", ")", ":", "args", "=", "PasswordChallengeResponse", ".", "determineFrom", "(", "response", "[", "'challenge'", "]", ",", "credentials", ".", "password", ")", "d", "=", "client", ".", "callRemote", "(", "PasswordChallengeResponse", ",", "*", "*", "args", ")", "return", "d", ".", "addCallback", "(", "lambda", "ignored", ":", "client", ")", "d", ".", "addCallback", "(", "cbChallenge", ")", "return", "d" ]
Authenticate using the given L{AMP} instance. The protocol must be connected to a server with responders for L{PasswordLogin} and L{PasswordChallengeResponse}. @param client: A connected L{AMP} instance which will be used to issue authentication commands. @param credentials: An object providing L{IUsernamePassword} which will be used to authenticate this connection to the server. @return: A L{Deferred} which fires when authentication has succeeded or which fails with L{UnauthorizedLogin} if the server rejects the authentication attempt.
[ "Authenticate", "using", "the", "given", "L", "{", "AMP", "}", "instance", ".", "The", "protocol", "must", "be", "connected", "to", "a", "server", "with", "responders", "for", "L", "{", "PasswordLogin", "}", "and", "L", "{", "PasswordChallengeResponse", "}", "." ]
python
train
tanghaibao/jcvi
jcvi/formats/gff.py
https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/formats/gff.py#L482-L488
def _fasta_slice(fasta, seqid, start, stop, strand): """ Return slice of fasta, given (seqid, start, stop, strand) """ _strand = 1 if strand == '+' else -1 return fasta.sequence({'chr': seqid, 'start': start, 'stop': stop, \ 'strand': _strand})
[ "def", "_fasta_slice", "(", "fasta", ",", "seqid", ",", "start", ",", "stop", ",", "strand", ")", ":", "_strand", "=", "1", "if", "strand", "==", "'+'", "else", "-", "1", "return", "fasta", ".", "sequence", "(", "{", "'chr'", ":", "seqid", ",", "'start'", ":", "start", ",", "'stop'", ":", "stop", ",", "'strand'", ":", "_strand", "}", ")" ]
Return slice of fasta, given (seqid, start, stop, strand)
[ "Return", "slice", "of", "fasta", "given", "(", "seqid", "start", "stop", "strand", ")" ]
python
train
svven/summary
summary/request.py
https://github.com/svven/summary/blob/3a6c43d2da08a7452f6b76d1813aa70ba36b8a54/summary/request.py#L11-L25
def get(url, **kwargs): """ Wrapper for `request.get` function to set params. """ headers = kwargs.get('headers', {}) headers['User-Agent'] = config.USER_AGENT # overwrite kwargs['headers'] = headers timeout = kwargs.get('timeout', config.TIMEOUT) kwargs['timeout'] = timeout kwargs['verify'] = False # no SSLError logger.debug("Getting: %s", url) return requests.get(url, **kwargs)
[ "def", "get", "(", "url", ",", "*", "*", "kwargs", ")", ":", "headers", "=", "kwargs", ".", "get", "(", "'headers'", ",", "{", "}", ")", "headers", "[", "'User-Agent'", "]", "=", "config", ".", "USER_AGENT", "# overwrite", "kwargs", "[", "'headers'", "]", "=", "headers", "timeout", "=", "kwargs", ".", "get", "(", "'timeout'", ",", "config", ".", "TIMEOUT", ")", "kwargs", "[", "'timeout'", "]", "=", "timeout", "kwargs", "[", "'verify'", "]", "=", "False", "# no SSLError", "logger", ".", "debug", "(", "\"Getting: %s\"", ",", "url", ")", "return", "requests", ".", "get", "(", "url", ",", "*", "*", "kwargs", ")" ]
Wrapper for `request.get` function to set params.
[ "Wrapper", "for", "request", ".", "get", "function", "to", "set", "params", "." ]
python
train
Becksteinlab/GromacsWrapper
gromacs/utilities.py
https://github.com/Becksteinlab/GromacsWrapper/blob/d4f9a8cb6f48292732cf7c7e4ef4a6d2ccbc51b9/gromacs/utilities.py#L662-L672
def iterable(obj): """Returns ``True`` if *obj* can be iterated over and is *not* a string.""" if isinstance(obj, string_types): return False # avoid iterating over characters of a string if hasattr(obj, 'next'): return True # any iterator will do try: len(obj) # anything else that might work except TypeError: return False return True
[ "def", "iterable", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "string_types", ")", ":", "return", "False", "# avoid iterating over characters of a string", "if", "hasattr", "(", "obj", ",", "'next'", ")", ":", "return", "True", "# any iterator will do", "try", ":", "len", "(", "obj", ")", "# anything else that might work", "except", "TypeError", ":", "return", "False", "return", "True" ]
Returns ``True`` if *obj* can be iterated over and is *not* a string.
[ "Returns", "True", "if", "*", "obj", "*", "can", "be", "iterated", "over", "and", "is", "*", "not", "*", "a", "string", "." ]
python
valid
dead-beef/markovchain
markovchain/base.py
https://github.com/dead-beef/markovchain/blob/9bd10b2f01089341c4a875a0fa569d50caba22c7/markovchain/base.py#L132-L145
def from_storage(cls, storage): """Load from storage. Parameters ---------- storage : `markovchain.storage.Storage` Returns ------- `markovchain.Markov` """ args = dict(storage.settings.get('markov', {})) args['storage'] = storage return cls(**args)
[ "def", "from_storage", "(", "cls", ",", "storage", ")", ":", "args", "=", "dict", "(", "storage", ".", "settings", ".", "get", "(", "'markov'", ",", "{", "}", ")", ")", "args", "[", "'storage'", "]", "=", "storage", "return", "cls", "(", "*", "*", "args", ")" ]
Load from storage. Parameters ---------- storage : `markovchain.storage.Storage` Returns ------- `markovchain.Markov`
[ "Load", "from", "storage", "." ]
python
train
JdeRobot/base
src/drivers/MAVLinkServer/MAVProxy/pymavlink/dialects/v10/matrixpilot.py
https://github.com/JdeRobot/base/blob/303b18992785b2fe802212f2d758a60873007f1f/src/drivers/MAVLinkServer/MAVProxy/pymavlink/dialects/v10/matrixpilot.py#L10381-L10401
def command_int_send(self, target_system, target_component, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z, force_mavlink1=False): ''' Message encoding a command with parameters as scaled integers. Scaling depends on the actual command value. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) frame : The coordinate system of the COMMAND. see MAV_FRAME in mavlink_types.h (uint8_t) command : The scheduled action for the mission item. see MAV_CMD in common.xml MAVLink specs (uint16_t) current : false:0, true:1 (uint8_t) autocontinue : autocontinue to next wp (uint8_t) param1 : PARAM1, see MAV_CMD enum (float) param2 : PARAM2, see MAV_CMD enum (float) param3 : PARAM3, see MAV_CMD enum (float) param4 : PARAM4, see MAV_CMD enum (float) x : PARAM5 / local: x position in meters * 1e4, global: latitude in degrees * 10^7 (int32_t) y : PARAM6 / local: y position in meters * 1e4, global: longitude in degrees * 10^7 (int32_t) z : PARAM7 / z position: global: altitude in meters (relative or absolute, depending on frame. (float) ''' return self.send(self.command_int_encode(target_system, target_component, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z), force_mavlink1=force_mavlink1)
[ "def", "command_int_send", "(", "self", ",", "target_system", ",", "target_component", ",", "frame", ",", "command", ",", "current", ",", "autocontinue", ",", "param1", ",", "param2", ",", "param3", ",", "param4", ",", "x", ",", "y", ",", "z", ",", "force_mavlink1", "=", "False", ")", ":", "return", "self", ".", "send", "(", "self", ".", "command_int_encode", "(", "target_system", ",", "target_component", ",", "frame", ",", "command", ",", "current", ",", "autocontinue", ",", "param1", ",", "param2", ",", "param3", ",", "param4", ",", "x", ",", "y", ",", "z", ")", ",", "force_mavlink1", "=", "force_mavlink1", ")" ]
Message encoding a command with parameters as scaled integers. Scaling depends on the actual command value. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) frame : The coordinate system of the COMMAND. see MAV_FRAME in mavlink_types.h (uint8_t) command : The scheduled action for the mission item. see MAV_CMD in common.xml MAVLink specs (uint16_t) current : false:0, true:1 (uint8_t) autocontinue : autocontinue to next wp (uint8_t) param1 : PARAM1, see MAV_CMD enum (float) param2 : PARAM2, see MAV_CMD enum (float) param3 : PARAM3, see MAV_CMD enum (float) param4 : PARAM4, see MAV_CMD enum (float) x : PARAM5 / local: x position in meters * 1e4, global: latitude in degrees * 10^7 (int32_t) y : PARAM6 / local: y position in meters * 1e4, global: longitude in degrees * 10^7 (int32_t) z : PARAM7 / z position: global: altitude in meters (relative or absolute, depending on frame. (float)
[ "Message", "encoding", "a", "command", "with", "parameters", "as", "scaled", "integers", ".", "Scaling", "depends", "on", "the", "actual", "command", "value", "." ]
python
train
dhermes/bezier
docs/make_images.py
https://github.com/dhermes/bezier/blob/4f941f82637a8e70a5b159a9203132192e23406b/docs/make_images.py#L797-L836
def classify_intersection1(s, curve1, tangent1, curve2, tangent2): """Image for :func:`._surface_helpers.classify_intersection` docstring.""" if NO_IMAGES: return surface1 = bezier.Surface.from_nodes( np.asfortranarray( [[1.0, 1.75, 2.0, 1.0, 1.5, 1.0], [0.0, 0.25, 1.0, 1.0, 1.5, 2.0]] ) ) surface2 = bezier.Surface.from_nodes( np.asfortranarray( [ [0.0, 1.6875, 2.0, 0.25, 1.25, 0.5], [0.0, 0.0625, 0.5, 1.0, 1.25, 2.0], ] ) ) ax = classify_help(s, curve1, surface1, curve2, surface2, 0) (int_x,), (int_y,) = curve1.evaluate(s) # Remove the alpha from the color color1 = ax.patches[0].get_facecolor()[:3] color2 = ax.patches[1].get_facecolor()[:3] ax.plot( [int_x, int_x + tangent1[0, 0]], [int_y, int_y + tangent1[1, 0]], color=color1, linestyle="dashed", ) ax.plot( [int_x, int_x + tangent2[0, 0]], [int_y, int_y + tangent2[1, 0]], color=color2, linestyle="dashed", ) ax.plot([int_x], [int_y], color=color1, linestyle="None", marker="o") ax.axis("scaled") ax.set_xlim(-0.125, 2.125) ax.set_ylim(-0.125, 1.125) save_image(ax.figure, "classify_intersection1.png")
[ "def", "classify_intersection1", "(", "s", ",", "curve1", ",", "tangent1", ",", "curve2", ",", "tangent2", ")", ":", "if", "NO_IMAGES", ":", "return", "surface1", "=", "bezier", ".", "Surface", ".", "from_nodes", "(", "np", ".", "asfortranarray", "(", "[", "[", "1.0", ",", "1.75", ",", "2.0", ",", "1.0", ",", "1.5", ",", "1.0", "]", ",", "[", "0.0", ",", "0.25", ",", "1.0", ",", "1.0", ",", "1.5", ",", "2.0", "]", "]", ")", ")", "surface2", "=", "bezier", ".", "Surface", ".", "from_nodes", "(", "np", ".", "asfortranarray", "(", "[", "[", "0.0", ",", "1.6875", ",", "2.0", ",", "0.25", ",", "1.25", ",", "0.5", "]", ",", "[", "0.0", ",", "0.0625", ",", "0.5", ",", "1.0", ",", "1.25", ",", "2.0", "]", ",", "]", ")", ")", "ax", "=", "classify_help", "(", "s", ",", "curve1", ",", "surface1", ",", "curve2", ",", "surface2", ",", "0", ")", "(", "int_x", ",", ")", ",", "(", "int_y", ",", ")", "=", "curve1", ".", "evaluate", "(", "s", ")", "# Remove the alpha from the color", "color1", "=", "ax", ".", "patches", "[", "0", "]", ".", "get_facecolor", "(", ")", "[", ":", "3", "]", "color2", "=", "ax", ".", "patches", "[", "1", "]", ".", "get_facecolor", "(", ")", "[", ":", "3", "]", "ax", ".", "plot", "(", "[", "int_x", ",", "int_x", "+", "tangent1", "[", "0", ",", "0", "]", "]", ",", "[", "int_y", ",", "int_y", "+", "tangent1", "[", "1", ",", "0", "]", "]", ",", "color", "=", "color1", ",", "linestyle", "=", "\"dashed\"", ",", ")", "ax", ".", "plot", "(", "[", "int_x", ",", "int_x", "+", "tangent2", "[", "0", ",", "0", "]", "]", ",", "[", "int_y", ",", "int_y", "+", "tangent2", "[", "1", ",", "0", "]", "]", ",", "color", "=", "color2", ",", "linestyle", "=", "\"dashed\"", ",", ")", "ax", ".", "plot", "(", "[", "int_x", "]", ",", "[", "int_y", "]", ",", "color", "=", "color1", ",", "linestyle", "=", "\"None\"", ",", "marker", "=", "\"o\"", ")", "ax", ".", "axis", "(", "\"scaled\"", ")", "ax", ".", "set_xlim", "(", "-", "0.125", ",", "2.125", ")", "ax", ".", "set_ylim", "(", "-", "0.125", ",", "1.125", ")", "save_image", "(", "ax", ".", "figure", ",", "\"classify_intersection1.png\"", ")" ]
Image for :func:`._surface_helpers.classify_intersection` docstring.
[ "Image", "for", ":", "func", ":", ".", "_surface_helpers", ".", "classify_intersection", "docstring", "." ]
python
train
apriha/lineage
src/lineage/resources.py
https://github.com/apriha/lineage/blob/13106a62a959a80ac26c68d1566422de08aa877b/src/lineage/resources.py#L156-L238
def download_example_datasets(self): """ Download example datasets from `openSNP <https://opensnp.org>`_. Per openSNP, "the data is donated into the public domain using `CC0 1.0 <http://creativecommons.org/publicdomain/zero/1.0/>`_." Returns ------- paths : list of str or None paths to example datasets References ---------- ..[1] Greshake B, Bayer PE, Rausch H, Reda J (2014), "openSNP-A Crowdsourced Web Resource for Personal Genomics," PLOS ONE, 9(3): e89204, https://doi.org/10.1371/journal.pone.0089204 """ paths = [] paths.append( self._download_file( "https://opensnp.org/data/662.23andme.304", "662.23andme.304.txt.gz", compress=True, ) ) paths.append( self._download_file( "https://opensnp.org/data/662.23andme.340", "662.23andme.340.txt.gz", compress=True, ) ) paths.append( self._download_file( "https://opensnp.org/data/662.ftdna-illumina.341", "662.ftdna-illumina.341.csv.gz", compress=True, ) ) paths.append( self._download_file( "https://opensnp.org/data/663.23andme.305", "663.23andme.305.txt.gz", compress=True, ) ) # these two files consist of concatenated gzip files and therefore need special handling paths.append( self._download_file( "https://opensnp.org/data/4583.ftdna-illumina.3482", "4583.ftdna-illumina.3482.csv.gz", ) ) paths.append( self._download_file( "https://opensnp.org/data/4584.ftdna-illumina.3483", "4584.ftdna-illumina.3483.csv.gz", ) ) try: for gzip_path in paths[-2:]: # https://stackoverflow.com/q/4928560 # https://stackoverflow.com/a/37042747 with open(gzip_path, "rb") as f: decompressor = zlib.decompressobj(31) # decompress data from first concatenated gzip file data = decompressor.decompress(f.read()) if len(decompressor.unused_data) > 0: # decompress data from second concatenated gzip file, if any additional_data = zlib.decompress(decompressor.unused_data, 31) data += additional_data[33:] # skip over second header # recompress data with gzip.open(gzip_path, "wb") as f: f.write(data) except Exception as err: print(err) return paths
[ "def", "download_example_datasets", "(", "self", ")", ":", "paths", "=", "[", "]", "paths", ".", "append", "(", "self", ".", "_download_file", "(", "\"https://opensnp.org/data/662.23andme.304\"", ",", "\"662.23andme.304.txt.gz\"", ",", "compress", "=", "True", ",", ")", ")", "paths", ".", "append", "(", "self", ".", "_download_file", "(", "\"https://opensnp.org/data/662.23andme.340\"", ",", "\"662.23andme.340.txt.gz\"", ",", "compress", "=", "True", ",", ")", ")", "paths", ".", "append", "(", "self", ".", "_download_file", "(", "\"https://opensnp.org/data/662.ftdna-illumina.341\"", ",", "\"662.ftdna-illumina.341.csv.gz\"", ",", "compress", "=", "True", ",", ")", ")", "paths", ".", "append", "(", "self", ".", "_download_file", "(", "\"https://opensnp.org/data/663.23andme.305\"", ",", "\"663.23andme.305.txt.gz\"", ",", "compress", "=", "True", ",", ")", ")", "# these two files consist of concatenated gzip files and therefore need special handling", "paths", ".", "append", "(", "self", ".", "_download_file", "(", "\"https://opensnp.org/data/4583.ftdna-illumina.3482\"", ",", "\"4583.ftdna-illumina.3482.csv.gz\"", ",", ")", ")", "paths", ".", "append", "(", "self", ".", "_download_file", "(", "\"https://opensnp.org/data/4584.ftdna-illumina.3483\"", ",", "\"4584.ftdna-illumina.3483.csv.gz\"", ",", ")", ")", "try", ":", "for", "gzip_path", "in", "paths", "[", "-", "2", ":", "]", ":", "# https://stackoverflow.com/q/4928560", "# https://stackoverflow.com/a/37042747", "with", "open", "(", "gzip_path", ",", "\"rb\"", ")", "as", "f", ":", "decompressor", "=", "zlib", ".", "decompressobj", "(", "31", ")", "# decompress data from first concatenated gzip file", "data", "=", "decompressor", ".", "decompress", "(", "f", ".", "read", "(", ")", ")", "if", "len", "(", "decompressor", ".", "unused_data", ")", ">", "0", ":", "# decompress data from second concatenated gzip file, if any", "additional_data", "=", "zlib", ".", "decompress", "(", "decompressor", ".", "unused_data", ",", "31", ")", "data", "+=", "additional_data", "[", "33", ":", "]", "# skip over second header", "# recompress data", "with", "gzip", ".", "open", "(", "gzip_path", ",", "\"wb\"", ")", "as", "f", ":", "f", ".", "write", "(", "data", ")", "except", "Exception", "as", "err", ":", "print", "(", "err", ")", "return", "paths" ]
Download example datasets from `openSNP <https://opensnp.org>`_. Per openSNP, "the data is donated into the public domain using `CC0 1.0 <http://creativecommons.org/publicdomain/zero/1.0/>`_." Returns ------- paths : list of str or None paths to example datasets References ---------- ..[1] Greshake B, Bayer PE, Rausch H, Reda J (2014), "openSNP-A Crowdsourced Web Resource for Personal Genomics," PLOS ONE, 9(3): e89204, https://doi.org/10.1371/journal.pone.0089204
[ "Download", "example", "datasets", "from", "openSNP", "<https", ":", "//", "opensnp", ".", "org", ">", "_", "." ]
python
train
coldfix/udiskie
udiskie/prompt.py
https://github.com/coldfix/udiskie/blob/804c9d27df6f7361fec3097c432398f2d702f911/udiskie/prompt.py#L160-L168
async def get_password_tty(device, options): """Get the password to unlock a device from terminal.""" # TODO: make this a TRUE async text = _('Enter password for {0.device_presentation}: ', device) try: return getpass.getpass(text) except EOFError: print("") return None
[ "async", "def", "get_password_tty", "(", "device", ",", "options", ")", ":", "# TODO: make this a TRUE async", "text", "=", "_", "(", "'Enter password for {0.device_presentation}: '", ",", "device", ")", "try", ":", "return", "getpass", ".", "getpass", "(", "text", ")", "except", "EOFError", ":", "print", "(", "\"\"", ")", "return", "None" ]
Get the password to unlock a device from terminal.
[ "Get", "the", "password", "to", "unlock", "a", "device", "from", "terminal", "." ]
python
train
lyst/lightfm
lightfm/datasets/movielens.py
https://github.com/lyst/lightfm/blob/87b942f87759b8336f9066a25e4762ae7d95455e/lightfm/datasets/movielens.py#L12-L23
def _read_raw_data(path): """ Return the raw lines of the train and test files. """ with zipfile.ZipFile(path) as datafile: return ( datafile.read("ml-100k/ua.base").decode().split("\n"), datafile.read("ml-100k/ua.test").decode().split("\n"), datafile.read("ml-100k/u.item").decode(errors="ignore").split("\n"), datafile.read("ml-100k/u.genre").decode(errors="ignore").split("\n"), )
[ "def", "_read_raw_data", "(", "path", ")", ":", "with", "zipfile", ".", "ZipFile", "(", "path", ")", "as", "datafile", ":", "return", "(", "datafile", ".", "read", "(", "\"ml-100k/ua.base\"", ")", ".", "decode", "(", ")", ".", "split", "(", "\"\\n\"", ")", ",", "datafile", ".", "read", "(", "\"ml-100k/ua.test\"", ")", ".", "decode", "(", ")", ".", "split", "(", "\"\\n\"", ")", ",", "datafile", ".", "read", "(", "\"ml-100k/u.item\"", ")", ".", "decode", "(", "errors", "=", "\"ignore\"", ")", ".", "split", "(", "\"\\n\"", ")", ",", "datafile", ".", "read", "(", "\"ml-100k/u.genre\"", ")", ".", "decode", "(", "errors", "=", "\"ignore\"", ")", ".", "split", "(", "\"\\n\"", ")", ",", ")" ]
Return the raw lines of the train and test files.
[ "Return", "the", "raw", "lines", "of", "the", "train", "and", "test", "files", "." ]
python
train
icometrix/dicom2nifti
dicom2nifti/common.py
https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L478-L492
def write_bvec_file(bvecs, bvec_file): """ Write an array of bvecs to a bvec file :param bvecs: array with the vectors :param bvec_file: filepath to write to """ if bvec_file is None: return logger.info('Saving BVEC file: %s' % bvec_file) with open(bvec_file, 'w') as text_file: # Map a dicection to string join them using a space and write to the file text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 0]))) text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 1]))) text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 2])))
[ "def", "write_bvec_file", "(", "bvecs", ",", "bvec_file", ")", ":", "if", "bvec_file", "is", "None", ":", "return", "logger", ".", "info", "(", "'Saving BVEC file: %s'", "%", "bvec_file", ")", "with", "open", "(", "bvec_file", ",", "'w'", ")", "as", "text_file", ":", "# Map a dicection to string join them using a space and write to the file", "text_file", ".", "write", "(", "'%s\\n'", "%", "' '", ".", "join", "(", "map", "(", "str", ",", "bvecs", "[", ":", ",", "0", "]", ")", ")", ")", "text_file", ".", "write", "(", "'%s\\n'", "%", "' '", ".", "join", "(", "map", "(", "str", ",", "bvecs", "[", ":", ",", "1", "]", ")", ")", ")", "text_file", ".", "write", "(", "'%s\\n'", "%", "' '", ".", "join", "(", "map", "(", "str", ",", "bvecs", "[", ":", ",", "2", "]", ")", ")", ")" ]
Write an array of bvecs to a bvec file :param bvecs: array with the vectors :param bvec_file: filepath to write to
[ "Write", "an", "array", "of", "bvecs", "to", "a", "bvec", "file" ]
python
train
tcalmant/ipopo
pelix/remote/beans.py
https://github.com/tcalmant/ipopo/blob/2f9ae0c44cd9c34ef1a9d50837b3254e75678eb1/pelix/remote/beans.py#L830-L848
def format_specifications(specifications): # type: (Iterable[str]) -> List[str] """ Transforms the interfaces names into URI strings, with the interface implementation language as a scheme. :param specifications: Specifications to transform :return: The transformed names """ transformed = set() for original in specifications: try: lang, spec = _extract_specification_parts(original) transformed.add(_format_specification(lang, spec)) except ValueError: # Ignore invalid specifications pass return list(transformed)
[ "def", "format_specifications", "(", "specifications", ")", ":", "# type: (Iterable[str]) -> List[str]", "transformed", "=", "set", "(", ")", "for", "original", "in", "specifications", ":", "try", ":", "lang", ",", "spec", "=", "_extract_specification_parts", "(", "original", ")", "transformed", ".", "add", "(", "_format_specification", "(", "lang", ",", "spec", ")", ")", "except", "ValueError", ":", "# Ignore invalid specifications", "pass", "return", "list", "(", "transformed", ")" ]
Transforms the interfaces names into URI strings, with the interface implementation language as a scheme. :param specifications: Specifications to transform :return: The transformed names
[ "Transforms", "the", "interfaces", "names", "into", "URI", "strings", "with", "the", "interface", "implementation", "language", "as", "a", "scheme", "." ]
python
train
jjgomera/iapws
iapws/_utils.py
https://github.com/jjgomera/iapws/blob/1e5812aab38212fb8a63736f61cdcfa427d223b1/iapws/_utils.py#L194-L261
def deriv_G(state, z, x, y, fase): r"""Calculate generic partial derivative :math:`\left.\frac{\partial z}{\partial x}\right|_{y}` from a fundamental Gibbs free energy equation of state Parameters ---------- state : any python object Only need to define P and T properties, non phase specific properties z : str Name of variables in numerator term of derivatives x : str Name of variables in denominator term of derivatives y : str Name of constant variable in partial derivaritive fase : any python object Define phase specific properties (v, cp, alfav, s, xkappa) Notes ----- x, y and z can be the following values: * P: Pressure * T: Temperature * v: Specific volume * rho: Density * u: Internal Energy * h: Enthalpy * s: Entropy * g: Gibbs free energy * a: Helmholtz free energy Returns ------- deriv : float ∂z/∂x|y References ---------- IAPWS, Revised Advisory Note No. 3: Thermodynamic Derivatives from IAPWS Formulations, http://www.iapws.org/relguide/Advise3.pdf """ mul = 1 if z == "rho": mul = -fase.rho**2 z = "v" if x == "rho": mul = -1/fase.rho**2 x = "v" dT = {"P": 0, "T": 1, "v": fase.v*fase.alfav, "u": fase.cp-state.P*1000*fase.v*fase.alfav, "h": fase.cp, "s": fase.cp/state.T, "g": -fase.s, "a": -state.P*1000*fase.v*fase.alfav-fase.s} dP = {"P": 1, "T": 0, "v": -fase.v*fase.xkappa, "u": fase.v*(state.P*1000*fase.xkappa-state.T*fase.alfav), "h": fase.v*(1-state.T*fase.alfav), "s": -fase.v*fase.alfav, "g": fase.v, "a": state.P*1000*fase.v*fase.xkappa} deriv = (dP[z]*dT[y]-dT[z]*dP[y])/(dP[x]*dT[y]-dT[x]*dP[y]) return mul*deriv
[ "def", "deriv_G", "(", "state", ",", "z", ",", "x", ",", "y", ",", "fase", ")", ":", "mul", "=", "1", "if", "z", "==", "\"rho\"", ":", "mul", "=", "-", "fase", ".", "rho", "**", "2", "z", "=", "\"v\"", "if", "x", "==", "\"rho\"", ":", "mul", "=", "-", "1", "/", "fase", ".", "rho", "**", "2", "x", "=", "\"v\"", "dT", "=", "{", "\"P\"", ":", "0", ",", "\"T\"", ":", "1", ",", "\"v\"", ":", "fase", ".", "v", "*", "fase", ".", "alfav", ",", "\"u\"", ":", "fase", ".", "cp", "-", "state", ".", "P", "*", "1000", "*", "fase", ".", "v", "*", "fase", ".", "alfav", ",", "\"h\"", ":", "fase", ".", "cp", ",", "\"s\"", ":", "fase", ".", "cp", "/", "state", ".", "T", ",", "\"g\"", ":", "-", "fase", ".", "s", ",", "\"a\"", ":", "-", "state", ".", "P", "*", "1000", "*", "fase", ".", "v", "*", "fase", ".", "alfav", "-", "fase", ".", "s", "}", "dP", "=", "{", "\"P\"", ":", "1", ",", "\"T\"", ":", "0", ",", "\"v\"", ":", "-", "fase", ".", "v", "*", "fase", ".", "xkappa", ",", "\"u\"", ":", "fase", ".", "v", "*", "(", "state", ".", "P", "*", "1000", "*", "fase", ".", "xkappa", "-", "state", ".", "T", "*", "fase", ".", "alfav", ")", ",", "\"h\"", ":", "fase", ".", "v", "*", "(", "1", "-", "state", ".", "T", "*", "fase", ".", "alfav", ")", ",", "\"s\"", ":", "-", "fase", ".", "v", "*", "fase", ".", "alfav", ",", "\"g\"", ":", "fase", ".", "v", ",", "\"a\"", ":", "state", ".", "P", "*", "1000", "*", "fase", ".", "v", "*", "fase", ".", "xkappa", "}", "deriv", "=", "(", "dP", "[", "z", "]", "*", "dT", "[", "y", "]", "-", "dT", "[", "z", "]", "*", "dP", "[", "y", "]", ")", "/", "(", "dP", "[", "x", "]", "*", "dT", "[", "y", "]", "-", "dT", "[", "x", "]", "*", "dP", "[", "y", "]", ")", "return", "mul", "*", "deriv" ]
r"""Calculate generic partial derivative :math:`\left.\frac{\partial z}{\partial x}\right|_{y}` from a fundamental Gibbs free energy equation of state Parameters ---------- state : any python object Only need to define P and T properties, non phase specific properties z : str Name of variables in numerator term of derivatives x : str Name of variables in denominator term of derivatives y : str Name of constant variable in partial derivaritive fase : any python object Define phase specific properties (v, cp, alfav, s, xkappa) Notes ----- x, y and z can be the following values: * P: Pressure * T: Temperature * v: Specific volume * rho: Density * u: Internal Energy * h: Enthalpy * s: Entropy * g: Gibbs free energy * a: Helmholtz free energy Returns ------- deriv : float ∂z/∂x|y References ---------- IAPWS, Revised Advisory Note No. 3: Thermodynamic Derivatives from IAPWS Formulations, http://www.iapws.org/relguide/Advise3.pdf
[ "r", "Calculate", "generic", "partial", "derivative", ":", "math", ":", "\\", "left", ".", "\\", "frac", "{", "\\", "partial", "z", "}", "{", "\\", "partial", "x", "}", "\\", "right|_", "{", "y", "}", "from", "a", "fundamental", "Gibbs", "free", "energy", "equation", "of", "state" ]
python
train
ewels/MultiQC
multiqc/plots/linegraph.py
https://github.com/ewels/MultiQC/blob/2037d6322b2554146a74efbf869156ad20d4c4ec/multiqc/plots/linegraph.py#L40-L161
def plot (data, pconfig=None): """ Plot a line graph with X,Y data. :param data: 2D dict, first keys as sample names, then x:y data pairs :param pconfig: optional dict with config key:value pairs. See CONTRIBUTING.md :return: HTML and JS, ready to be inserted into the page """ # Don't just use {} as the default argument as it's mutable. See: # http://python-guide-pt-br.readthedocs.io/en/latest/writing/gotchas/ if pconfig is None: pconfig = {} # Allow user to overwrite any given config for this plot if 'id' in pconfig and pconfig['id'] and pconfig['id'] in config.custom_plot_config: for k, v in config.custom_plot_config[pconfig['id']].items(): pconfig[k] = v # Given one dataset - turn it into a list if type(data) is not list: data = [data] # Smooth dataset if requested in config if pconfig.get('smooth_points', None) is not None: sumcounts = pconfig.get('smooth_points_sumcounts', True) for i, d in enumerate(data): if type(sumcounts) is list: sumc = sumcounts[i] else: sumc = sumcounts data[i] = smooth_line_data(d, pconfig['smooth_points'], sumc) # Add sane plotting config defaults for idx, yp in enumerate(pconfig.get('yPlotLines', [])): pconfig['yPlotLines'][idx]["width"] = pconfig['yPlotLines'][idx].get("width", 2) # Add initial axis labels if defined in `data_labels` but not main config if pconfig.get('ylab') is None: try: pconfig['ylab'] = pconfig['data_labels'][0]['ylab'] except (KeyError, IndexError): pass if pconfig.get('xlab') is None: try: pconfig['xlab'] = pconfig['data_labels'][0]['xlab'] except (KeyError, IndexError): pass # Generate the data dict structure expected by HighCharts series plotdata = list() for data_index, d in enumerate(data): thisplotdata = list() for s in sorted(d.keys()): # Ensure any overwritting conditionals from data_labels (e.g. ymax) are taken in consideration series_config = pconfig.copy() if 'data_labels' in pconfig and type(pconfig['data_labels'][data_index]) is dict: # if not a dict: only dataset name is provided series_config.update(pconfig['data_labels'][data_index]) pairs = list() maxval = 0 if 'categories' in series_config: pconfig['categories'] = list() for k in d[s].keys(): pconfig['categories'].append(k) pairs.append(d[s][k]) maxval = max(maxval, d[s][k]) else: for k in sorted(d[s].keys()): if k is not None: if 'xmax' in series_config and float(k) > float(series_config['xmax']): continue if 'xmin' in series_config and float(k) < float(series_config['xmin']): continue if d[s][k] is not None: if 'ymax' in series_config and float(d[s][k]) > float(series_config['ymax']): continue if 'ymin' in series_config and float(d[s][k]) < float(series_config['ymin']): continue pairs.append([k, d[s][k]]) try: maxval = max(maxval, d[s][k]) except TypeError: pass if maxval > 0 or series_config.get('hide_empty') is not True: this_series = { 'name': s, 'data': pairs } try: this_series['color'] = series_config['colors'][s] except: pass thisplotdata.append(this_series) plotdata.append(thisplotdata) # Add on annotation data series try: if pconfig.get('extra_series'): extra_series = pconfig['extra_series'] if type(pconfig['extra_series']) == dict: extra_series = [[ pconfig['extra_series'] ]] elif type(pconfig['extra_series']) == list and type(pconfig['extra_series'][0]) == dict: extra_series = [ pconfig['extra_series'] ] for i, es in enumerate(extra_series): for s in es: plotdata[i].append(s) except (KeyError, IndexError): pass # Make a plot - template custom, or interactive or flat try: return get_template_mod().linegraph(plotdata, pconfig) except (AttributeError, TypeError): if config.plots_force_flat or (not config.plots_force_interactive and len(plotdata[0]) > config.plots_flat_numseries): try: return matplotlib_linegraph(plotdata, pconfig) except: logger.error("############### Error making MatPlotLib figure! Falling back to HighCharts.") return highcharts_linegraph(plotdata, pconfig) else: # Use MatPlotLib to generate static plots if requested if config.export_plots: matplotlib_linegraph(plotdata, pconfig) # Return HTML for HighCharts dynamic plot return highcharts_linegraph(plotdata, pconfig)
[ "def", "plot", "(", "data", ",", "pconfig", "=", "None", ")", ":", "# Don't just use {} as the default argument as it's mutable. See:", "# http://python-guide-pt-br.readthedocs.io/en/latest/writing/gotchas/", "if", "pconfig", "is", "None", ":", "pconfig", "=", "{", "}", "# Allow user to overwrite any given config for this plot", "if", "'id'", "in", "pconfig", "and", "pconfig", "[", "'id'", "]", "and", "pconfig", "[", "'id'", "]", "in", "config", ".", "custom_plot_config", ":", "for", "k", ",", "v", "in", "config", ".", "custom_plot_config", "[", "pconfig", "[", "'id'", "]", "]", ".", "items", "(", ")", ":", "pconfig", "[", "k", "]", "=", "v", "# Given one dataset - turn it into a list", "if", "type", "(", "data", ")", "is", "not", "list", ":", "data", "=", "[", "data", "]", "# Smooth dataset if requested in config", "if", "pconfig", ".", "get", "(", "'smooth_points'", ",", "None", ")", "is", "not", "None", ":", "sumcounts", "=", "pconfig", ".", "get", "(", "'smooth_points_sumcounts'", ",", "True", ")", "for", "i", ",", "d", "in", "enumerate", "(", "data", ")", ":", "if", "type", "(", "sumcounts", ")", "is", "list", ":", "sumc", "=", "sumcounts", "[", "i", "]", "else", ":", "sumc", "=", "sumcounts", "data", "[", "i", "]", "=", "smooth_line_data", "(", "d", ",", "pconfig", "[", "'smooth_points'", "]", ",", "sumc", ")", "# Add sane plotting config defaults", "for", "idx", ",", "yp", "in", "enumerate", "(", "pconfig", ".", "get", "(", "'yPlotLines'", ",", "[", "]", ")", ")", ":", "pconfig", "[", "'yPlotLines'", "]", "[", "idx", "]", "[", "\"width\"", "]", "=", "pconfig", "[", "'yPlotLines'", "]", "[", "idx", "]", ".", "get", "(", "\"width\"", ",", "2", ")", "# Add initial axis labels if defined in `data_labels` but not main config", "if", "pconfig", ".", "get", "(", "'ylab'", ")", "is", "None", ":", "try", ":", "pconfig", "[", "'ylab'", "]", "=", "pconfig", "[", "'data_labels'", "]", "[", "0", "]", "[", "'ylab'", "]", "except", "(", "KeyError", ",", "IndexError", ")", ":", "pass", "if", "pconfig", ".", "get", "(", "'xlab'", ")", "is", "None", ":", "try", ":", "pconfig", "[", "'xlab'", "]", "=", "pconfig", "[", "'data_labels'", "]", "[", "0", "]", "[", "'xlab'", "]", "except", "(", "KeyError", ",", "IndexError", ")", ":", "pass", "# Generate the data dict structure expected by HighCharts series", "plotdata", "=", "list", "(", ")", "for", "data_index", ",", "d", "in", "enumerate", "(", "data", ")", ":", "thisplotdata", "=", "list", "(", ")", "for", "s", "in", "sorted", "(", "d", ".", "keys", "(", ")", ")", ":", "# Ensure any overwritting conditionals from data_labels (e.g. ymax) are taken in consideration", "series_config", "=", "pconfig", ".", "copy", "(", ")", "if", "'data_labels'", "in", "pconfig", "and", "type", "(", "pconfig", "[", "'data_labels'", "]", "[", "data_index", "]", ")", "is", "dict", ":", "# if not a dict: only dataset name is provided", "series_config", ".", "update", "(", "pconfig", "[", "'data_labels'", "]", "[", "data_index", "]", ")", "pairs", "=", "list", "(", ")", "maxval", "=", "0", "if", "'categories'", "in", "series_config", ":", "pconfig", "[", "'categories'", "]", "=", "list", "(", ")", "for", "k", "in", "d", "[", "s", "]", ".", "keys", "(", ")", ":", "pconfig", "[", "'categories'", "]", ".", "append", "(", "k", ")", "pairs", ".", "append", "(", "d", "[", "s", "]", "[", "k", "]", ")", "maxval", "=", "max", "(", "maxval", ",", "d", "[", "s", "]", "[", "k", "]", ")", "else", ":", "for", "k", "in", "sorted", "(", "d", "[", "s", "]", ".", "keys", "(", ")", ")", ":", "if", "k", "is", "not", "None", ":", "if", "'xmax'", "in", "series_config", "and", "float", "(", "k", ")", ">", "float", "(", "series_config", "[", "'xmax'", "]", ")", ":", "continue", "if", "'xmin'", "in", "series_config", "and", "float", "(", "k", ")", "<", "float", "(", "series_config", "[", "'xmin'", "]", ")", ":", "continue", "if", "d", "[", "s", "]", "[", "k", "]", "is", "not", "None", ":", "if", "'ymax'", "in", "series_config", "and", "float", "(", "d", "[", "s", "]", "[", "k", "]", ")", ">", "float", "(", "series_config", "[", "'ymax'", "]", ")", ":", "continue", "if", "'ymin'", "in", "series_config", "and", "float", "(", "d", "[", "s", "]", "[", "k", "]", ")", "<", "float", "(", "series_config", "[", "'ymin'", "]", ")", ":", "continue", "pairs", ".", "append", "(", "[", "k", ",", "d", "[", "s", "]", "[", "k", "]", "]", ")", "try", ":", "maxval", "=", "max", "(", "maxval", ",", "d", "[", "s", "]", "[", "k", "]", ")", "except", "TypeError", ":", "pass", "if", "maxval", ">", "0", "or", "series_config", ".", "get", "(", "'hide_empty'", ")", "is", "not", "True", ":", "this_series", "=", "{", "'name'", ":", "s", ",", "'data'", ":", "pairs", "}", "try", ":", "this_series", "[", "'color'", "]", "=", "series_config", "[", "'colors'", "]", "[", "s", "]", "except", ":", "pass", "thisplotdata", ".", "append", "(", "this_series", ")", "plotdata", ".", "append", "(", "thisplotdata", ")", "# Add on annotation data series", "try", ":", "if", "pconfig", ".", "get", "(", "'extra_series'", ")", ":", "extra_series", "=", "pconfig", "[", "'extra_series'", "]", "if", "type", "(", "pconfig", "[", "'extra_series'", "]", ")", "==", "dict", ":", "extra_series", "=", "[", "[", "pconfig", "[", "'extra_series'", "]", "]", "]", "elif", "type", "(", "pconfig", "[", "'extra_series'", "]", ")", "==", "list", "and", "type", "(", "pconfig", "[", "'extra_series'", "]", "[", "0", "]", ")", "==", "dict", ":", "extra_series", "=", "[", "pconfig", "[", "'extra_series'", "]", "]", "for", "i", ",", "es", "in", "enumerate", "(", "extra_series", ")", ":", "for", "s", "in", "es", ":", "plotdata", "[", "i", "]", ".", "append", "(", "s", ")", "except", "(", "KeyError", ",", "IndexError", ")", ":", "pass", "# Make a plot - template custom, or interactive or flat", "try", ":", "return", "get_template_mod", "(", ")", ".", "linegraph", "(", "plotdata", ",", "pconfig", ")", "except", "(", "AttributeError", ",", "TypeError", ")", ":", "if", "config", ".", "plots_force_flat", "or", "(", "not", "config", ".", "plots_force_interactive", "and", "len", "(", "plotdata", "[", "0", "]", ")", ">", "config", ".", "plots_flat_numseries", ")", ":", "try", ":", "return", "matplotlib_linegraph", "(", "plotdata", ",", "pconfig", ")", "except", ":", "logger", ".", "error", "(", "\"############### Error making MatPlotLib figure! Falling back to HighCharts.\"", ")", "return", "highcharts_linegraph", "(", "plotdata", ",", "pconfig", ")", "else", ":", "# Use MatPlotLib to generate static plots if requested", "if", "config", ".", "export_plots", ":", "matplotlib_linegraph", "(", "plotdata", ",", "pconfig", ")", "# Return HTML for HighCharts dynamic plot", "return", "highcharts_linegraph", "(", "plotdata", ",", "pconfig", ")" ]
Plot a line graph with X,Y data. :param data: 2D dict, first keys as sample names, then x:y data pairs :param pconfig: optional dict with config key:value pairs. See CONTRIBUTING.md :return: HTML and JS, ready to be inserted into the page
[ "Plot", "a", "line", "graph", "with", "X", "Y", "data", ".", ":", "param", "data", ":", "2D", "dict", "first", "keys", "as", "sample", "names", "then", "x", ":", "y", "data", "pairs", ":", "param", "pconfig", ":", "optional", "dict", "with", "config", "key", ":", "value", "pairs", ".", "See", "CONTRIBUTING", ".", "md", ":", "return", ":", "HTML", "and", "JS", "ready", "to", "be", "inserted", "into", "the", "page" ]
python
train
razor-x/scipy-data_fitting
scipy_data_fitting/model.py
https://github.com/razor-x/scipy-data_fitting/blob/c756a645da8629699b3f22244bfb7d5d4d88b179/scipy_data_fitting/model.py#L135-L184
def replace(self, expression, replacements): """ All purpose method to reduce an expression by applying successive replacement rules. `expression` is either a SymPy expression or a key in `scipy_data_fitting.Model.expressions`. `replacements` can be any of the following, or a list of any combination of the following: - A replacement tuple as in `scipy_data_fitting.Model.replacements`. - The name of a replacement in `scipy_data_fitting.Model.replacements`. - The name of a replacement group in `scipy_data_fitting.Model.replacement_groups`. Examples: #!python >>> model.replace(x + y, (x, z)) z + y >>> model.replace('expression', (x, z)) >>> model.replace('expression', 'replacement') >>> model.replace('expression', ['replacement_1', 'replacement_2']) >>> model.replace('expression', ['replacement', 'group']) """ # When expression is a string, # get the expressions from self.expressions. if isinstance(expression, str): expression = self.expressions[expression] # Allow for replacements to be empty. if not replacements: return expression # Allow replacements to be a string. if isinstance(replacements, str): if replacements in self.replacements: return self.replace(expression, self.replacements[replacements]) elif replacements in self.replacement_groups: return self.replace(expression, self.replacement_groups[replacements]) # When replacements is a list of strings or tuples, # Use reduce to make all the replacements. if all(isinstance(item, str) for item in replacements) \ or all(isinstance(item, tuple) for item in replacements): return functools.reduce(self.replace, replacements, expression) # Otherwise make the replacement. return expression.replace(*replacements)
[ "def", "replace", "(", "self", ",", "expression", ",", "replacements", ")", ":", "# When expression is a string,", "# get the expressions from self.expressions.", "if", "isinstance", "(", "expression", ",", "str", ")", ":", "expression", "=", "self", ".", "expressions", "[", "expression", "]", "# Allow for replacements to be empty.", "if", "not", "replacements", ":", "return", "expression", "# Allow replacements to be a string.", "if", "isinstance", "(", "replacements", ",", "str", ")", ":", "if", "replacements", "in", "self", ".", "replacements", ":", "return", "self", ".", "replace", "(", "expression", ",", "self", ".", "replacements", "[", "replacements", "]", ")", "elif", "replacements", "in", "self", ".", "replacement_groups", ":", "return", "self", ".", "replace", "(", "expression", ",", "self", ".", "replacement_groups", "[", "replacements", "]", ")", "# When replacements is a list of strings or tuples,", "# Use reduce to make all the replacements.", "if", "all", "(", "isinstance", "(", "item", ",", "str", ")", "for", "item", "in", "replacements", ")", "or", "all", "(", "isinstance", "(", "item", ",", "tuple", ")", "for", "item", "in", "replacements", ")", ":", "return", "functools", ".", "reduce", "(", "self", ".", "replace", ",", "replacements", ",", "expression", ")", "# Otherwise make the replacement.", "return", "expression", ".", "replace", "(", "*", "replacements", ")" ]
All purpose method to reduce an expression by applying successive replacement rules. `expression` is either a SymPy expression or a key in `scipy_data_fitting.Model.expressions`. `replacements` can be any of the following, or a list of any combination of the following: - A replacement tuple as in `scipy_data_fitting.Model.replacements`. - The name of a replacement in `scipy_data_fitting.Model.replacements`. - The name of a replacement group in `scipy_data_fitting.Model.replacement_groups`. Examples: #!python >>> model.replace(x + y, (x, z)) z + y >>> model.replace('expression', (x, z)) >>> model.replace('expression', 'replacement') >>> model.replace('expression', ['replacement_1', 'replacement_2']) >>> model.replace('expression', ['replacement', 'group'])
[ "All", "purpose", "method", "to", "reduce", "an", "expression", "by", "applying", "successive", "replacement", "rules", "." ]
python
train
goerz/clusterjob
clusterjob/__init__.py
https://github.com/goerz/clusterjob/blob/361760d1a6dd3cbde49c5c2158a3acd0c314a749/clusterjob/__init__.py#L927-L952
def status(self): """Return the job status as one of the codes defined in the `clusterjob.status` module. finished, communicate with the cluster to determine the job's status. """ if self._status >= COMPLETED: return self._status else: cmd = self.backend.cmd_status(self, finished=False) response = self._run_cmd(cmd, self.remote, ignore_exit_code=True, ssh=self.ssh) status = self.backend.get_status(response, finished=False) if status is None: cmd = self.backend.cmd_status(self, finished=True) response = self._run_cmd(cmd, self.remote, ignore_exit_code=True, ssh=self.ssh) status = self.backend.get_status(response, finished=True) prev_status = self._status self._status = status if self._status not in STATUS_CODES: raise ValueError("Invalid status code %s", self._status) if prev_status != self._status: if self._status >= COMPLETED: self.run_epilogue() self.dump() return self._status
[ "def", "status", "(", "self", ")", ":", "if", "self", ".", "_status", ">=", "COMPLETED", ":", "return", "self", ".", "_status", "else", ":", "cmd", "=", "self", ".", "backend", ".", "cmd_status", "(", "self", ",", "finished", "=", "False", ")", "response", "=", "self", ".", "_run_cmd", "(", "cmd", ",", "self", ".", "remote", ",", "ignore_exit_code", "=", "True", ",", "ssh", "=", "self", ".", "ssh", ")", "status", "=", "self", ".", "backend", ".", "get_status", "(", "response", ",", "finished", "=", "False", ")", "if", "status", "is", "None", ":", "cmd", "=", "self", ".", "backend", ".", "cmd_status", "(", "self", ",", "finished", "=", "True", ")", "response", "=", "self", ".", "_run_cmd", "(", "cmd", ",", "self", ".", "remote", ",", "ignore_exit_code", "=", "True", ",", "ssh", "=", "self", ".", "ssh", ")", "status", "=", "self", ".", "backend", ".", "get_status", "(", "response", ",", "finished", "=", "True", ")", "prev_status", "=", "self", ".", "_status", "self", ".", "_status", "=", "status", "if", "self", ".", "_status", "not", "in", "STATUS_CODES", ":", "raise", "ValueError", "(", "\"Invalid status code %s\"", ",", "self", ".", "_status", ")", "if", "prev_status", "!=", "self", ".", "_status", ":", "if", "self", ".", "_status", ">=", "COMPLETED", ":", "self", ".", "run_epilogue", "(", ")", "self", ".", "dump", "(", ")", "return", "self", ".", "_status" ]
Return the job status as one of the codes defined in the `clusterjob.status` module. finished, communicate with the cluster to determine the job's status.
[ "Return", "the", "job", "status", "as", "one", "of", "the", "codes", "defined", "in", "the", "clusterjob", ".", "status", "module", ".", "finished", "communicate", "with", "the", "cluster", "to", "determine", "the", "job", "s", "status", "." ]
python
train
subdownloader/subdownloader
subdownloader/util.py
https://github.com/subdownloader/subdownloader/blob/bbccedd11b18d925ad4c062b5eb65981e24d0433/subdownloader/util.py#L43-L50
def write_stream(src_file, destination_path): """ Write the file-like src_file object to the string dest_path :param src_file: file-like data to be written :param destination_path: string of the destionation file """ with open(destination_path, 'wb') as destination_file: shutil.copyfileobj(fsrc=src_file, fdst=destination_file)
[ "def", "write_stream", "(", "src_file", ",", "destination_path", ")", ":", "with", "open", "(", "destination_path", ",", "'wb'", ")", "as", "destination_file", ":", "shutil", ".", "copyfileobj", "(", "fsrc", "=", "src_file", ",", "fdst", "=", "destination_file", ")" ]
Write the file-like src_file object to the string dest_path :param src_file: file-like data to be written :param destination_path: string of the destionation file
[ "Write", "the", "file", "-", "like", "src_file", "object", "to", "the", "string", "dest_path", ":", "param", "src_file", ":", "file", "-", "like", "data", "to", "be", "written", ":", "param", "destination_path", ":", "string", "of", "the", "destionation", "file" ]
python
train
spacetelescope/synphot_refactor
synphot/spectrum.py
https://github.com/spacetelescope/synphot_refactor/blob/9c064f3cff0c41dd8acadc0f67c6350931275b9f/synphot/spectrum.py#L204-L239
def _merge_meta(left, right, result, clean=True): """Merge metadata from left and right onto results. This is used during class initialization. This should also be used by operators to merge metadata after creating a new instance but before returning it. Result's metadata is modified in-place. Parameters ---------- left, right : number, `BaseSpectrum`, or `~astropy.modeling.models` Inputs of an operation. result : `BaseSpectrum` Output spectrum object. clean : bool Remove ``'header'`` and ``'expr'`` entries from inputs. """ # Copies are returned because they need some clean-up below. left = BaseSpectrum._get_meta(left) right = BaseSpectrum._get_meta(right) # Remove these from going into result to avoid mess. # header = FITS header metadata # expr = ASTROLIB PYSYNPHOT expression if clean: for key in ('header', 'expr'): for d in (left, right): if key in d: del d[key] mid = metadata.merge(left, right, metadata_conflicts='silent') result.meta = metadata.merge(result.meta, mid, metadata_conflicts='silent')
[ "def", "_merge_meta", "(", "left", ",", "right", ",", "result", ",", "clean", "=", "True", ")", ":", "# Copies are returned because they need some clean-up below.", "left", "=", "BaseSpectrum", ".", "_get_meta", "(", "left", ")", "right", "=", "BaseSpectrum", ".", "_get_meta", "(", "right", ")", "# Remove these from going into result to avoid mess.", "# header = FITS header metadata", "# expr = ASTROLIB PYSYNPHOT expression", "if", "clean", ":", "for", "key", "in", "(", "'header'", ",", "'expr'", ")", ":", "for", "d", "in", "(", "left", ",", "right", ")", ":", "if", "key", "in", "d", ":", "del", "d", "[", "key", "]", "mid", "=", "metadata", ".", "merge", "(", "left", ",", "right", ",", "metadata_conflicts", "=", "'silent'", ")", "result", ".", "meta", "=", "metadata", ".", "merge", "(", "result", ".", "meta", ",", "mid", ",", "metadata_conflicts", "=", "'silent'", ")" ]
Merge metadata from left and right onto results. This is used during class initialization. This should also be used by operators to merge metadata after creating a new instance but before returning it. Result's metadata is modified in-place. Parameters ---------- left, right : number, `BaseSpectrum`, or `~astropy.modeling.models` Inputs of an operation. result : `BaseSpectrum` Output spectrum object. clean : bool Remove ``'header'`` and ``'expr'`` entries from inputs.
[ "Merge", "metadata", "from", "left", "and", "right", "onto", "results", "." ]
python
train
trombastic/PyScada
pyscada/utils/scheduler.py
https://github.com/trombastic/PyScada/blob/c5fc348a25f0df1340336f694ee9bc1aea62516a/pyscada/utils/scheduler.py#L818-L835
def init_process(self): """ init a standard daq process for multiple devices """ for item in Device.objects.filter(protocol__daq_daemon=1, active=1, id__in=self.device_ids): try: tmp_device = item.get_device_instance() if tmp_device is not None: self.devices[item.pk] = tmp_device self.dt_set = min(self.dt_set, item.polling_interval) self.dt_query_data = min(self.dt_query_data, item.polling_interval) except: var = traceback.format_exc() logger.error("exception while initialisation of DAQ Process for Device %d %s %s" % ( item.pk, linesep, var)) return True
[ "def", "init_process", "(", "self", ")", ":", "for", "item", "in", "Device", ".", "objects", ".", "filter", "(", "protocol__daq_daemon", "=", "1", ",", "active", "=", "1", ",", "id__in", "=", "self", ".", "device_ids", ")", ":", "try", ":", "tmp_device", "=", "item", ".", "get_device_instance", "(", ")", "if", "tmp_device", "is", "not", "None", ":", "self", ".", "devices", "[", "item", ".", "pk", "]", "=", "tmp_device", "self", ".", "dt_set", "=", "min", "(", "self", ".", "dt_set", ",", "item", ".", "polling_interval", ")", "self", ".", "dt_query_data", "=", "min", "(", "self", ".", "dt_query_data", ",", "item", ".", "polling_interval", ")", "except", ":", "var", "=", "traceback", ".", "format_exc", "(", ")", "logger", ".", "error", "(", "\"exception while initialisation of DAQ Process for Device %d %s %s\"", "%", "(", "item", ".", "pk", ",", "linesep", ",", "var", ")", ")", "return", "True" ]
init a standard daq process for multiple devices
[ "init", "a", "standard", "daq", "process", "for", "multiple", "devices" ]
python
train
ConsenSys/mythril-classic
mythril/mythril/mythril_config.py
https://github.com/ConsenSys/mythril-classic/blob/27af71c34b2ce94f4fae5613ec457f93df1a8f56/mythril/mythril/mythril_config.py#L124-L139
def _add_leveldb_option(config: ConfigParser, leveldb_fallback_dir: str) -> None: """ Sets a default leveldb path in .mythril/config.ini file :param config: The config file object :param leveldb_fallback_dir: The leveldb dir to use by default for searches :return: None """ config.set("defaults", "#Default chaindata locations:", "") config.set("defaults", "#– Mac: ~/Library/Ethereum/geth/chaindata", "") config.set("defaults", "#– Linux: ~/.ethereum/geth/chaindata", "") config.set( "defaults", "#– Windows: %USERPROFILE%\\AppData\\Roaming\\Ethereum\\geth\\chaindata", "", ) config.set("defaults", "leveldb_dir", leveldb_fallback_dir)
[ "def", "_add_leveldb_option", "(", "config", ":", "ConfigParser", ",", "leveldb_fallback_dir", ":", "str", ")", "->", "None", ":", "config", ".", "set", "(", "\"defaults\"", ",", "\"#Default chaindata locations:\"", ",", "\"\"", ")", "config", ".", "set", "(", "\"defaults\"", ",", "\"#– Mac: ~/Library/Ethereum/geth/chaindata\", ", "\"", ")", "", "config", ".", "set", "(", "\"defaults\"", ",", "\"#– Linux: ~/.ethereum/geth/chaindata\", ", "\"", ")", "", "config", ".", "set", "(", "\"defaults\"", ",", "\"#– Windows: %USERPROFILE%\\\\AppData\\\\Roaming\\\\Ethereum\\\\geth\\\\chaindata\",", "", "\"\"", ",", ")", "config", ".", "set", "(", "\"defaults\"", ",", "\"leveldb_dir\"", ",", "leveldb_fallback_dir", ")" ]
Sets a default leveldb path in .mythril/config.ini file :param config: The config file object :param leveldb_fallback_dir: The leveldb dir to use by default for searches :return: None
[ "Sets", "a", "default", "leveldb", "path", "in", ".", "mythril", "/", "config", ".", "ini", "file", ":", "param", "config", ":", "The", "config", "file", "object", ":", "param", "leveldb_fallback_dir", ":", "The", "leveldb", "dir", "to", "use", "by", "default", "for", "searches", ":", "return", ":", "None" ]
python
train
pandas-profiling/pandas-profiling
pandas_profiling/describe.py
https://github.com/pandas-profiling/pandas-profiling/blob/003d236daee8b7aca39c62708b18d59bced0bc03/pandas_profiling/describe.py#L109-L131
def describe_boolean_1d(series): """Compute summary statistics of a boolean (`TYPE_BOOL`) variable (a Series). Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ value_counts, distinct_count = base.get_groupby_statistic(series) top, freq = value_counts.index[0], value_counts.iloc[0] # The mean of boolean is an interesting information mean = series.mean() names = [] result = [] names += ['top', 'freq', 'type', 'mean'] result += [top, freq, base.TYPE_BOOL, mean] return pd.Series(result, index=names, name=series.name)
[ "def", "describe_boolean_1d", "(", "series", ")", ":", "value_counts", ",", "distinct_count", "=", "base", ".", "get_groupby_statistic", "(", "series", ")", "top", ",", "freq", "=", "value_counts", ".", "index", "[", "0", "]", ",", "value_counts", ".", "iloc", "[", "0", "]", "# The mean of boolean is an interesting information", "mean", "=", "series", ".", "mean", "(", ")", "names", "=", "[", "]", "result", "=", "[", "]", "names", "+=", "[", "'top'", ",", "'freq'", ",", "'type'", ",", "'mean'", "]", "result", "+=", "[", "top", ",", "freq", ",", "base", ".", "TYPE_BOOL", ",", "mean", "]", "return", "pd", ".", "Series", "(", "result", ",", "index", "=", "names", ",", "name", "=", "series", ".", "name", ")" ]
Compute summary statistics of a boolean (`TYPE_BOOL`) variable (a Series). Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys.
[ "Compute", "summary", "statistics", "of", "a", "boolean", "(", "TYPE_BOOL", ")", "variable", "(", "a", "Series", ")", "." ]
python
train
BlackEarth/bf
bf/scss.py
https://github.com/BlackEarth/bf/blob/376041168874bbd6dee5ccfeece4a9e553223316/bf/scss.py#L13-L23
def render_css(self, fn=None, text=None, margin='', indent='\t'): """output css using the Sass processor""" fn = fn or os.path.splitext(self.fn)[0]+'.css' if not os.path.exists(os.path.dirname(fn)): os.makedirs(os.path.dirname(fn)) curdir = os.path.abspath(os.curdir) os.chdir(os.path.dirname(fn)) # needed in order for scss to relative @import text = text or self.render_styles() if text != '': text = sass.compile(string=text) os.chdir(curdir) return CSS(fn=fn, text=text)
[ "def", "render_css", "(", "self", ",", "fn", "=", "None", ",", "text", "=", "None", ",", "margin", "=", "''", ",", "indent", "=", "'\\t'", ")", ":", "fn", "=", "fn", "or", "os", ".", "path", ".", "splitext", "(", "self", ".", "fn", ")", "[", "0", "]", "+", "'.css'", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "dirname", "(", "fn", ")", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "fn", ")", ")", "curdir", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "curdir", ")", "os", ".", "chdir", "(", "os", ".", "path", ".", "dirname", "(", "fn", ")", ")", "# needed in order for scss to relative @import", "text", "=", "text", "or", "self", ".", "render_styles", "(", ")", "if", "text", "!=", "''", ":", "text", "=", "sass", ".", "compile", "(", "string", "=", "text", ")", "os", ".", "chdir", "(", "curdir", ")", "return", "CSS", "(", "fn", "=", "fn", ",", "text", "=", "text", ")" ]
output css using the Sass processor
[ "output", "css", "using", "the", "Sass", "processor" ]
python
train
jgillick/LendingClub
lendingclub/filters.py
https://github.com/jgillick/LendingClub/blob/4495f99fd869810f39c00e02b0f4112c6b210384/lendingclub/filters.py#L197-L207
def __normalize_grades(self): """ Adjust the grades list. If a grade has been set, set All to false """ if 'grades' in self and self['grades']['All'] is True: for grade in self['grades']: if grade != 'All' and self['grades'][grade] is True: self['grades']['All'] = False break
[ "def", "__normalize_grades", "(", "self", ")", ":", "if", "'grades'", "in", "self", "and", "self", "[", "'grades'", "]", "[", "'All'", "]", "is", "True", ":", "for", "grade", "in", "self", "[", "'grades'", "]", ":", "if", "grade", "!=", "'All'", "and", "self", "[", "'grades'", "]", "[", "grade", "]", "is", "True", ":", "self", "[", "'grades'", "]", "[", "'All'", "]", "=", "False", "break" ]
Adjust the grades list. If a grade has been set, set All to false
[ "Adjust", "the", "grades", "list", ".", "If", "a", "grade", "has", "been", "set", "set", "All", "to", "false" ]
python
train
cnschema/cdata
cdata/summary.py
https://github.com/cnschema/cdata/blob/893e2e1e27b61c8551c8b5f5f9bf05ec61490e23/cdata/summary.py#L25-L117
def summarize_entity_person(person): """ assume person entity using cnschma person vocabulary, http://cnschema.org/Person """ ret = [] value = person.get("name") if not value: return False ret.append(value) prop = "courtesyName" value = json_get_first_item(person, prop) if value == u"不详": value = "" if value: ret.append(u'字{}'.format(value)) value = person.get("alternateName") if value: #ret.append(u'别名{}'.format(value)) # Bugged pass prop = "artName" value = json_get_first_item(person, prop) if value: ret.append(u'号{}'.format(value)) value = person.get("dynasty") if value: ret.append(u'{}人'.format(value)) prop = "ancestralHome" value = json_get_first_item(person, prop) if value: ret.append(u'祖籍{}'.format(value)) birth_date = person.get("birthDate", "") birth_place = person.get("birthPlace", "") # Special case for unknown birth date if birth_date == u"不详": birth_date = "" if birth_place: ret.append(u'{}出生于{}'.format(birth_date, birth_place)) elif birth_date: ret.append(u'{}出生'.format(birth_date)) prop = "nationality" nationality = json_get_first_item(person, prop) prop = "occupation" occupation = json_get_first_item(person, prop) if occupation: if nationality: ret.append(u'{}{}'.format(nationality, occupation)) else: ret.append(u'{}'.format(occupation)) elif nationality: ret.append(u'{}人'.format(nationality)) prop = "authorOf" value = json_get_list(person, prop) if value: logging.info(value) value = u"、".join(value) ret.append(u'主要作品:{}'.format(value) ) prop = "accomplishment" value = json_get_list(person, prop) if value: value = u"、".join(value) if len(value) < 30: # Colon is handled by text reading software ret.append( u"主要成就:{}".format(value) ) ret = u",".join(ret) # Make all commas Chinese ret = ret.replace(u',', u',') ret = re.sub(u",+", u",", ret) # Removes repeat commas # Handles periods at end ret = re.sub(ur"[。,]+$", u"", ret) # Converts brackets to Chinese ret = ret.replace(u'(', u'(') ret = ret.replace(u')', u')') # Removes brackets and all contained info ret = re.sub(ur"([^)]*)", u"", ret) ret = u''.join([ret, u"。"]) return ret
[ "def", "summarize_entity_person", "(", "person", ")", ":", "ret", "=", "[", "]", "value", "=", "person", ".", "get", "(", "\"name\"", ")", "if", "not", "value", ":", "return", "False", "ret", ".", "append", "(", "value", ")", "prop", "=", "\"courtesyName\"", "value", "=", "json_get_first_item", "(", "person", ",", "prop", ")", "if", "value", "==", "u\"不详\":", "", "value", "=", "\"\"", "if", "value", ":", "ret", ".", "append", "(", "u'字{}'.f", "o", "rmat(v", "a", "lue))", "", "", "value", "=", "person", ".", "get", "(", "\"alternateName\"", ")", "if", "value", ":", "#ret.append(u'别名{}'.format(value))", "# Bugged", "pass", "prop", "=", "\"artName\"", "value", "=", "json_get_first_item", "(", "person", ",", "prop", ")", "if", "value", ":", "ret", ".", "append", "(", "u'号{}'.f", "o", "rmat(v", "a", "lue))", "", "", "value", "=", "person", ".", "get", "(", "\"dynasty\"", ")", "if", "value", ":", "ret", ".", "append", "(", "u'{}人'.f", "o", "rmat(v", "a", "lue))", "", "", "prop", "=", "\"ancestralHome\"", "value", "=", "json_get_first_item", "(", "person", ",", "prop", ")", "if", "value", ":", "ret", ".", "append", "(", "u'祖籍{}'.for", "m", "at(val", "u", "e))", "", "", "birth_date", "=", "person", ".", "get", "(", "\"birthDate\"", ",", "\"\"", ")", "birth_place", "=", "person", ".", "get", "(", "\"birthPlace\"", ",", "\"\"", ")", "# Special case for unknown birth date", "if", "birth_date", "==", "u\"不详\":", "", "birth_date", "=", "\"\"", "if", "birth_place", ":", "ret", ".", "append", "(", "u'{}出生于{}'.forma", "t", "(birth", "_", "date, birt", "h", "place))", "", "", "elif", "birth_date", ":", "ret", ".", "append", "(", "u'{}出生'.for", "m", "at(bir", "t", "h_date))", "", "", "prop", "=", "\"nationality\"", "nationality", "=", "json_get_first_item", "(", "person", ",", "prop", ")", "prop", "=", "\"occupation\"", "occupation", "=", "json_get_first_item", "(", "person", ",", "prop", ")", "if", "occupation", ":", "if", "nationality", ":", "ret", ".", "append", "(", "u'{}{}'", ".", "format", "(", "nationality", ",", "occupation", ")", ")", "else", ":", "ret", ".", "append", "(", "u'{}'", ".", "format", "(", "occupation", ")", ")", "elif", "nationality", ":", "ret", ".", "append", "(", "u'{}人'.f", "o", "rmat(n", "a", "tionality))", "", "", "prop", "=", "\"authorOf\"", "value", "=", "json_get_list", "(", "person", ",", "prop", ")", "if", "value", ":", "logging", ".", "info", "(", "value", ")", "value", "=", "u\"、\".j", "o", "in(v", "a", "lue)", "", "ret", ".", "append", "(", "u'主要作品:{}'.format(va", "l", "ue) )", "", "", "", "", "prop", "=", "\"accomplishment\"", "value", "=", "json_get_list", "(", "person", ",", "prop", ")", "if", "value", ":", "value", "=", "u\"、\".j", "o", "in(v", "a", "lue)", "", "if", "len", "(", "value", ")", "<", "30", ":", "# Colon is handled by text reading software", "ret", ".", "append", "(", "u\"主要成就:{}\".format(va", "l", "ue) )", "", "", "", "", "ret", "=", "u\",\".j", "o", "in(r", "e", "t)", "", "# Make all commas Chinese", "ret", "=", "ret", ".", "replace", "(", "u','", ",", "u',')", "", "ret", "=", "re", ".", "sub", "(", "u\",+\", ", "u", ",\", re", "t", " # ", "R", "moves repeat commas", "# Handles periods at end", "ret", "=", "re", ".", "sub", "(", "ur\"[。,]+$\", u\"", "\"", " re", "t", "", "", "# Converts brackets to Chinese", "ret", "=", "ret", ".", "replace", "(", "u'('", ",", "u'(')", "", "ret", "=", "ret", ".", "replace", "(", "u')'", ",", "u')')", "", "# Removes brackets and all contained info", "ret", "=", "re", ".", "sub", "(", "ur\"([^)]*)\", u\"\",", " ", "et)", "", "", "", "ret", "=", "u''", ".", "join", "(", "[", "ret", ",", "u\"。\"])", "", "", "return", "ret" ]
assume person entity using cnschma person vocabulary, http://cnschema.org/Person
[ "assume", "person", "entity", "using", "cnschma", "person", "vocabulary", "http", ":", "//", "cnschema", ".", "org", "/", "Person" ]
python
train
timothydmorton/simpledist
simpledist/distributions.py
https://github.com/timothydmorton/simpledist/blob/d9807c90a935bd125213445ffed6255af558f1ca/simpledist/distributions.py#L136-L158
def pctile(self,pct,res=1000): """Returns the desired percentile of the distribution. Will only work if properly normalized. Designed to mimic the `ppf` method of the `scipy.stats` random variate objects. Works by gridding the CDF at a given resolution and matching the nearest point. NB, this is of course not as precise as an analytic ppf. Parameters ---------- pct : float Percentile between 0 and 1. res : int, optional The resolution at which to grid the CDF to find the percentile. Returns ------- percentile : float """ grid = np.linspace(self.minval,self.maxval,res) return grid[np.argmin(np.absolute(pct-self.cdf(grid)))]
[ "def", "pctile", "(", "self", ",", "pct", ",", "res", "=", "1000", ")", ":", "grid", "=", "np", ".", "linspace", "(", "self", ".", "minval", ",", "self", ".", "maxval", ",", "res", ")", "return", "grid", "[", "np", ".", "argmin", "(", "np", ".", "absolute", "(", "pct", "-", "self", ".", "cdf", "(", "grid", ")", ")", ")", "]" ]
Returns the desired percentile of the distribution. Will only work if properly normalized. Designed to mimic the `ppf` method of the `scipy.stats` random variate objects. Works by gridding the CDF at a given resolution and matching the nearest point. NB, this is of course not as precise as an analytic ppf. Parameters ---------- pct : float Percentile between 0 and 1. res : int, optional The resolution at which to grid the CDF to find the percentile. Returns ------- percentile : float
[ "Returns", "the", "desired", "percentile", "of", "the", "distribution", "." ]
python
train
Neurita/boyle
boyle/nifti/storage.py
https://github.com/Neurita/boyle/blob/2dae7199849395a209c887d5f30506e1de8a9ad9/boyle/nifti/storage.py#L229-L252
def all_childnodes_to_nifti1img(h5group): """Returns in a list all images found under h5group. Parameters ---------- h5group: h5py.Group HDF group Returns ------- list of nifti1Image """ child_nodes = [] def append_parent_if_dataset(name, obj): if isinstance(obj, h5py.Dataset): if name.split('/')[-1] == 'data': child_nodes.append(obj.parent) vols = [] h5group.visititems(append_parent_if_dataset) for c in child_nodes: vols.append(hdfgroup_to_nifti1image(c)) return vols
[ "def", "all_childnodes_to_nifti1img", "(", "h5group", ")", ":", "child_nodes", "=", "[", "]", "def", "append_parent_if_dataset", "(", "name", ",", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "h5py", ".", "Dataset", ")", ":", "if", "name", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", "==", "'data'", ":", "child_nodes", ".", "append", "(", "obj", ".", "parent", ")", "vols", "=", "[", "]", "h5group", ".", "visititems", "(", "append_parent_if_dataset", ")", "for", "c", "in", "child_nodes", ":", "vols", ".", "append", "(", "hdfgroup_to_nifti1image", "(", "c", ")", ")", "return", "vols" ]
Returns in a list all images found under h5group. Parameters ---------- h5group: h5py.Group HDF group Returns ------- list of nifti1Image
[ "Returns", "in", "a", "list", "all", "images", "found", "under", "h5group", "." ]
python
valid
saltstack/salt
salt/modules/kapacitor.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/kapacitor.py#L66-L106
def get_task(name): ''' Get a dict of data on a task. name Name of the task to get information about. CLI Example: .. code-block:: bash salt '*' kapacitor.get_task cpu ''' url = _get_url() if version() < '0.13': task_url = '{0}/task?name={1}'.format(url, name) else: task_url = '{0}/kapacitor/v1/tasks/{1}?skip-format=true'.format(url, name) response = salt.utils.http.query(task_url, status=True) if response['status'] == 404: return None data = salt.utils.json.loads(response['body']) if version() < '0.13': return { 'script': data['TICKscript'], 'type': data['Type'], 'dbrps': data['DBRPs'], 'enabled': data['Enabled'], } return { 'script': data['script'], 'type': data['type'], 'dbrps': data['dbrps'], 'enabled': data['status'] == 'enabled', }
[ "def", "get_task", "(", "name", ")", ":", "url", "=", "_get_url", "(", ")", "if", "version", "(", ")", "<", "'0.13'", ":", "task_url", "=", "'{0}/task?name={1}'", ".", "format", "(", "url", ",", "name", ")", "else", ":", "task_url", "=", "'{0}/kapacitor/v1/tasks/{1}?skip-format=true'", ".", "format", "(", "url", ",", "name", ")", "response", "=", "salt", ".", "utils", ".", "http", ".", "query", "(", "task_url", ",", "status", "=", "True", ")", "if", "response", "[", "'status'", "]", "==", "404", ":", "return", "None", "data", "=", "salt", ".", "utils", ".", "json", ".", "loads", "(", "response", "[", "'body'", "]", ")", "if", "version", "(", ")", "<", "'0.13'", ":", "return", "{", "'script'", ":", "data", "[", "'TICKscript'", "]", ",", "'type'", ":", "data", "[", "'Type'", "]", ",", "'dbrps'", ":", "data", "[", "'DBRPs'", "]", ",", "'enabled'", ":", "data", "[", "'Enabled'", "]", ",", "}", "return", "{", "'script'", ":", "data", "[", "'script'", "]", ",", "'type'", ":", "data", "[", "'type'", "]", ",", "'dbrps'", ":", "data", "[", "'dbrps'", "]", ",", "'enabled'", ":", "data", "[", "'status'", "]", "==", "'enabled'", ",", "}" ]
Get a dict of data on a task. name Name of the task to get information about. CLI Example: .. code-block:: bash salt '*' kapacitor.get_task cpu
[ "Get", "a", "dict", "of", "data", "on", "a", "task", "." ]
python
train
knipknap/exscript
Exscript/stdlib/connection.py
https://github.com/knipknap/exscript/blob/72718eee3e87b345d5a5255be9824e867e42927b/Exscript/stdlib/connection.py#L124-L133
def close(scope): """ Closes the existing connection with the remote host. This function is rarely used, as normally Exscript closes the connection automatically when the script has completed. """ conn = scope.get('__connection__') conn.close(1) scope.define(__response__=conn.response) return True
[ "def", "close", "(", "scope", ")", ":", "conn", "=", "scope", ".", "get", "(", "'__connection__'", ")", "conn", ".", "close", "(", "1", ")", "scope", ".", "define", "(", "__response__", "=", "conn", ".", "response", ")", "return", "True" ]
Closes the existing connection with the remote host. This function is rarely used, as normally Exscript closes the connection automatically when the script has completed.
[ "Closes", "the", "existing", "connection", "with", "the", "remote", "host", ".", "This", "function", "is", "rarely", "used", "as", "normally", "Exscript", "closes", "the", "connection", "automatically", "when", "the", "script", "has", "completed", "." ]
python
train
yatiml/yatiml
yatiml/loader.py
https://github.com/yatiml/yatiml/blob/4f55c058b72388350f0af3076ac3ea9bc1c142b0/yatiml/loader.py#L81-L104
def __savorize(self, node: yaml.Node, expected_type: Type) -> yaml.Node: """Removes syntactic sugar from the node. This calls yatiml_savorize(), first on the class's base \ classes, then on the class itself. Args: node: The node to modify. expected_type: The type to assume this type is. """ logger.debug('Savorizing node assuming type {}'.format( expected_type.__name__)) for base_class in expected_type.__bases__: if base_class in self._registered_classes.values(): node = self.__savorize(node, base_class) if hasattr(expected_type, 'yatiml_savorize'): logger.debug('Calling {}.yatiml_savorize()'.format( expected_type.__name__)) cnode = Node(node) expected_type.yatiml_savorize(cnode) node = cnode.yaml_node return node
[ "def", "__savorize", "(", "self", ",", "node", ":", "yaml", ".", "Node", ",", "expected_type", ":", "Type", ")", "->", "yaml", ".", "Node", ":", "logger", ".", "debug", "(", "'Savorizing node assuming type {}'", ".", "format", "(", "expected_type", ".", "__name__", ")", ")", "for", "base_class", "in", "expected_type", ".", "__bases__", ":", "if", "base_class", "in", "self", ".", "_registered_classes", ".", "values", "(", ")", ":", "node", "=", "self", ".", "__savorize", "(", "node", ",", "base_class", ")", "if", "hasattr", "(", "expected_type", ",", "'yatiml_savorize'", ")", ":", "logger", ".", "debug", "(", "'Calling {}.yatiml_savorize()'", ".", "format", "(", "expected_type", ".", "__name__", ")", ")", "cnode", "=", "Node", "(", "node", ")", "expected_type", ".", "yatiml_savorize", "(", "cnode", ")", "node", "=", "cnode", ".", "yaml_node", "return", "node" ]
Removes syntactic sugar from the node. This calls yatiml_savorize(), first on the class's base \ classes, then on the class itself. Args: node: The node to modify. expected_type: The type to assume this type is.
[ "Removes", "syntactic", "sugar", "from", "the", "node", "." ]
python
train
cbrand/vpnchooser
src/vpnchooser/connection/client.py
https://github.com/cbrand/vpnchooser/blob/d153e3d05555c23cf5e8e15e507eecad86465923/src/vpnchooser/connection/client.py#L82-L99
def _parse(data: str) -> list: """ Parses the given data string and returns a list of rule objects. """ if isinstance(data, bytes): data = data.decode('utf-8') lines = ( item for item in (item.strip() for item in data.split('\n')) if len(item) and not item.startswith('#') ) rules = [] for line in lines: rules.append( Rule.parse(line) ) return rules
[ "def", "_parse", "(", "data", ":", "str", ")", "->", "list", ":", "if", "isinstance", "(", "data", ",", "bytes", ")", ":", "data", "=", "data", ".", "decode", "(", "'utf-8'", ")", "lines", "=", "(", "item", "for", "item", "in", "(", "item", ".", "strip", "(", ")", "for", "item", "in", "data", ".", "split", "(", "'\\n'", ")", ")", "if", "len", "(", "item", ")", "and", "not", "item", ".", "startswith", "(", "'#'", ")", ")", "rules", "=", "[", "]", "for", "line", "in", "lines", ":", "rules", ".", "append", "(", "Rule", ".", "parse", "(", "line", ")", ")", "return", "rules" ]
Parses the given data string and returns a list of rule objects.
[ "Parses", "the", "given", "data", "string", "and", "returns", "a", "list", "of", "rule", "objects", "." ]
python
train
ajdavis/GreenletProfiler
_vendorized_yappi/yappi.py
https://github.com/ajdavis/GreenletProfiler/blob/700349864a4f368a8a73a2a60f048c2e818d7cea/_vendorized_yappi/yappi.py#L342-L369
def print_all(self, out=sys.stdout): """ Prints all of the child function profiler results to a given file. (stdout by default) """ if self.empty(): return FUNC_NAME_LEN = 38 CALLCOUNT_LEN = 9 out.write(CRLF) out.write("name #n tsub ttot tavg") out.write(CRLF) for stat in self: out.write(StatString(stat.full_name).ltrim(FUNC_NAME_LEN)) out.write(" " * COLUMN_GAP) # the function is recursive? if stat.is_recursive(): out.write(StatString("%d/%d" % (stat.ncall, stat.nactualcall)).rtrim(CALLCOUNT_LEN)) else: out.write(StatString(stat.ncall).rtrim(CALLCOUNT_LEN)) out.write(" " * COLUMN_GAP) out.write(StatString(_fft(stat.tsub)).rtrim(TIME_COLUMN_LEN)) out.write(" " * COLUMN_GAP) out.write(StatString(_fft(stat.ttot)).rtrim(TIME_COLUMN_LEN)) out.write(" " * COLUMN_GAP) out.write(StatString(_fft(stat.tavg)).rtrim(TIME_COLUMN_LEN)) out.write(CRLF)
[ "def", "print_all", "(", "self", ",", "out", "=", "sys", ".", "stdout", ")", ":", "if", "self", ".", "empty", "(", ")", ":", "return", "FUNC_NAME_LEN", "=", "38", "CALLCOUNT_LEN", "=", "9", "out", ".", "write", "(", "CRLF", ")", "out", ".", "write", "(", "\"name #n tsub ttot tavg\"", ")", "out", ".", "write", "(", "CRLF", ")", "for", "stat", "in", "self", ":", "out", ".", "write", "(", "StatString", "(", "stat", ".", "full_name", ")", ".", "ltrim", "(", "FUNC_NAME_LEN", ")", ")", "out", ".", "write", "(", "\" \"", "*", "COLUMN_GAP", ")", "# the function is recursive?", "if", "stat", ".", "is_recursive", "(", ")", ":", "out", ".", "write", "(", "StatString", "(", "\"%d/%d\"", "%", "(", "stat", ".", "ncall", ",", "stat", ".", "nactualcall", ")", ")", ".", "rtrim", "(", "CALLCOUNT_LEN", ")", ")", "else", ":", "out", ".", "write", "(", "StatString", "(", "stat", ".", "ncall", ")", ".", "rtrim", "(", "CALLCOUNT_LEN", ")", ")", "out", ".", "write", "(", "\" \"", "*", "COLUMN_GAP", ")", "out", ".", "write", "(", "StatString", "(", "_fft", "(", "stat", ".", "tsub", ")", ")", ".", "rtrim", "(", "TIME_COLUMN_LEN", ")", ")", "out", ".", "write", "(", "\" \"", "*", "COLUMN_GAP", ")", "out", ".", "write", "(", "StatString", "(", "_fft", "(", "stat", ".", "ttot", ")", ")", ".", "rtrim", "(", "TIME_COLUMN_LEN", ")", ")", "out", ".", "write", "(", "\" \"", "*", "COLUMN_GAP", ")", "out", ".", "write", "(", "StatString", "(", "_fft", "(", "stat", ".", "tavg", ")", ")", ".", "rtrim", "(", "TIME_COLUMN_LEN", ")", ")", "out", ".", "write", "(", "CRLF", ")" ]
Prints all of the child function profiler results to a given file. (stdout by default)
[ "Prints", "all", "of", "the", "child", "function", "profiler", "results", "to", "a", "given", "file", ".", "(", "stdout", "by", "default", ")" ]
python
train
pudo/banal
banal/cache.py
https://github.com/pudo/banal/blob/528c339be5138458e387a058581cf7d261285447/banal/cache.py#L11-L40
def bytes_iter(obj): """Turn a complex object into an iterator of byte strings. The resulting iterator can be used for caching. """ if obj is None: return elif isinstance(obj, six.binary_type): yield obj elif isinstance(obj, six.string_types): yield obj elif isinstance(obj, (date, datetime)): yield obj.isoformat() elif is_mapping(obj): for key in sorted(obj.keys()): for out in chain(bytes_iter(key), bytes_iter(obj[key])): yield out elif is_sequence(obj): if isinstance(obj, (list, set)): try: obj = sorted(obj) except Exception: pass for item in obj: for out in bytes_iter(item): yield out elif isinstance(obj, (types.FunctionType, types.BuiltinFunctionType, types.MethodType, types.BuiltinMethodType)): yield getattr(obj, 'func_name', '') else: yield six.text_type(obj)
[ "def", "bytes_iter", "(", "obj", ")", ":", "if", "obj", "is", "None", ":", "return", "elif", "isinstance", "(", "obj", ",", "six", ".", "binary_type", ")", ":", "yield", "obj", "elif", "isinstance", "(", "obj", ",", "six", ".", "string_types", ")", ":", "yield", "obj", "elif", "isinstance", "(", "obj", ",", "(", "date", ",", "datetime", ")", ")", ":", "yield", "obj", ".", "isoformat", "(", ")", "elif", "is_mapping", "(", "obj", ")", ":", "for", "key", "in", "sorted", "(", "obj", ".", "keys", "(", ")", ")", ":", "for", "out", "in", "chain", "(", "bytes_iter", "(", "key", ")", ",", "bytes_iter", "(", "obj", "[", "key", "]", ")", ")", ":", "yield", "out", "elif", "is_sequence", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "(", "list", ",", "set", ")", ")", ":", "try", ":", "obj", "=", "sorted", "(", "obj", ")", "except", "Exception", ":", "pass", "for", "item", "in", "obj", ":", "for", "out", "in", "bytes_iter", "(", "item", ")", ":", "yield", "out", "elif", "isinstance", "(", "obj", ",", "(", "types", ".", "FunctionType", ",", "types", ".", "BuiltinFunctionType", ",", "types", ".", "MethodType", ",", "types", ".", "BuiltinMethodType", ")", ")", ":", "yield", "getattr", "(", "obj", ",", "'func_name'", ",", "''", ")", "else", ":", "yield", "six", ".", "text_type", "(", "obj", ")" ]
Turn a complex object into an iterator of byte strings. The resulting iterator can be used for caching.
[ "Turn", "a", "complex", "object", "into", "an", "iterator", "of", "byte", "strings", ".", "The", "resulting", "iterator", "can", "be", "used", "for", "caching", "." ]
python
train
TAPPGuild/sqlalchemy-models
sqlalchemy_models/__init__.py
https://github.com/TAPPGuild/sqlalchemy-models/blob/75988a23bdd98e79af8b8b0711c657c79b2f8eac/sqlalchemy_models/__init__.py#L65-L83
def generate_signature_class(cls): """ Generate a declarative model for storing signatures related to the given cls parameter. :param class cls: The declarative model to generate a signature class for. :return: The signature class, as a declarative derived from Base. """ return type("%sSigs" % cls.__name__, (Base,), {'__tablename__': "%s_sigs" % cls.__tablename__, 'id': sa.Column(sa.Integer, sa.Sequence('%s_id_seq' % cls.__tablename__), primary_key=True, doc="primary key"), 'data': sa.Column(sa.Text(), nullable=False, doc="The signed data"), '%s_id' % cls.__tablename__: sa.Column(sa.Integer, sa.ForeignKey("%s.id" % cls.__tablename__), nullable=False)})
[ "def", "generate_signature_class", "(", "cls", ")", ":", "return", "type", "(", "\"%sSigs\"", "%", "cls", ".", "__name__", ",", "(", "Base", ",", ")", ",", "{", "'__tablename__'", ":", "\"%s_sigs\"", "%", "cls", ".", "__tablename__", ",", "'id'", ":", "sa", ".", "Column", "(", "sa", ".", "Integer", ",", "sa", ".", "Sequence", "(", "'%s_id_seq'", "%", "cls", ".", "__tablename__", ")", ",", "primary_key", "=", "True", ",", "doc", "=", "\"primary key\"", ")", ",", "'data'", ":", "sa", ".", "Column", "(", "sa", ".", "Text", "(", ")", ",", "nullable", "=", "False", ",", "doc", "=", "\"The signed data\"", ")", ",", "'%s_id'", "%", "cls", ".", "__tablename__", ":", "sa", ".", "Column", "(", "sa", ".", "Integer", ",", "sa", ".", "ForeignKey", "(", "\"%s.id\"", "%", "cls", ".", "__tablename__", ")", ",", "nullable", "=", "False", ")", "}", ")" ]
Generate a declarative model for storing signatures related to the given cls parameter. :param class cls: The declarative model to generate a signature class for. :return: The signature class, as a declarative derived from Base.
[ "Generate", "a", "declarative", "model", "for", "storing", "signatures", "related", "to", "the", "given", "cls", "parameter", "." ]
python
train
secure-systems-lab/securesystemslib
securesystemslib/ecdsa_keys.py
https://github.com/secure-systems-lab/securesystemslib/blob/beb3109d5bb462e5a60eed88fb40ed1167bd354e/securesystemslib/ecdsa_keys.py#L67-L155
def generate_public_and_private(scheme='ecdsa-sha2-nistp256'): """ <Purpose> Generate a pair of ECDSA public and private keys with one of the supported, external cryptography libraries. The public and private keys returned conform to 'securesystemslib.formats.PEMECDSA_SCHEMA' and 'securesystemslib.formats.PEMECDSA_SCHEMA', respectively. The public ECDSA public key has the PEM format: TODO: should we encrypt the private keys returned here? Should the create_signature() accept encrypted keys? '-----BEGIN PUBLIC KEY----- ... '-----END PUBLIC KEY-----' The private ECDSA private key has the PEM format: '-----BEGIN EC PRIVATE KEY----- ... -----END EC PRIVATE KEY-----' >>> public, private = generate_public_and_private() >>> securesystemslib.formats.PEMECDSA_SCHEMA.matches(public) True >>> securesystemslib.formats.PEMECDSA_SCHEMA.matches(private) True <Arguments> scheme: A string indicating which algorithm to use for the generation of the public and private ECDSA keys. 'ecdsa-sha2-nistp256' is the only currently supported ECDSA algorithm, which is supported by OpenSSH and specified in RFC 5656 (https://tools.ietf.org/html/rfc5656). <Exceptions> securesystemslib.exceptions.FormatError, if 'algorithm' is improperly formatted. securesystemslib.exceptions.UnsupportedAlgorithmError, if 'scheme' is an unsupported algorithm. <Side Effects> None. <Returns> A (public, private) tuple that conform to 'securesystemslib.formats.PEMECDSA_SCHEMA' and 'securesystemslib.formats.PEMECDSA_SCHEMA', respectively. """ # Does 'scheme' have the correct format? # Verify that 'scheme' is of the correct type, and that it's one of the # supported ECDSA . It must conform to # 'securesystemslib.formats.ECDSA_SCHEME_SCHEMA'. Raise # 'securesystemslib.exceptions.FormatError' if the check fails. securesystemslib.formats.ECDSA_SCHEME_SCHEMA.check_match(scheme) public_key = None private_key = None # An if-clause is strictly not needed, since 'ecdsa_sha2-nistp256' is the # only currently supported ECDSA signature scheme. Nevertheness, include the # conditional statement to accomodate any schemes that might be added. if scheme == 'ecdsa-sha2-nistp256': private_key = ec.generate_private_key(ec.SECP256R1, default_backend()) public_key = private_key.public_key() # The ECDSA_SCHEME_SCHEMA.check_match() above should have detected any # invalid 'scheme'. This is a defensive check. else: #pragma: no cover raise securesystemslib.exceptions.UnsupportedAlgorithmError('An unsupported' ' scheme specified: ' + repr(scheme) + '.\n Supported' ' algorithms: ' + repr(_SUPPORTED_ECDSA_SCHEMES)) private_pem = private_key.private_bytes(encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption()) public_pem = public_key.public_bytes(encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo) return public_pem.decode('utf-8'), private_pem.decode('utf-8')
[ "def", "generate_public_and_private", "(", "scheme", "=", "'ecdsa-sha2-nistp256'", ")", ":", "# Does 'scheme' have the correct format?", "# Verify that 'scheme' is of the correct type, and that it's one of the", "# supported ECDSA . It must conform to", "# 'securesystemslib.formats.ECDSA_SCHEME_SCHEMA'. Raise", "# 'securesystemslib.exceptions.FormatError' if the check fails.", "securesystemslib", ".", "formats", ".", "ECDSA_SCHEME_SCHEMA", ".", "check_match", "(", "scheme", ")", "public_key", "=", "None", "private_key", "=", "None", "# An if-clause is strictly not needed, since 'ecdsa_sha2-nistp256' is the", "# only currently supported ECDSA signature scheme. Nevertheness, include the", "# conditional statement to accomodate any schemes that might be added.", "if", "scheme", "==", "'ecdsa-sha2-nistp256'", ":", "private_key", "=", "ec", ".", "generate_private_key", "(", "ec", ".", "SECP256R1", ",", "default_backend", "(", ")", ")", "public_key", "=", "private_key", ".", "public_key", "(", ")", "# The ECDSA_SCHEME_SCHEMA.check_match() above should have detected any", "# invalid 'scheme'. This is a defensive check.", "else", ":", "#pragma: no cover", "raise", "securesystemslib", ".", "exceptions", ".", "UnsupportedAlgorithmError", "(", "'An unsupported'", "' scheme specified: '", "+", "repr", "(", "scheme", ")", "+", "'.\\n Supported'", "' algorithms: '", "+", "repr", "(", "_SUPPORTED_ECDSA_SCHEMES", ")", ")", "private_pem", "=", "private_key", ".", "private_bytes", "(", "encoding", "=", "serialization", ".", "Encoding", ".", "PEM", ",", "format", "=", "serialization", ".", "PrivateFormat", ".", "TraditionalOpenSSL", ",", "encryption_algorithm", "=", "serialization", ".", "NoEncryption", "(", ")", ")", "public_pem", "=", "public_key", ".", "public_bytes", "(", "encoding", "=", "serialization", ".", "Encoding", ".", "PEM", ",", "format", "=", "serialization", ".", "PublicFormat", ".", "SubjectPublicKeyInfo", ")", "return", "public_pem", ".", "decode", "(", "'utf-8'", ")", ",", "private_pem", ".", "decode", "(", "'utf-8'", ")" ]
<Purpose> Generate a pair of ECDSA public and private keys with one of the supported, external cryptography libraries. The public and private keys returned conform to 'securesystemslib.formats.PEMECDSA_SCHEMA' and 'securesystemslib.formats.PEMECDSA_SCHEMA', respectively. The public ECDSA public key has the PEM format: TODO: should we encrypt the private keys returned here? Should the create_signature() accept encrypted keys? '-----BEGIN PUBLIC KEY----- ... '-----END PUBLIC KEY-----' The private ECDSA private key has the PEM format: '-----BEGIN EC PRIVATE KEY----- ... -----END EC PRIVATE KEY-----' >>> public, private = generate_public_and_private() >>> securesystemslib.formats.PEMECDSA_SCHEMA.matches(public) True >>> securesystemslib.formats.PEMECDSA_SCHEMA.matches(private) True <Arguments> scheme: A string indicating which algorithm to use for the generation of the public and private ECDSA keys. 'ecdsa-sha2-nistp256' is the only currently supported ECDSA algorithm, which is supported by OpenSSH and specified in RFC 5656 (https://tools.ietf.org/html/rfc5656). <Exceptions> securesystemslib.exceptions.FormatError, if 'algorithm' is improperly formatted. securesystemslib.exceptions.UnsupportedAlgorithmError, if 'scheme' is an unsupported algorithm. <Side Effects> None. <Returns> A (public, private) tuple that conform to 'securesystemslib.formats.PEMECDSA_SCHEMA' and 'securesystemslib.formats.PEMECDSA_SCHEMA', respectively.
[ "<Purpose", ">", "Generate", "a", "pair", "of", "ECDSA", "public", "and", "private", "keys", "with", "one", "of", "the", "supported", "external", "cryptography", "libraries", ".", "The", "public", "and", "private", "keys", "returned", "conform", "to", "securesystemslib", ".", "formats", ".", "PEMECDSA_SCHEMA", "and", "securesystemslib", ".", "formats", ".", "PEMECDSA_SCHEMA", "respectively", "." ]
python
train
wuher/devil
devil/fields/representation.py
https://github.com/wuher/devil/blob/a8834d4f88d915a21754c6b96f99d0ad9123ad4d/devil/fields/representation.py#L76-L92
def get_declared_fields(bases, attrs): """ Find all fields and return them as a dictionary. note:: this function is copied and modified from django.forms.get_declared_fields """ def is_field(prop): return isinstance(prop, forms.Field) or \ isinstance(prop, BaseRepresentation) fields = [(field_name, attrs.pop(field_name)) for field_name, obj in attrs.items() if is_field(obj)] # add fields from base classes: for base in bases[::-1]: if hasattr(base, 'base_fields'): fields = base.base_fields.items() + fields return dict(fields)
[ "def", "get_declared_fields", "(", "bases", ",", "attrs", ")", ":", "def", "is_field", "(", "prop", ")", ":", "return", "isinstance", "(", "prop", ",", "forms", ".", "Field", ")", "or", "isinstance", "(", "prop", ",", "BaseRepresentation", ")", "fields", "=", "[", "(", "field_name", ",", "attrs", ".", "pop", "(", "field_name", ")", ")", "for", "field_name", ",", "obj", "in", "attrs", ".", "items", "(", ")", "if", "is_field", "(", "obj", ")", "]", "# add fields from base classes:", "for", "base", "in", "bases", "[", ":", ":", "-", "1", "]", ":", "if", "hasattr", "(", "base", ",", "'base_fields'", ")", ":", "fields", "=", "base", ".", "base_fields", ".", "items", "(", ")", "+", "fields", "return", "dict", "(", "fields", ")" ]
Find all fields and return them as a dictionary. note:: this function is copied and modified from django.forms.get_declared_fields
[ "Find", "all", "fields", "and", "return", "them", "as", "a", "dictionary", "." ]
python
train
DLR-RM/RAFCON
source/rafcon/gui/controllers/graphical_editor_gaphas.py
https://github.com/DLR-RM/RAFCON/blob/24942ef1a904531f49ab8830a1dbb604441be498/source/rafcon/gui/controllers/graphical_editor_gaphas.py#L322-L370
def meta_changed_notify_after(self, state_machine_m, _, info): """Handle notification about the change of a state's meta data The meta data of the affected state(s) are read and the view updated accordingly. :param StateMachineModel state_machine_m: Always the state machine model belonging to this editor :param str _: Always "state_meta_signal" :param dict info: Information about the change, contains the MetaSignalMessage in the 'arg' key value """ meta_signal_message = info['arg'] if meta_signal_message.origin == "graphical_editor_gaphas": # Ignore changes caused by ourself return if meta_signal_message.origin == "load_meta_data": # Meta data can't be applied, as the view has not yet return # been created notification = meta_signal_message.notification if not notification: # For changes applied to the root state, there are always two notifications return # Ignore the one with less information if self.model.ongoing_complex_actions: return model = notification.model view = self.canvas.get_view_for_model(model) if meta_signal_message.change == 'show_content': library_state_m = model library_state_v = view if library_state_m.meta['gui']['show_content'] is not library_state_m.show_content(): logger.warning("The content of the LibraryState won't be shown, because " "MAX_VISIBLE_LIBRARY_HIERARCHY is 1.") if library_state_m.show_content(): if not library_state_m.state_copy_initialized: logger.warning("Show library content without initialized state copy does not work {0}" "".format(library_state_m)) logger.debug("Show content of {}".format(library_state_m.state)) gui_helper_meta_data.scale_library_content(library_state_m) self.add_state_view_for_model(library_state_m.state_copy, view, hierarchy_level=library_state_v.hierarchy_level + 1) else: logger.debug("Hide content of {}".format(library_state_m.state)) state_copy_v = self.canvas.get_view_for_model(library_state_m.state_copy) if state_copy_v: state_copy_v.remove() else: if isinstance(view, StateView): view.apply_meta_data(recursive=meta_signal_message.affects_children) else: view.apply_meta_data() self.canvas.request_update(view, matrix=True) self.canvas.wait_for_update()
[ "def", "meta_changed_notify_after", "(", "self", ",", "state_machine_m", ",", "_", ",", "info", ")", ":", "meta_signal_message", "=", "info", "[", "'arg'", "]", "if", "meta_signal_message", ".", "origin", "==", "\"graphical_editor_gaphas\"", ":", "# Ignore changes caused by ourself", "return", "if", "meta_signal_message", ".", "origin", "==", "\"load_meta_data\"", ":", "# Meta data can't be applied, as the view has not yet", "return", "# been created", "notification", "=", "meta_signal_message", ".", "notification", "if", "not", "notification", ":", "# For changes applied to the root state, there are always two notifications", "return", "# Ignore the one with less information", "if", "self", ".", "model", ".", "ongoing_complex_actions", ":", "return", "model", "=", "notification", ".", "model", "view", "=", "self", ".", "canvas", ".", "get_view_for_model", "(", "model", ")", "if", "meta_signal_message", ".", "change", "==", "'show_content'", ":", "library_state_m", "=", "model", "library_state_v", "=", "view", "if", "library_state_m", ".", "meta", "[", "'gui'", "]", "[", "'show_content'", "]", "is", "not", "library_state_m", ".", "show_content", "(", ")", ":", "logger", ".", "warning", "(", "\"The content of the LibraryState won't be shown, because \"", "\"MAX_VISIBLE_LIBRARY_HIERARCHY is 1.\"", ")", "if", "library_state_m", ".", "show_content", "(", ")", ":", "if", "not", "library_state_m", ".", "state_copy_initialized", ":", "logger", ".", "warning", "(", "\"Show library content without initialized state copy does not work {0}\"", "\"\"", ".", "format", "(", "library_state_m", ")", ")", "logger", ".", "debug", "(", "\"Show content of {}\"", ".", "format", "(", "library_state_m", ".", "state", ")", ")", "gui_helper_meta_data", ".", "scale_library_content", "(", "library_state_m", ")", "self", ".", "add_state_view_for_model", "(", "library_state_m", ".", "state_copy", ",", "view", ",", "hierarchy_level", "=", "library_state_v", ".", "hierarchy_level", "+", "1", ")", "else", ":", "logger", ".", "debug", "(", "\"Hide content of {}\"", ".", "format", "(", "library_state_m", ".", "state", ")", ")", "state_copy_v", "=", "self", ".", "canvas", ".", "get_view_for_model", "(", "library_state_m", ".", "state_copy", ")", "if", "state_copy_v", ":", "state_copy_v", ".", "remove", "(", ")", "else", ":", "if", "isinstance", "(", "view", ",", "StateView", ")", ":", "view", ".", "apply_meta_data", "(", "recursive", "=", "meta_signal_message", ".", "affects_children", ")", "else", ":", "view", ".", "apply_meta_data", "(", ")", "self", ".", "canvas", ".", "request_update", "(", "view", ",", "matrix", "=", "True", ")", "self", ".", "canvas", ".", "wait_for_update", "(", ")" ]
Handle notification about the change of a state's meta data The meta data of the affected state(s) are read and the view updated accordingly. :param StateMachineModel state_machine_m: Always the state machine model belonging to this editor :param str _: Always "state_meta_signal" :param dict info: Information about the change, contains the MetaSignalMessage in the 'arg' key value
[ "Handle", "notification", "about", "the", "change", "of", "a", "state", "s", "meta", "data" ]
python
train
ssato/python-anyconfig
src/anyconfig/template.py
https://github.com/ssato/python-anyconfig/blob/f2f4fb8d8e232aadea866c202e1dd7a5967e2877/src/anyconfig/template.py#L65-L89
def make_template_paths(template_file, paths=None): """ Make up a list of template search paths from given 'template_file' (absolute or relative path to the template file) and/or 'paths' (a list of template search paths given by user). NOTE: User-given 'paths' will take higher priority over a dir of template_file. :param template_file: Absolute or relative path to the template file :param paths: A list of template search paths :return: List of template paths ([str]) >>> make_template_paths("/path/to/a/template") ['/path/to/a'] >>> make_template_paths("/path/to/a/template", ["/tmp"]) ['/tmp', '/path/to/a'] >>> os.chdir("/tmp") >>> make_template_paths("./path/to/a/template") ['/tmp/path/to/a'] >>> make_template_paths("./path/to/a/template", ["/tmp"]) ['/tmp', '/tmp/path/to/a'] """ tmpldir = os.path.abspath(os.path.dirname(template_file)) return [tmpldir] if paths is None else paths + [tmpldir]
[ "def", "make_template_paths", "(", "template_file", ",", "paths", "=", "None", ")", ":", "tmpldir", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "dirname", "(", "template_file", ")", ")", "return", "[", "tmpldir", "]", "if", "paths", "is", "None", "else", "paths", "+", "[", "tmpldir", "]" ]
Make up a list of template search paths from given 'template_file' (absolute or relative path to the template file) and/or 'paths' (a list of template search paths given by user). NOTE: User-given 'paths' will take higher priority over a dir of template_file. :param template_file: Absolute or relative path to the template file :param paths: A list of template search paths :return: List of template paths ([str]) >>> make_template_paths("/path/to/a/template") ['/path/to/a'] >>> make_template_paths("/path/to/a/template", ["/tmp"]) ['/tmp', '/path/to/a'] >>> os.chdir("/tmp") >>> make_template_paths("./path/to/a/template") ['/tmp/path/to/a'] >>> make_template_paths("./path/to/a/template", ["/tmp"]) ['/tmp', '/tmp/path/to/a']
[ "Make", "up", "a", "list", "of", "template", "search", "paths", "from", "given", "template_file", "(", "absolute", "or", "relative", "path", "to", "the", "template", "file", ")", "and", "/", "or", "paths", "(", "a", "list", "of", "template", "search", "paths", "given", "by", "user", ")", "." ]
python
train
tomplus/kubernetes_asyncio
kubernetes_asyncio/client/api/autoscaling_v2beta1_api.py
https://github.com/tomplus/kubernetes_asyncio/blob/f9ab15317ec921409714c7afef11aeb0f579985d/kubernetes_asyncio/client/api/autoscaling_v2beta1_api.py#L623-L652
def list_namespaced_horizontal_pod_autoscaler(self, namespace, **kwargs): # noqa: E501 """list_namespaced_horizontal_pod_autoscaler # noqa: E501 list or watch objects of kind HorizontalPodAutoscaler # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_namespaced_horizontal_pod_autoscaler(namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str namespace: object name and auth scope, such as for teams and projects (required) :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V2beta1HorizontalPodAutoscalerList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.list_namespaced_horizontal_pod_autoscaler_with_http_info(namespace, **kwargs) # noqa: E501 else: (data) = self.list_namespaced_horizontal_pod_autoscaler_with_http_info(namespace, **kwargs) # noqa: E501 return data
[ "def", "list_namespaced_horizontal_pod_autoscaler", "(", "self", ",", "namespace", ",", "*", "*", "kwargs", ")", ":", "# noqa: E501", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'async_req'", ")", ":", "return", "self", ".", "list_namespaced_horizontal_pod_autoscaler_with_http_info", "(", "namespace", ",", "*", "*", "kwargs", ")", "# noqa: E501", "else", ":", "(", "data", ")", "=", "self", ".", "list_namespaced_horizontal_pod_autoscaler_with_http_info", "(", "namespace", ",", "*", "*", "kwargs", ")", "# noqa: E501", "return", "data" ]
list_namespaced_horizontal_pod_autoscaler # noqa: E501 list or watch objects of kind HorizontalPodAutoscaler # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_namespaced_horizontal_pod_autoscaler(namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str namespace: object name and auth scope, such as for teams and projects (required) :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V2beta1HorizontalPodAutoscalerList If the method is called asynchronously, returns the request thread.
[ "list_namespaced_horizontal_pod_autoscaler", "#", "noqa", ":", "E501" ]
python
train
faucamp/python-gsmmodem
tools/gsmtermlib/terminal.py
https://github.com/faucamp/python-gsmmodem/blob/834c68b1387ca2c91e2210faa8f75526b39723b5/tools/gsmtermlib/terminal.py#L297-L303
def _handleEsc(self): """ Handler for CTRL+Z keypresses """ if self._typingSms: self.serial.write(self.ESC_CHARACTER) self._typingSms = False self.inputBuffer = [] self.cursorPos = 0
[ "def", "_handleEsc", "(", "self", ")", ":", "if", "self", ".", "_typingSms", ":", "self", ".", "serial", ".", "write", "(", "self", ".", "ESC_CHARACTER", ")", "self", ".", "_typingSms", "=", "False", "self", ".", "inputBuffer", "=", "[", "]", "self", ".", "cursorPos", "=", "0" ]
Handler for CTRL+Z keypresses
[ "Handler", "for", "CTRL", "+", "Z", "keypresses" ]
python
train
aws/sagemaker-python-sdk
src/sagemaker/amazon/knn.py
https://github.com/aws/sagemaker-python-sdk/blob/a9e724c7d3f5572b68c3903548c792a59d99799a/src/sagemaker/amazon/knn.py#L102-L113
def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT): """Return a :class:`~sagemaker.amazon.KNNModel` referencing the latest s3 model data produced by this Estimator. Args: vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on the model. Default: use subnets and security groups from this Estimator. * 'Subnets' (list[str]): List of subnet ids. * 'SecurityGroupIds' (list[str]): List of security group ids. """ return KNNModel(self.model_data, self.role, sagemaker_session=self.sagemaker_session, vpc_config=self.get_vpc_config(vpc_config_override))
[ "def", "create_model", "(", "self", ",", "vpc_config_override", "=", "VPC_CONFIG_DEFAULT", ")", ":", "return", "KNNModel", "(", "self", ".", "model_data", ",", "self", ".", "role", ",", "sagemaker_session", "=", "self", ".", "sagemaker_session", ",", "vpc_config", "=", "self", ".", "get_vpc_config", "(", "vpc_config_override", ")", ")" ]
Return a :class:`~sagemaker.amazon.KNNModel` referencing the latest s3 model data produced by this Estimator. Args: vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on the model. Default: use subnets and security groups from this Estimator. * 'Subnets' (list[str]): List of subnet ids. * 'SecurityGroupIds' (list[str]): List of security group ids.
[ "Return", "a", ":", "class", ":", "~sagemaker", ".", "amazon", ".", "KNNModel", "referencing", "the", "latest", "s3", "model", "data", "produced", "by", "this", "Estimator", "." ]
python
train
cltl/KafNafParserPy
KafNafParserPy/causal_data.py
https://github.com/cltl/KafNafParserPy/blob/9bc32e803c176404b255ba317479b8780ed5f569/KafNafParserPy/causal_data.py#L156-L165
def remove_this_clink(self,clink_id): """ Removes the clink for the given clink identifier @type clink_id: string @param clink_id: the clink identifier to be removed """ for clink in self.get_clinks(): if clink.get_id() == clink_id: self.node.remove(clink.get_node()) break
[ "def", "remove_this_clink", "(", "self", ",", "clink_id", ")", ":", "for", "clink", "in", "self", ".", "get_clinks", "(", ")", ":", "if", "clink", ".", "get_id", "(", ")", "==", "clink_id", ":", "self", ".", "node", ".", "remove", "(", "clink", ".", "get_node", "(", ")", ")", "break" ]
Removes the clink for the given clink identifier @type clink_id: string @param clink_id: the clink identifier to be removed
[ "Removes", "the", "clink", "for", "the", "given", "clink", "identifier" ]
python
train
PBR/MQ2
MQ2/mapchart.py
https://github.com/PBR/MQ2/blob/6d84dea47e6751333004743f588f03158e35c28d/MQ2/mapchart.py#L124-L228
def generate_map_chart_file(qtl_matrix, lod_threshold, map_chart_file='MapChart.map'): """ This function converts our QTL matrix file into a MapChart input file. :arg qtl_matrix: the path to the QTL matrix file generated by the plugin. :arg lod_threshold: threshold used to determine if a given LOD value is reflective the presence of a QTL. :kwarg map_chart_file: name of the output file containing the MapChart information. """ qtl_matrix = read_input_file(qtl_matrix, sep=',') tmp_dic = {} cnt = 1 tmp = {} block = {} for row in qtl_matrix[1:]: linkgrp = qtl_matrix[cnt - 1][1] if cnt == 1: linkgrp = qtl_matrix[cnt][1] if not linkgrp in tmp_dic: tmp_dic[linkgrp] = [[], []] infos = row[0:3] if qtl_matrix[cnt][1] != linkgrp: if tmp: qtls = _extrac_qtl(tmp, block, qtl_matrix[0]) tmp_dic[linkgrp][1] = qtls linkgrp = qtl_matrix[cnt][1] tmp_dic[linkgrp] = [[], []] tmp = {} block = {} tmp_dic[linkgrp][0].append([row[0], row[2]]) colcnt = 3 for cel in row[3:-1]: blockrow = infos[:] blockrow.extend([qtl_matrix[0][colcnt], cel]) if colcnt in block: block[colcnt].append(blockrow) else: block[colcnt] = [blockrow] if cel.strip() != '' and float(cel) >= float(lod_threshold): temp = infos[:] if not tmp\ or (qtl_matrix[0][colcnt] in tmp and float(cel) >= float( tmp[qtl_matrix[0][colcnt]][-1]) ) \ or qtl_matrix[0][colcnt] not in tmp: temp.extend([qtl_matrix[0][colcnt], cel]) tmp[qtl_matrix[0][colcnt]] = temp colcnt = colcnt + 1 cnt = cnt + 1 qtl_info = {} try: stream = open(map_chart_file, 'w') keys = list(tmp_dic.keys()) ## Remove unknown group, reason: # The unlinked markers, if present, are always put in group U by # MapQTL. If you don't omit them and there are many (often), then # their names take so much space that it is difficult to fit them # on the page. if 'U' in keys: keys.remove('U') # Try to convert all the groups to int, which would result in # a better sorting. If that fails, fail silently. try: keys = [int(key) for key in keys] except ValueError: pass keys.sort() for key in keys: key = str(key) # Needed since we might have converted them to int if tmp_dic[key]: if key == 'U': # pragma: no cover # We removed the key before, we should not be here continue stream.write('group %s\n' % key) for entry in _order_linkage_group(tmp_dic[key][0]): stream.write(' '.join(entry) + '\n') if tmp_dic[key][1]: stream.write('\n') stream.write('qtls\n') for qtl in tmp_dic[key][1]: qtl_info[qtl.peak_mk] = qtl.get_flanking_markers() stream.write('%s \n' % qtl.to_string()) stream.write('\n') stream.write('\n') except IOError as err: # pragma: no cover LOG.info('An error occured while writing the map chart map ' 'to the file %s' % map_chart_file) LOG.debug("Error: %s" % err) finally: stream.close() LOG.info('Wrote MapChart map in file %s' % map_chart_file) return qtl_info
[ "def", "generate_map_chart_file", "(", "qtl_matrix", ",", "lod_threshold", ",", "map_chart_file", "=", "'MapChart.map'", ")", ":", "qtl_matrix", "=", "read_input_file", "(", "qtl_matrix", ",", "sep", "=", "','", ")", "tmp_dic", "=", "{", "}", "cnt", "=", "1", "tmp", "=", "{", "}", "block", "=", "{", "}", "for", "row", "in", "qtl_matrix", "[", "1", ":", "]", ":", "linkgrp", "=", "qtl_matrix", "[", "cnt", "-", "1", "]", "[", "1", "]", "if", "cnt", "==", "1", ":", "linkgrp", "=", "qtl_matrix", "[", "cnt", "]", "[", "1", "]", "if", "not", "linkgrp", "in", "tmp_dic", ":", "tmp_dic", "[", "linkgrp", "]", "=", "[", "[", "]", ",", "[", "]", "]", "infos", "=", "row", "[", "0", ":", "3", "]", "if", "qtl_matrix", "[", "cnt", "]", "[", "1", "]", "!=", "linkgrp", ":", "if", "tmp", ":", "qtls", "=", "_extrac_qtl", "(", "tmp", ",", "block", ",", "qtl_matrix", "[", "0", "]", ")", "tmp_dic", "[", "linkgrp", "]", "[", "1", "]", "=", "qtls", "linkgrp", "=", "qtl_matrix", "[", "cnt", "]", "[", "1", "]", "tmp_dic", "[", "linkgrp", "]", "=", "[", "[", "]", ",", "[", "]", "]", "tmp", "=", "{", "}", "block", "=", "{", "}", "tmp_dic", "[", "linkgrp", "]", "[", "0", "]", ".", "append", "(", "[", "row", "[", "0", "]", ",", "row", "[", "2", "]", "]", ")", "colcnt", "=", "3", "for", "cel", "in", "row", "[", "3", ":", "-", "1", "]", ":", "blockrow", "=", "infos", "[", ":", "]", "blockrow", ".", "extend", "(", "[", "qtl_matrix", "[", "0", "]", "[", "colcnt", "]", ",", "cel", "]", ")", "if", "colcnt", "in", "block", ":", "block", "[", "colcnt", "]", ".", "append", "(", "blockrow", ")", "else", ":", "block", "[", "colcnt", "]", "=", "[", "blockrow", "]", "if", "cel", ".", "strip", "(", ")", "!=", "''", "and", "float", "(", "cel", ")", ">=", "float", "(", "lod_threshold", ")", ":", "temp", "=", "infos", "[", ":", "]", "if", "not", "tmp", "or", "(", "qtl_matrix", "[", "0", "]", "[", "colcnt", "]", "in", "tmp", "and", "float", "(", "cel", ")", ">=", "float", "(", "tmp", "[", "qtl_matrix", "[", "0", "]", "[", "colcnt", "]", "]", "[", "-", "1", "]", ")", ")", "or", "qtl_matrix", "[", "0", "]", "[", "colcnt", "]", "not", "in", "tmp", ":", "temp", ".", "extend", "(", "[", "qtl_matrix", "[", "0", "]", "[", "colcnt", "]", ",", "cel", "]", ")", "tmp", "[", "qtl_matrix", "[", "0", "]", "[", "colcnt", "]", "]", "=", "temp", "colcnt", "=", "colcnt", "+", "1", "cnt", "=", "cnt", "+", "1", "qtl_info", "=", "{", "}", "try", ":", "stream", "=", "open", "(", "map_chart_file", ",", "'w'", ")", "keys", "=", "list", "(", "tmp_dic", ".", "keys", "(", ")", ")", "## Remove unknown group, reason:", "# The unlinked markers, if present, are always put in group U by", "# MapQTL. If you don't omit them and there are many (often), then", "# their names take so much space that it is difficult to fit them", "# on the page.", "if", "'U'", "in", "keys", ":", "keys", ".", "remove", "(", "'U'", ")", "# Try to convert all the groups to int, which would result in", "# a better sorting. If that fails, fail silently.", "try", ":", "keys", "=", "[", "int", "(", "key", ")", "for", "key", "in", "keys", "]", "except", "ValueError", ":", "pass", "keys", ".", "sort", "(", ")", "for", "key", "in", "keys", ":", "key", "=", "str", "(", "key", ")", "# Needed since we might have converted them to int", "if", "tmp_dic", "[", "key", "]", ":", "if", "key", "==", "'U'", ":", "# pragma: no cover", "# We removed the key before, we should not be here", "continue", "stream", ".", "write", "(", "'group %s\\n'", "%", "key", ")", "for", "entry", "in", "_order_linkage_group", "(", "tmp_dic", "[", "key", "]", "[", "0", "]", ")", ":", "stream", ".", "write", "(", "' '", ".", "join", "(", "entry", ")", "+", "'\\n'", ")", "if", "tmp_dic", "[", "key", "]", "[", "1", "]", ":", "stream", ".", "write", "(", "'\\n'", ")", "stream", ".", "write", "(", "'qtls\\n'", ")", "for", "qtl", "in", "tmp_dic", "[", "key", "]", "[", "1", "]", ":", "qtl_info", "[", "qtl", ".", "peak_mk", "]", "=", "qtl", ".", "get_flanking_markers", "(", ")", "stream", ".", "write", "(", "'%s \\n'", "%", "qtl", ".", "to_string", "(", ")", ")", "stream", ".", "write", "(", "'\\n'", ")", "stream", ".", "write", "(", "'\\n'", ")", "except", "IOError", "as", "err", ":", "# pragma: no cover", "LOG", ".", "info", "(", "'An error occured while writing the map chart map '", "'to the file %s'", "%", "map_chart_file", ")", "LOG", ".", "debug", "(", "\"Error: %s\"", "%", "err", ")", "finally", ":", "stream", ".", "close", "(", ")", "LOG", ".", "info", "(", "'Wrote MapChart map in file %s'", "%", "map_chart_file", ")", "return", "qtl_info" ]
This function converts our QTL matrix file into a MapChart input file. :arg qtl_matrix: the path to the QTL matrix file generated by the plugin. :arg lod_threshold: threshold used to determine if a given LOD value is reflective the presence of a QTL. :kwarg map_chart_file: name of the output file containing the MapChart information.
[ "This", "function", "converts", "our", "QTL", "matrix", "file", "into", "a", "MapChart", "input", "file", "." ]
python
train
alkivi-sas/python-alkivi-logger
alkivi/logger/logger.py
https://github.com/alkivi-sas/python-alkivi-logger/blob/e96d5a987a5c8789c51d4fa7541709e05b1f51e1/alkivi/logger/logger.py#L249-L252
def _update_handler(self, handler_class, level): """Update the level of an handler.""" handler = self._get_handler(handler_class) handler.setLevel(level)
[ "def", "_update_handler", "(", "self", ",", "handler_class", ",", "level", ")", ":", "handler", "=", "self", ".", "_get_handler", "(", "handler_class", ")", "handler", ".", "setLevel", "(", "level", ")" ]
Update the level of an handler.
[ "Update", "the", "level", "of", "an", "handler", "." ]
python
train
pyca/pyopenssl
src/OpenSSL/SSL.py
https://github.com/pyca/pyopenssl/blob/1fbe064c50fd030948141d7d630673761525b0d0/src/OpenSSL/SSL.py#L1444-L1463
def set_alpn_protos(self, protos): """ Specify the protocols that the client is prepared to speak after the TLS connection has been negotiated using Application Layer Protocol Negotiation. :param protos: A list of the protocols to be offered to the server. This list should be a Python list of bytestrings representing the protocols to offer, e.g. ``[b'http/1.1', b'spdy/2']``. """ # Take the list of protocols and join them together, prefixing them # with their lengths. protostr = b''.join( chain.from_iterable((int2byte(len(p)), p) for p in protos) ) # Build a C string from the list. We don't need to save this off # because OpenSSL immediately copies the data out. input_str = _ffi.new("unsigned char[]", protostr) _lib.SSL_CTX_set_alpn_protos(self._context, input_str, len(protostr))
[ "def", "set_alpn_protos", "(", "self", ",", "protos", ")", ":", "# Take the list of protocols and join them together, prefixing them", "# with their lengths.", "protostr", "=", "b''", ".", "join", "(", "chain", ".", "from_iterable", "(", "(", "int2byte", "(", "len", "(", "p", ")", ")", ",", "p", ")", "for", "p", "in", "protos", ")", ")", "# Build a C string from the list. We don't need to save this off", "# because OpenSSL immediately copies the data out.", "input_str", "=", "_ffi", ".", "new", "(", "\"unsigned char[]\"", ",", "protostr", ")", "_lib", ".", "SSL_CTX_set_alpn_protos", "(", "self", ".", "_context", ",", "input_str", ",", "len", "(", "protostr", ")", ")" ]
Specify the protocols that the client is prepared to speak after the TLS connection has been negotiated using Application Layer Protocol Negotiation. :param protos: A list of the protocols to be offered to the server. This list should be a Python list of bytestrings representing the protocols to offer, e.g. ``[b'http/1.1', b'spdy/2']``.
[ "Specify", "the", "protocols", "that", "the", "client", "is", "prepared", "to", "speak", "after", "the", "TLS", "connection", "has", "been", "negotiated", "using", "Application", "Layer", "Protocol", "Negotiation", "." ]
python
test
log2timeline/plaso
plaso/serializer/json_serializer.py
https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/serializer/json_serializer.py#L419-L429
def WriteSerialized(cls, attribute_container): """Writes an attribute container to serialized form. Args: attribute_container (AttributeContainer): attribute container. Returns: str: A JSON string containing the serialized form. """ json_dict = cls.WriteSerializedDict(attribute_container) return json.dumps(json_dict)
[ "def", "WriteSerialized", "(", "cls", ",", "attribute_container", ")", ":", "json_dict", "=", "cls", ".", "WriteSerializedDict", "(", "attribute_container", ")", "return", "json", ".", "dumps", "(", "json_dict", ")" ]
Writes an attribute container to serialized form. Args: attribute_container (AttributeContainer): attribute container. Returns: str: A JSON string containing the serialized form.
[ "Writes", "an", "attribute", "container", "to", "serialized", "form", "." ]
python
train
LCAV/pylocus
pylocus/algorithms.py
https://github.com/LCAV/pylocus/blob/c56a38c251d8a435caf4641a8ae6027ecba2c8c6/pylocus/algorithms.py#L326-L375
def reconstruct_dwmds(edm, X0, W=None, n=None, r=None, X_bar=None, print_out=False, tol=1e-10, sweeps=100): """ Reconstruct point set using d(istributed)w(eighted) MDS. Refer to paper "Distributed Weighted-Multidimensional Scaling for Node Localization in Sensor Networks" for implementation details (doi.org/10.1145/1138127.1138129) :param X0: Nxd matrix of starting points. :param n: Number of points of unknown position. The first n points in X0 and edm are considered unknown. :param tol: Stopping criterion: when the cost is below this level, we stop. :param sweeps: Maximum number of sweeps. """ from .basics import get_edm from .distributed_mds import get_b, get_Si N, d = X0.shape if r is None and n is None: raise ValueError('either r or n have to be given.') elif n is None: n = r.shape[0] if W is None: W = np.ones((N, N)) - np.eye(N) X_k = X0.copy() costs = [] # don't have to ignore i=j, because W[i,i] is zero. a = np.sum(W[:n, :n], axis=1).flatten() + 2 * \ np.sum(W[:n, n:], axis=1).flatten() if r is not None: a += r.flatten() for k in range(sweeps): S = 0 for i in range(n): edm_estimated = get_edm(X_k) bi = get_b(i, edm_estimated, W, edm, n) if r is not None and X_bar is not None: X_k[i] = 1 / a[i] * (r[i] * X_bar[i, :] + X_k.T.dot(bi).flatten()) Si = get_Si(i, edm_estimated, edm, W, n, r, X_bar[i], X_k[i]) else: X_k[i] = 1 / a[i] * X_k.T.dot(bi).flatten() Si = get_Si(i, edm_estimated, edm, W, n) S += Si costs.append(S) if k > 1 and abs(costs[-1] - costs[-2]) < tol: if (print_out): print('dwMDS: converged after', k) break return X_k, costs
[ "def", "reconstruct_dwmds", "(", "edm", ",", "X0", ",", "W", "=", "None", ",", "n", "=", "None", ",", "r", "=", "None", ",", "X_bar", "=", "None", ",", "print_out", "=", "False", ",", "tol", "=", "1e-10", ",", "sweeps", "=", "100", ")", ":", "from", ".", "basics", "import", "get_edm", "from", ".", "distributed_mds", "import", "get_b", ",", "get_Si", "N", ",", "d", "=", "X0", ".", "shape", "if", "r", "is", "None", "and", "n", "is", "None", ":", "raise", "ValueError", "(", "'either r or n have to be given.'", ")", "elif", "n", "is", "None", ":", "n", "=", "r", ".", "shape", "[", "0", "]", "if", "W", "is", "None", ":", "W", "=", "np", ".", "ones", "(", "(", "N", ",", "N", ")", ")", "-", "np", ".", "eye", "(", "N", ")", "X_k", "=", "X0", ".", "copy", "(", ")", "costs", "=", "[", "]", "# don't have to ignore i=j, because W[i,i] is zero.", "a", "=", "np", ".", "sum", "(", "W", "[", ":", "n", ",", ":", "n", "]", ",", "axis", "=", "1", ")", ".", "flatten", "(", ")", "+", "2", "*", "np", ".", "sum", "(", "W", "[", ":", "n", ",", "n", ":", "]", ",", "axis", "=", "1", ")", ".", "flatten", "(", ")", "if", "r", "is", "not", "None", ":", "a", "+=", "r", ".", "flatten", "(", ")", "for", "k", "in", "range", "(", "sweeps", ")", ":", "S", "=", "0", "for", "i", "in", "range", "(", "n", ")", ":", "edm_estimated", "=", "get_edm", "(", "X_k", ")", "bi", "=", "get_b", "(", "i", ",", "edm_estimated", ",", "W", ",", "edm", ",", "n", ")", "if", "r", "is", "not", "None", "and", "X_bar", "is", "not", "None", ":", "X_k", "[", "i", "]", "=", "1", "/", "a", "[", "i", "]", "*", "(", "r", "[", "i", "]", "*", "X_bar", "[", "i", ",", ":", "]", "+", "X_k", ".", "T", ".", "dot", "(", "bi", ")", ".", "flatten", "(", ")", ")", "Si", "=", "get_Si", "(", "i", ",", "edm_estimated", ",", "edm", ",", "W", ",", "n", ",", "r", ",", "X_bar", "[", "i", "]", ",", "X_k", "[", "i", "]", ")", "else", ":", "X_k", "[", "i", "]", "=", "1", "/", "a", "[", "i", "]", "*", "X_k", ".", "T", ".", "dot", "(", "bi", ")", ".", "flatten", "(", ")", "Si", "=", "get_Si", "(", "i", ",", "edm_estimated", ",", "edm", ",", "W", ",", "n", ")", "S", "+=", "Si", "costs", ".", "append", "(", "S", ")", "if", "k", ">", "1", "and", "abs", "(", "costs", "[", "-", "1", "]", "-", "costs", "[", "-", "2", "]", ")", "<", "tol", ":", "if", "(", "print_out", ")", ":", "print", "(", "'dwMDS: converged after'", ",", "k", ")", "break", "return", "X_k", ",", "costs" ]
Reconstruct point set using d(istributed)w(eighted) MDS. Refer to paper "Distributed Weighted-Multidimensional Scaling for Node Localization in Sensor Networks" for implementation details (doi.org/10.1145/1138127.1138129) :param X0: Nxd matrix of starting points. :param n: Number of points of unknown position. The first n points in X0 and edm are considered unknown. :param tol: Stopping criterion: when the cost is below this level, we stop. :param sweeps: Maximum number of sweeps.
[ "Reconstruct", "point", "set", "using", "d", "(", "istributed", ")", "w", "(", "eighted", ")", "MDS", "." ]
python
train
praekelt/panya-music
music/models.py
https://github.com/praekelt/panya-music/blob/9300b1866bc33178e721b6de4771ba866bfc4b11/music/models.py#L77-L97
def get_primary_contributors(self, permitted=True): """ Returns a list of primary contributors, with primary being defined as those contributors that have the highest role assigned(in terms of priority). When permitted is set to True only permitted contributors are returned. """ primary_credits = [] credits = self.credits.exclude(role=None).order_by('role') if credits: primary_role = credits[0].role for credit in credits: if credit.role == primary_role: primary_credits.append(credit) contributors = [] for credit in primary_credits: contributor = credit.contributor if permitted and contributor.is_permitted: contributors.append(contributor) else: contributors.append(contributor) return contributors
[ "def", "get_primary_contributors", "(", "self", ",", "permitted", "=", "True", ")", ":", "primary_credits", "=", "[", "]", "credits", "=", "self", ".", "credits", ".", "exclude", "(", "role", "=", "None", ")", ".", "order_by", "(", "'role'", ")", "if", "credits", ":", "primary_role", "=", "credits", "[", "0", "]", ".", "role", "for", "credit", "in", "credits", ":", "if", "credit", ".", "role", "==", "primary_role", ":", "primary_credits", ".", "append", "(", "credit", ")", "contributors", "=", "[", "]", "for", "credit", "in", "primary_credits", ":", "contributor", "=", "credit", ".", "contributor", "if", "permitted", "and", "contributor", ".", "is_permitted", ":", "contributors", ".", "append", "(", "contributor", ")", "else", ":", "contributors", ".", "append", "(", "contributor", ")", "return", "contributors" ]
Returns a list of primary contributors, with primary being defined as those contributors that have the highest role assigned(in terms of priority). When permitted is set to True only permitted contributors are returned.
[ "Returns", "a", "list", "of", "primary", "contributors", "with", "primary", "being", "defined", "as", "those", "contributors", "that", "have", "the", "highest", "role", "assigned", "(", "in", "terms", "of", "priority", ")", ".", "When", "permitted", "is", "set", "to", "True", "only", "permitted", "contributors", "are", "returned", "." ]
python
train
mila-iqia/fuel
fuel/converters/mnist.py
https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/mnist.py#L111-L159
def read_mnist_images(filename, dtype=None): """Read MNIST images from the original ubyte file format. Parameters ---------- filename : str Filename/path from which to read images. dtype : 'float32', 'float64', or 'bool' If unspecified, images will be returned in their original unsigned byte format. Returns ------- images : :class:`~numpy.ndarray`, shape (n_images, 1, n_rows, n_cols) An image array, with individual examples indexed along the first axis and the image dimensions along the second and third axis. Notes ----- If the dtype provided was Boolean, the resulting array will be Boolean with `True` if the corresponding pixel had a value greater than or equal to 128, `False` otherwise. If the dtype provided was a float dtype, the values will be mapped to the unit interval [0, 1], with pixel values that were 255 in the original unsigned byte representation equal to 1.0. """ with gzip.open(filename, 'rb') as f: magic, number, rows, cols = struct.unpack('>iiii', f.read(16)) if magic != MNIST_IMAGE_MAGIC: raise ValueError("Wrong magic number reading MNIST image file") array = numpy.frombuffer(f.read(), dtype='uint8') array = array.reshape((number, 1, rows, cols)) if dtype: dtype = numpy.dtype(dtype) if dtype.kind == 'b': # If the user wants Booleans, threshold at half the range. array = array >= 128 elif dtype.kind == 'f': # Otherwise, just convert. array = array.astype(dtype) array /= 255. else: raise ValueError("Unknown dtype to convert MNIST to") return array
[ "def", "read_mnist_images", "(", "filename", ",", "dtype", "=", "None", ")", ":", "with", "gzip", ".", "open", "(", "filename", ",", "'rb'", ")", "as", "f", ":", "magic", ",", "number", ",", "rows", ",", "cols", "=", "struct", ".", "unpack", "(", "'>iiii'", ",", "f", ".", "read", "(", "16", ")", ")", "if", "magic", "!=", "MNIST_IMAGE_MAGIC", ":", "raise", "ValueError", "(", "\"Wrong magic number reading MNIST image file\"", ")", "array", "=", "numpy", ".", "frombuffer", "(", "f", ".", "read", "(", ")", ",", "dtype", "=", "'uint8'", ")", "array", "=", "array", ".", "reshape", "(", "(", "number", ",", "1", ",", "rows", ",", "cols", ")", ")", "if", "dtype", ":", "dtype", "=", "numpy", ".", "dtype", "(", "dtype", ")", "if", "dtype", ".", "kind", "==", "'b'", ":", "# If the user wants Booleans, threshold at half the range.", "array", "=", "array", ">=", "128", "elif", "dtype", ".", "kind", "==", "'f'", ":", "# Otherwise, just convert.", "array", "=", "array", ".", "astype", "(", "dtype", ")", "array", "/=", "255.", "else", ":", "raise", "ValueError", "(", "\"Unknown dtype to convert MNIST to\"", ")", "return", "array" ]
Read MNIST images from the original ubyte file format. Parameters ---------- filename : str Filename/path from which to read images. dtype : 'float32', 'float64', or 'bool' If unspecified, images will be returned in their original unsigned byte format. Returns ------- images : :class:`~numpy.ndarray`, shape (n_images, 1, n_rows, n_cols) An image array, with individual examples indexed along the first axis and the image dimensions along the second and third axis. Notes ----- If the dtype provided was Boolean, the resulting array will be Boolean with `True` if the corresponding pixel had a value greater than or equal to 128, `False` otherwise. If the dtype provided was a float dtype, the values will be mapped to the unit interval [0, 1], with pixel values that were 255 in the original unsigned byte representation equal to 1.0.
[ "Read", "MNIST", "images", "from", "the", "original", "ubyte", "file", "format", "." ]
python
train
polyaxon/polyaxon-cli
polyaxon_cli/managers/ignore.py
https://github.com/polyaxon/polyaxon-cli/blob/a7f5eed74d4d909cad79059f3c21c58606881449/polyaxon_cli/managers/ignore.py#L105-L109
def _remove_trailing_spaces(line): """Remove trailing spaces unless they are quoted with a backslash.""" while line.endswith(' ') and not line.endswith('\\ '): line = line[:-1] return line.replace('\\ ', ' ')
[ "def", "_remove_trailing_spaces", "(", "line", ")", ":", "while", "line", ".", "endswith", "(", "' '", ")", "and", "not", "line", ".", "endswith", "(", "'\\\\ '", ")", ":", "line", "=", "line", "[", ":", "-", "1", "]", "return", "line", ".", "replace", "(", "'\\\\ '", ",", "' '", ")" ]
Remove trailing spaces unless they are quoted with a backslash.
[ "Remove", "trailing", "spaces", "unless", "they", "are", "quoted", "with", "a", "backslash", "." ]
python
valid
heuer/cablemap
cablemap.tm/cablemap/tm/handler.py
https://github.com/heuer/cablemap/blob/42066c8fc2972d237a2c35578e14525aaf705f38/cablemap.tm/cablemap/tm/handler.py#L117-L124
def create_ctm_handler(fileobj, title=u'Cablegate Topic Map', comment=u'Generated by Cablemap - https://github.com/heuer/cablemap', detect_prefixes=False): """\ Returns a `ICableHandler` instance which writes Compact Topic Maps syntax (CTM). `fileobj` A file-like object. """ return MIOCableHandler(create_ctm_miohandler(fileobj, title, comment, detect_prefixes=detect_prefixes))
[ "def", "create_ctm_handler", "(", "fileobj", ",", "title", "=", "u'Cablegate Topic Map'", ",", "comment", "=", "u'Generated by Cablemap - https://github.com/heuer/cablemap'", ",", "detect_prefixes", "=", "False", ")", ":", "return", "MIOCableHandler", "(", "create_ctm_miohandler", "(", "fileobj", ",", "title", ",", "comment", ",", "detect_prefixes", "=", "detect_prefixes", ")", ")" ]
\ Returns a `ICableHandler` instance which writes Compact Topic Maps syntax (CTM). `fileobj` A file-like object.
[ "\\", "Returns", "a", "ICableHandler", "instance", "which", "writes", "Compact", "Topic", "Maps", "syntax", "(", "CTM", ")", "." ]
python
train
twisted/mantissa
xmantissa/people.py
https://github.com/twisted/mantissa/blob/53e5502aba23ce99be78b27f923a276593033fe8/xmantissa/people.py#L1658-L1669
def getEditPerson(self, name): """ Get an L{EditPersonView} for editing the person named C{name}. @param name: A person name. @type name: C{unicode} @rtype: L{EditPersonView} """ view = EditPersonView(self.organizer.personByName(name)) view.setFragmentParent(self) return view
[ "def", "getEditPerson", "(", "self", ",", "name", ")", ":", "view", "=", "EditPersonView", "(", "self", ".", "organizer", ".", "personByName", "(", "name", ")", ")", "view", ".", "setFragmentParent", "(", "self", ")", "return", "view" ]
Get an L{EditPersonView} for editing the person named C{name}. @param name: A person name. @type name: C{unicode} @rtype: L{EditPersonView}
[ "Get", "an", "L", "{", "EditPersonView", "}", "for", "editing", "the", "person", "named", "C", "{", "name", "}", "." ]
python
train
jrief/django-websocket-redis
ws4redis/websocket.py
https://github.com/jrief/django-websocket-redis/blob/abcddaad2f579d71dbf375e5e34bc35eef795a81/ws4redis/websocket.py#L384-L425
def encode_header(cls, fin, opcode, mask, length, flags): """ Encodes a WebSocket header. :param fin: Whether this is the final frame for this opcode. :param opcode: The opcode of the payload, see `OPCODE_*` :param mask: Whether the payload is masked. :param length: The length of the frame. :param flags: The RSV* flags. :return: A bytestring encoded header. """ first_byte = opcode second_byte = 0 if six.PY2: extra = '' else: extra = b'' if fin: first_byte |= cls.FIN_MASK if flags & cls.RSV0_MASK: first_byte |= cls.RSV0_MASK if flags & cls.RSV1_MASK: first_byte |= cls.RSV1_MASK if flags & cls.RSV2_MASK: first_byte |= cls.RSV2_MASK # now deal with length complexities if length < 126: second_byte += length elif length <= 0xffff: second_byte += 126 extra = struct.pack('!H', length) elif length <= 0xffffffffffffffff: second_byte += 127 extra = struct.pack('!Q', length) else: raise FrameTooLargeException if mask: second_byte |= cls.MASK_MASK extra += mask if six.PY3: return bytes([first_byte, second_byte]) + extra return chr(first_byte) + chr(second_byte) + extra
[ "def", "encode_header", "(", "cls", ",", "fin", ",", "opcode", ",", "mask", ",", "length", ",", "flags", ")", ":", "first_byte", "=", "opcode", "second_byte", "=", "0", "if", "six", ".", "PY2", ":", "extra", "=", "''", "else", ":", "extra", "=", "b''", "if", "fin", ":", "first_byte", "|=", "cls", ".", "FIN_MASK", "if", "flags", "&", "cls", ".", "RSV0_MASK", ":", "first_byte", "|=", "cls", ".", "RSV0_MASK", "if", "flags", "&", "cls", ".", "RSV1_MASK", ":", "first_byte", "|=", "cls", ".", "RSV1_MASK", "if", "flags", "&", "cls", ".", "RSV2_MASK", ":", "first_byte", "|=", "cls", ".", "RSV2_MASK", "# now deal with length complexities", "if", "length", "<", "126", ":", "second_byte", "+=", "length", "elif", "length", "<=", "0xffff", ":", "second_byte", "+=", "126", "extra", "=", "struct", ".", "pack", "(", "'!H'", ",", "length", ")", "elif", "length", "<=", "0xffffffffffffffff", ":", "second_byte", "+=", "127", "extra", "=", "struct", ".", "pack", "(", "'!Q'", ",", "length", ")", "else", ":", "raise", "FrameTooLargeException", "if", "mask", ":", "second_byte", "|=", "cls", ".", "MASK_MASK", "extra", "+=", "mask", "if", "six", ".", "PY3", ":", "return", "bytes", "(", "[", "first_byte", ",", "second_byte", "]", ")", "+", "extra", "return", "chr", "(", "first_byte", ")", "+", "chr", "(", "second_byte", ")", "+", "extra" ]
Encodes a WebSocket header. :param fin: Whether this is the final frame for this opcode. :param opcode: The opcode of the payload, see `OPCODE_*` :param mask: Whether the payload is masked. :param length: The length of the frame. :param flags: The RSV* flags. :return: A bytestring encoded header.
[ "Encodes", "a", "WebSocket", "header", "." ]
python
train
watson-developer-cloud/python-sdk
ibm_watson/natural_language_understanding_v1.py
https://github.com/watson-developer-cloud/python-sdk/blob/4c2c9df4466fcde88975da9ecd834e6ba95eb353/ibm_watson/natural_language_understanding_v1.py#L2230-L2239
def _to_dict(self): """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'entities') and self.entities is not None: _dict['entities'] = [x._to_dict() for x in self.entities] if hasattr(self, 'location') and self.location is not None: _dict['location'] = self.location if hasattr(self, 'text') and self.text is not None: _dict['text'] = self.text return _dict
[ "def", "_to_dict", "(", "self", ")", ":", "_dict", "=", "{", "}", "if", "hasattr", "(", "self", ",", "'entities'", ")", "and", "self", ".", "entities", "is", "not", "None", ":", "_dict", "[", "'entities'", "]", "=", "[", "x", ".", "_to_dict", "(", ")", "for", "x", "in", "self", ".", "entities", "]", "if", "hasattr", "(", "self", ",", "'location'", ")", "and", "self", ".", "location", "is", "not", "None", ":", "_dict", "[", "'location'", "]", "=", "self", ".", "location", "if", "hasattr", "(", "self", ",", "'text'", ")", "and", "self", ".", "text", "is", "not", "None", ":", "_dict", "[", "'text'", "]", "=", "self", ".", "text", "return", "_dict" ]
Return a json dictionary representing this model.
[ "Return", "a", "json", "dictionary", "representing", "this", "model", "." ]
python
train
JarryShaw/DictDumper
src/tree.py
https://github.com/JarryShaw/DictDumper/blob/430efcfdff18bb2421c3f27059ff94c93e621483/src/tree.py#L221-L264
def _append_branch(self, value, _file): """Call this function to write branch contents. Keyword arguments: * value - dict, content to be dumped * _file - FileIO, output file """ if not value: return # return self._append_none(None, _file) self._tctr += 1 _vlen = len(value) for (_vctr, (_item, _text)) in enumerate(value.items()): _text = self.object_hook(_text) _type = type(_text).__name__ flag_dict = (_type == 'dict') flag_list = (_type == 'list' and (len(_text) > 1 or (len(_text) == 1 and type(_text[0]).__name__ == 'dict'))) # noqa pylint: disable=line-too-long flag_tuple = (_type == 'tuple' and (len(_text) > 1 or (len(_text) == 1 and type(_text[0]).__name__ == 'dict'))) # noqa pylint: disable=line-too-long flag_bytes = (_type == 'bytes' and len(_text) > 16) if any((flag_dict, flag_list, flag_tuple, flag_bytes)): _pref = '\n' else: _pref = ' ->' _labs = '' for _ in range(self._tctr): _labs += _TEMP_SPACES if self._bctr[_] else _TEMP_BRANCH _keys = '{labs} |-- {item}{pref}'.format(labs=_labs, item=_item, pref=_pref) _file.write(_keys) if _vctr == _vlen - 1: self._bctr[self._tctr] = 1 _MAGIC_TYPES[_type](self, _text, _file) _suff = '' if _type == 'dict' else '\n' _file.write(_suff) self._bctr[self._tctr] = 0 self._tctr -= 1
[ "def", "_append_branch", "(", "self", ",", "value", ",", "_file", ")", ":", "if", "not", "value", ":", "return", "# return self._append_none(None, _file)", "self", ".", "_tctr", "+=", "1", "_vlen", "=", "len", "(", "value", ")", "for", "(", "_vctr", ",", "(", "_item", ",", "_text", ")", ")", "in", "enumerate", "(", "value", ".", "items", "(", ")", ")", ":", "_text", "=", "self", ".", "object_hook", "(", "_text", ")", "_type", "=", "type", "(", "_text", ")", ".", "__name__", "flag_dict", "=", "(", "_type", "==", "'dict'", ")", "flag_list", "=", "(", "_type", "==", "'list'", "and", "(", "len", "(", "_text", ")", ">", "1", "or", "(", "len", "(", "_text", ")", "==", "1", "and", "type", "(", "_text", "[", "0", "]", ")", ".", "__name__", "==", "'dict'", ")", ")", ")", "# noqa pylint: disable=line-too-long", "flag_tuple", "=", "(", "_type", "==", "'tuple'", "and", "(", "len", "(", "_text", ")", ">", "1", "or", "(", "len", "(", "_text", ")", "==", "1", "and", "type", "(", "_text", "[", "0", "]", ")", ".", "__name__", "==", "'dict'", ")", ")", ")", "# noqa pylint: disable=line-too-long", "flag_bytes", "=", "(", "_type", "==", "'bytes'", "and", "len", "(", "_text", ")", ">", "16", ")", "if", "any", "(", "(", "flag_dict", ",", "flag_list", ",", "flag_tuple", ",", "flag_bytes", ")", ")", ":", "_pref", "=", "'\\n'", "else", ":", "_pref", "=", "' ->'", "_labs", "=", "''", "for", "_", "in", "range", "(", "self", ".", "_tctr", ")", ":", "_labs", "+=", "_TEMP_SPACES", "if", "self", ".", "_bctr", "[", "_", "]", "else", "_TEMP_BRANCH", "_keys", "=", "'{labs} |-- {item}{pref}'", ".", "format", "(", "labs", "=", "_labs", ",", "item", "=", "_item", ",", "pref", "=", "_pref", ")", "_file", ".", "write", "(", "_keys", ")", "if", "_vctr", "==", "_vlen", "-", "1", ":", "self", ".", "_bctr", "[", "self", ".", "_tctr", "]", "=", "1", "_MAGIC_TYPES", "[", "_type", "]", "(", "self", ",", "_text", ",", "_file", ")", "_suff", "=", "''", "if", "_type", "==", "'dict'", "else", "'\\n'", "_file", ".", "write", "(", "_suff", ")", "self", ".", "_bctr", "[", "self", ".", "_tctr", "]", "=", "0", "self", ".", "_tctr", "-=", "1" ]
Call this function to write branch contents. Keyword arguments: * value - dict, content to be dumped * _file - FileIO, output file
[ "Call", "this", "function", "to", "write", "branch", "contents", "." ]
python
train
veltzer/pytconf
pytconf/config.py
https://github.com/veltzer/pytconf/blob/8dee43ace35d0dd2ab1105fb94057f650393360f/pytconf/config.py#L639-L654
def create_list_int(help_string=NO_HELP, default=NO_DEFAULT): # type: (str, Union[List[int], NO_DEFAULT_TYPE]) -> List[int] """ Create a List[int] parameter :param help_string: :param default: :return: """ # noinspection PyTypeChecker return ParamFunctions( help_string=help_string, default=default, type_name="List[int]", function_s2t=convert_string_to_list_int, function_t2s=convert_list_int_to_string, )
[ "def", "create_list_int", "(", "help_string", "=", "NO_HELP", ",", "default", "=", "NO_DEFAULT", ")", ":", "# type: (str, Union[List[int], NO_DEFAULT_TYPE]) -> List[int]", "# noinspection PyTypeChecker", "return", "ParamFunctions", "(", "help_string", "=", "help_string", ",", "default", "=", "default", ",", "type_name", "=", "\"List[int]\"", ",", "function_s2t", "=", "convert_string_to_list_int", ",", "function_t2s", "=", "convert_list_int_to_string", ",", ")" ]
Create a List[int] parameter :param help_string: :param default: :return:
[ "Create", "a", "List", "[", "int", "]", "parameter", ":", "param", "help_string", ":", ":", "param", "default", ":", ":", "return", ":" ]
python
train
lpantano/seqcluster
seqcluster/libs/thinkbayes.py
https://github.com/lpantano/seqcluster/blob/774e23add8cd4fdc83d626cea3bd1f458e7d060d/seqcluster/libs/thinkbayes.py#L1585-L1599
def MakeExponentialPmf(lam, high, n=200): """Makes a PMF discrete approx to an exponential distribution. lam: parameter lambda in events per unit time high: upper bound n: number of values in the Pmf returns: normalized Pmf """ pmf = Pmf() for x in numpy.linspace(0, high, n): p = EvalExponentialPdf(x, lam) pmf.Set(x, p) pmf.Normalize() return pmf
[ "def", "MakeExponentialPmf", "(", "lam", ",", "high", ",", "n", "=", "200", ")", ":", "pmf", "=", "Pmf", "(", ")", "for", "x", "in", "numpy", ".", "linspace", "(", "0", ",", "high", ",", "n", ")", ":", "p", "=", "EvalExponentialPdf", "(", "x", ",", "lam", ")", "pmf", ".", "Set", "(", "x", ",", "p", ")", "pmf", ".", "Normalize", "(", ")", "return", "pmf" ]
Makes a PMF discrete approx to an exponential distribution. lam: parameter lambda in events per unit time high: upper bound n: number of values in the Pmf returns: normalized Pmf
[ "Makes", "a", "PMF", "discrete", "approx", "to", "an", "exponential", "distribution", "." ]
python
train
noxdafox/vminspect
vminspect/usnjrnl.py
https://github.com/noxdafox/vminspect/blob/e685282564877e2d1950f1e09b292f4f4db1dbcd/vminspect/usnjrnl.py#L51-L71
def parse_journal_file(journal_file): """Iterates over the journal's file taking care of paddings.""" counter = count() for block in read_next_block(journal_file): block = remove_nullchars(block) while len(block) > MIN_RECORD_SIZE: header = RECORD_HEADER.unpack_from(block) size = header[0] try: yield parse_record(header, block[:size]) next(counter) except RuntimeError: yield CorruptedUsnRecord(next(counter)) finally: block = remove_nullchars(block[size:]) journal_file.seek(- len(block), 1)
[ "def", "parse_journal_file", "(", "journal_file", ")", ":", "counter", "=", "count", "(", ")", "for", "block", "in", "read_next_block", "(", "journal_file", ")", ":", "block", "=", "remove_nullchars", "(", "block", ")", "while", "len", "(", "block", ")", ">", "MIN_RECORD_SIZE", ":", "header", "=", "RECORD_HEADER", ".", "unpack_from", "(", "block", ")", "size", "=", "header", "[", "0", "]", "try", ":", "yield", "parse_record", "(", "header", ",", "block", "[", ":", "size", "]", ")", "next", "(", "counter", ")", "except", "RuntimeError", ":", "yield", "CorruptedUsnRecord", "(", "next", "(", "counter", ")", ")", "finally", ":", "block", "=", "remove_nullchars", "(", "block", "[", "size", ":", "]", ")", "journal_file", ".", "seek", "(", "-", "len", "(", "block", ")", ",", "1", ")" ]
Iterates over the journal's file taking care of paddings.
[ "Iterates", "over", "the", "journal", "s", "file", "taking", "care", "of", "paddings", "." ]
python
train
glue-viz/glue-vispy-viewers
glue_vispy_viewers/scatter/layer_artist.py
https://github.com/glue-viz/glue-vispy-viewers/blob/54a4351d98c1f90dfb1a557d1b447c1f57470eea/glue_vispy_viewers/scatter/layer_artist.py#L110-L122
def remove(self): """ Remove the layer artist from the visualization """ if self._multiscat is None: return self._multiscat.deallocate(self.id) self._multiscat = None self._viewer_state.remove_global_callback(self._update_scatter) self.state.remove_global_callback(self._update_scatter)
[ "def", "remove", "(", "self", ")", ":", "if", "self", ".", "_multiscat", "is", "None", ":", "return", "self", ".", "_multiscat", ".", "deallocate", "(", "self", ".", "id", ")", "self", ".", "_multiscat", "=", "None", "self", ".", "_viewer_state", ".", "remove_global_callback", "(", "self", ".", "_update_scatter", ")", "self", ".", "state", ".", "remove_global_callback", "(", "self", ".", "_update_scatter", ")" ]
Remove the layer artist from the visualization
[ "Remove", "the", "layer", "artist", "from", "the", "visualization" ]
python
train
dw/mitogen
mitogen/core.py
https://github.com/dw/mitogen/blob/a7fdb55e1300a7e0a5e404b09eb730cf9a525da7/mitogen/core.py#L803-L837
def unpickle(self, throw=True, throw_dead=True): """ Unpickle :attr:`data`, optionally raising any exceptions present. :param bool throw_dead: If :data:`True`, raise exceptions, otherwise it is the caller's responsibility. :raises CallError: The serialized data contained CallError exception. :raises ChannelError: The `is_dead` field was set. """ _vv and IOLOG.debug('%r.unpickle()', self) if throw_dead and self.is_dead: self._throw_dead() obj = self._unpickled if obj is Message._unpickled: fp = BytesIO(self.data) unpickler = _Unpickler(fp, **self.UNPICKLER_KWARGS) unpickler.find_global = self._find_global try: # Must occur off the broker thread. obj = unpickler.load() self._unpickled = obj except (TypeError, ValueError): e = sys.exc_info()[1] raise StreamError('invalid message: %s', e) if throw: if isinstance(obj, CallError): raise obj return obj
[ "def", "unpickle", "(", "self", ",", "throw", "=", "True", ",", "throw_dead", "=", "True", ")", ":", "_vv", "and", "IOLOG", ".", "debug", "(", "'%r.unpickle()'", ",", "self", ")", "if", "throw_dead", "and", "self", ".", "is_dead", ":", "self", ".", "_throw_dead", "(", ")", "obj", "=", "self", ".", "_unpickled", "if", "obj", "is", "Message", ".", "_unpickled", ":", "fp", "=", "BytesIO", "(", "self", ".", "data", ")", "unpickler", "=", "_Unpickler", "(", "fp", ",", "*", "*", "self", ".", "UNPICKLER_KWARGS", ")", "unpickler", ".", "find_global", "=", "self", ".", "_find_global", "try", ":", "# Must occur off the broker thread.", "obj", "=", "unpickler", ".", "load", "(", ")", "self", ".", "_unpickled", "=", "obj", "except", "(", "TypeError", ",", "ValueError", ")", ":", "e", "=", "sys", ".", "exc_info", "(", ")", "[", "1", "]", "raise", "StreamError", "(", "'invalid message: %s'", ",", "e", ")", "if", "throw", ":", "if", "isinstance", "(", "obj", ",", "CallError", ")", ":", "raise", "obj", "return", "obj" ]
Unpickle :attr:`data`, optionally raising any exceptions present. :param bool throw_dead: If :data:`True`, raise exceptions, otherwise it is the caller's responsibility. :raises CallError: The serialized data contained CallError exception. :raises ChannelError: The `is_dead` field was set.
[ "Unpickle", ":", "attr", ":", "data", "optionally", "raising", "any", "exceptions", "present", "." ]
python
train
azogue/esiosdata
esiosdata/__main__.py
https://github.com/azogue/esiosdata/blob/680c7918955bc6ceee5bded92b3a4485f5ea8151/esiosdata/__main__.py#L26-L96
def main_cli(): """ Actualiza la base de datos de PVPC/DEMANDA almacenados como dataframe en local, creando una nueva si no existe o hubiere algún problema. Los datos registrados se guardan en HDF5 """ def _get_parser_args(): p = argparse.ArgumentParser(description='Gestor de DB de PVPC/DEMANDA (esios.ree.es)') p.add_argument('-d', '--dem', action='store_true', help='Selecciona BD de demanda (BD de PVPC por defecto)') p.add_argument('-i', '--info', action='store', nargs='*', help="Muestra información de la BD seleccionada. " "* Puede usar intervalos temporales y nombres de columnas, " "como '-i gen noc 2017-01-24 2017-01-26'") p.add_argument('-fu', '-FU', '--forceupdate', action='store_true', help="Fuerza la reconstrucción total de la BD seleccionada") p.add_argument('-u', '-U', '--update', action='store_true', help="Actualiza la información de la BD seleccionada hasta el instante actual") p.add_argument('-p', '--plot', action='store_true', help="Genera plots de la información filtrada de la BD") p.add_argument('-v', '--verbose', action='store_true', help='Muestra información extra') arguments = p.parse_args() return arguments, p def _parse_date(string, columns): try: ts = pd.Timestamp(string) print_cyan('{} es timestamp: {:%c} --> {}'.format(string, ts, ts.date())) columns.remove(string) return ts.date().isoformat() except ValueError: pass args, parser = _get_parser_args() print_secc('ESIOS PVPC/DEMANDA') if args.dem: db_web = DatosREE(update=args.update, force_update=args.forceupdate, verbose=args.verbose) else: db_web = PVPC(update=args.update, force_update=args.forceupdate, verbose=args.verbose) data = db_web.data['data'] if args.info is not None: if len(args.info) > 0: cols = args.info.copy() dates = [d for d in [_parse_date(s, cols) for s in args.info] if d] if len(dates) == 2: data = data.loc[dates[0]:dates[1]] elif len(dates) == 1: data = data.loc[dates[0]] if len(cols) > 0: try: data = data[[c.upper() for c in cols]] except KeyError as e: print_red('NO SE PUEDE FILTRAR LA COLUMNA (Exception: {})\nLAS COLUMNAS DISPONIBLES SON:\n{}' .format(e, data.columns)) print_info(data) else: print_secc('LAST 24h in DB:') print_info(data.iloc[-24:]) print_cyan(data.columns) if args.plot: if args.dem: from esiosdata.pvpcplot import pvpcplot_tarifas_hora, pvpcplot_grid_hora print_red('IMPLEMENTAR PLOTS DEM') else: from esiosdata.pvpcplot import pvpcplot_tarifas_hora, pvpcplot_grid_hora if len(data) < 750: pvpcplot_grid_hora(data) # pvpcplot_tarifas_hora(data) else: print_red('La selección para plot es excesiva: {} samples de {} a {}\nSe hace plot de las últimas 24h'. format(len(data), data.index[0], data.index[-1])) pvpcplot_grid_hora(db_web.data['data'].iloc[-24:]) pvpcplot_tarifas_hora(db_web.data['data'].iloc[-24:])
[ "def", "main_cli", "(", ")", ":", "def", "_get_parser_args", "(", ")", ":", "p", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "'Gestor de DB de PVPC/DEMANDA (esios.ree.es)'", ")", "p", ".", "add_argument", "(", "'-d'", ",", "'--dem'", ",", "action", "=", "'store_true'", ",", "help", "=", "'Selecciona BD de demanda (BD de PVPC por defecto)'", ")", "p", ".", "add_argument", "(", "'-i'", ",", "'--info'", ",", "action", "=", "'store'", ",", "nargs", "=", "'*'", ",", "help", "=", "\"Muestra información de la BD seleccionada. \"", "\"* Puede usar intervalos temporales y nombres de columnas, \"", "\"como '-i gen noc 2017-01-24 2017-01-26'\"", ")", "p", ".", "add_argument", "(", "'-fu'", ",", "'-FU'", ",", "'--forceupdate'", ",", "action", "=", "'store_true'", ",", "help", "=", "\"Fuerza la reconstrucción total de la BD seleccionada\")", "", "p", ".", "add_argument", "(", "'-u'", ",", "'-U'", ",", "'--update'", ",", "action", "=", "'store_true'", ",", "help", "=", "\"Actualiza la información de la BD seleccionada hasta el instante actual\")", "", "p", ".", "add_argument", "(", "'-p'", ",", "'--plot'", ",", "action", "=", "'store_true'", ",", "help", "=", "\"Genera plots de la información filtrada de la BD\")", "", "p", ".", "add_argument", "(", "'-v'", ",", "'--verbose'", ",", "action", "=", "'store_true'", ",", "help", "=", "'Muestra información extra')", "", "arguments", "=", "p", ".", "parse_args", "(", ")", "return", "arguments", ",", "p", "def", "_parse_date", "(", "string", ",", "columns", ")", ":", "try", ":", "ts", "=", "pd", ".", "Timestamp", "(", "string", ")", "print_cyan", "(", "'{} es timestamp: {:%c} --> {}'", ".", "format", "(", "string", ",", "ts", ",", "ts", ".", "date", "(", ")", ")", ")", "columns", ".", "remove", "(", "string", ")", "return", "ts", ".", "date", "(", ")", ".", "isoformat", "(", ")", "except", "ValueError", ":", "pass", "args", ",", "parser", "=", "_get_parser_args", "(", ")", "print_secc", "(", "'ESIOS PVPC/DEMANDA'", ")", "if", "args", ".", "dem", ":", "db_web", "=", "DatosREE", "(", "update", "=", "args", ".", "update", ",", "force_update", "=", "args", ".", "forceupdate", ",", "verbose", "=", "args", ".", "verbose", ")", "else", ":", "db_web", "=", "PVPC", "(", "update", "=", "args", ".", "update", ",", "force_update", "=", "args", ".", "forceupdate", ",", "verbose", "=", "args", ".", "verbose", ")", "data", "=", "db_web", ".", "data", "[", "'data'", "]", "if", "args", ".", "info", "is", "not", "None", ":", "if", "len", "(", "args", ".", "info", ")", ">", "0", ":", "cols", "=", "args", ".", "info", ".", "copy", "(", ")", "dates", "=", "[", "d", "for", "d", "in", "[", "_parse_date", "(", "s", ",", "cols", ")", "for", "s", "in", "args", ".", "info", "]", "if", "d", "]", "if", "len", "(", "dates", ")", "==", "2", ":", "data", "=", "data", ".", "loc", "[", "dates", "[", "0", "]", ":", "dates", "[", "1", "]", "]", "elif", "len", "(", "dates", ")", "==", "1", ":", "data", "=", "data", ".", "loc", "[", "dates", "[", "0", "]", "]", "if", "len", "(", "cols", ")", ">", "0", ":", "try", ":", "data", "=", "data", "[", "[", "c", ".", "upper", "(", ")", "for", "c", "in", "cols", "]", "]", "except", "KeyError", "as", "e", ":", "print_red", "(", "'NO SE PUEDE FILTRAR LA COLUMNA (Exception: {})\\nLAS COLUMNAS DISPONIBLES SON:\\n{}'", ".", "format", "(", "e", ",", "data", ".", "columns", ")", ")", "print_info", "(", "data", ")", "else", ":", "print_secc", "(", "'LAST 24h in DB:'", ")", "print_info", "(", "data", ".", "iloc", "[", "-", "24", ":", "]", ")", "print_cyan", "(", "data", ".", "columns", ")", "if", "args", ".", "plot", ":", "if", "args", ".", "dem", ":", "from", "esiosdata", ".", "pvpcplot", "import", "pvpcplot_tarifas_hora", ",", "pvpcplot_grid_hora", "print_red", "(", "'IMPLEMENTAR PLOTS DEM'", ")", "else", ":", "from", "esiosdata", ".", "pvpcplot", "import", "pvpcplot_tarifas_hora", ",", "pvpcplot_grid_hora", "if", "len", "(", "data", ")", "<", "750", ":", "pvpcplot_grid_hora", "(", "data", ")", "# pvpcplot_tarifas_hora(data)", "else", ":", "print_red", "(", "'La selección para plot es excesiva: {} samples de {} a {}\\nSe hace plot de las últimas 24h'.", "", "format", "(", "len", "(", "data", ")", ",", "data", ".", "index", "[", "0", "]", ",", "data", ".", "index", "[", "-", "1", "]", ")", ")", "pvpcplot_grid_hora", "(", "db_web", ".", "data", "[", "'data'", "]", ".", "iloc", "[", "-", "24", ":", "]", ")", "pvpcplot_tarifas_hora", "(", "db_web", ".", "data", "[", "'data'", "]", ".", "iloc", "[", "-", "24", ":", "]", ")" ]
Actualiza la base de datos de PVPC/DEMANDA almacenados como dataframe en local, creando una nueva si no existe o hubiere algún problema. Los datos registrados se guardan en HDF5
[ "Actualiza", "la", "base", "de", "datos", "de", "PVPC", "/", "DEMANDA", "almacenados", "como", "dataframe", "en", "local", "creando", "una", "nueva", "si", "no", "existe", "o", "hubiere", "algún", "problema", ".", "Los", "datos", "registrados", "se", "guardan", "en", "HDF5" ]
python
valid
dlecocq/nsq-py
nsq/sockets/base.py
https://github.com/dlecocq/nsq-py/blob/3ecacf6ab7719d38031179277113d875554a0c16/nsq/sockets/base.py#L31-L38
def sendall(self, data, flags=0): '''Same as socket.sendall''' count = len(data) while count: sent = self.send(data, flags) # This could probably be a buffer object data = data[sent:] count -= sent
[ "def", "sendall", "(", "self", ",", "data", ",", "flags", "=", "0", ")", ":", "count", "=", "len", "(", "data", ")", "while", "count", ":", "sent", "=", "self", ".", "send", "(", "data", ",", "flags", ")", "# This could probably be a buffer object", "data", "=", "data", "[", "sent", ":", "]", "count", "-=", "sent" ]
Same as socket.sendall
[ "Same", "as", "socket", ".", "sendall" ]
python
train
geophysics-ubonn/crtomo_tools
lib/crtomo/grid.py
https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/grid.py#L231-L259
def _read_elem_elements(self, fid): """Read all FE elements from the file stream. Elements are stored in the self.element_data dict. The keys refer to the element types: * 3: Triangular grid (three nodes) * 8: Quadrangular grid (four nodes) * 11: Mixed boundary element * 12: Neumann (no-flow) boundary element """ elements = {} # read elements for element_type in range(0, self.header['nr_element_types']): element_list = [] for element_coordinates in range( 0, self.header['element_infos'][element_type, 1]): element_coordinates_line = fid.readline().lstrip() tmp_element = self.element() tmp_element.nodes = np.fromstring(element_coordinates_line, dtype=int, sep=' ') tmp_element.xcoords = self.nodes['presort'][tmp_element.nodes - 1, 1] tmp_element.zcoords = self.nodes['presort'][tmp_element.nodes - 1, 2] element_list.append(tmp_element) element_type_number = self.header['element_infos'][element_type, 0] elements[element_type_number] = element_list self.element_data = elements
[ "def", "_read_elem_elements", "(", "self", ",", "fid", ")", ":", "elements", "=", "{", "}", "# read elements", "for", "element_type", "in", "range", "(", "0", ",", "self", ".", "header", "[", "'nr_element_types'", "]", ")", ":", "element_list", "=", "[", "]", "for", "element_coordinates", "in", "range", "(", "0", ",", "self", ".", "header", "[", "'element_infos'", "]", "[", "element_type", ",", "1", "]", ")", ":", "element_coordinates_line", "=", "fid", ".", "readline", "(", ")", ".", "lstrip", "(", ")", "tmp_element", "=", "self", ".", "element", "(", ")", "tmp_element", ".", "nodes", "=", "np", ".", "fromstring", "(", "element_coordinates_line", ",", "dtype", "=", "int", ",", "sep", "=", "' '", ")", "tmp_element", ".", "xcoords", "=", "self", ".", "nodes", "[", "'presort'", "]", "[", "tmp_element", ".", "nodes", "-", "1", ",", "1", "]", "tmp_element", ".", "zcoords", "=", "self", ".", "nodes", "[", "'presort'", "]", "[", "tmp_element", ".", "nodes", "-", "1", ",", "2", "]", "element_list", ".", "append", "(", "tmp_element", ")", "element_type_number", "=", "self", ".", "header", "[", "'element_infos'", "]", "[", "element_type", ",", "0", "]", "elements", "[", "element_type_number", "]", "=", "element_list", "self", ".", "element_data", "=", "elements" ]
Read all FE elements from the file stream. Elements are stored in the self.element_data dict. The keys refer to the element types: * 3: Triangular grid (three nodes) * 8: Quadrangular grid (four nodes) * 11: Mixed boundary element * 12: Neumann (no-flow) boundary element
[ "Read", "all", "FE", "elements", "from", "the", "file", "stream", ".", "Elements", "are", "stored", "in", "the", "self", ".", "element_data", "dict", ".", "The", "keys", "refer", "to", "the", "element", "types", ":" ]
python
train
Alignak-monitoring/alignak
alignak/basemodule.py
https://github.com/Alignak-monitoring/alignak/blob/f3c145207e83159b799d3714e4241399c7740a64/alignak/basemodule.py#L212-L232
def clear_queues(self, manager): """Release the resources associated to the queues of this instance :param manager: Manager() object :type manager: None | object :return: None """ for queue in (self.to_q, self.from_q): if queue is None: continue # If we got no manager, we directly call the clean if not manager: try: queue.close() queue.join_thread() except AttributeError: pass # else: # q._callmethod('close') # q._callmethod('join_thread') self.to_q = self.from_q = None
[ "def", "clear_queues", "(", "self", ",", "manager", ")", ":", "for", "queue", "in", "(", "self", ".", "to_q", ",", "self", ".", "from_q", ")", ":", "if", "queue", "is", "None", ":", "continue", "# If we got no manager, we directly call the clean", "if", "not", "manager", ":", "try", ":", "queue", ".", "close", "(", ")", "queue", ".", "join_thread", "(", ")", "except", "AttributeError", ":", "pass", "# else:", "# q._callmethod('close')", "# q._callmethod('join_thread')", "self", ".", "to_q", "=", "self", ".", "from_q", "=", "None" ]
Release the resources associated to the queues of this instance :param manager: Manager() object :type manager: None | object :return: None
[ "Release", "the", "resources", "associated", "to", "the", "queues", "of", "this", "instance" ]
python
train
TaurusOlson/fntools
fntools/fntools.py
https://github.com/TaurusOlson/fntools/blob/316080c7b5bfdd88c9f3fac4a67deb5be3c319e5/fntools/fntools.py#L595-L608
def find(fn, record): """Apply a function on the record and return the corresponding new record :param fn: a function :param record: a dictionary :returns: a dictionary >>> find(max, {'Terry': 30, 'Graham': 35, 'John': 27}) {'Graham': 35} """ values_result = fn(record.values()) keys_result = [k for k, v in record.items() if v == values_result] return {keys_result[0]: values_result}
[ "def", "find", "(", "fn", ",", "record", ")", ":", "values_result", "=", "fn", "(", "record", ".", "values", "(", ")", ")", "keys_result", "=", "[", "k", "for", "k", ",", "v", "in", "record", ".", "items", "(", ")", "if", "v", "==", "values_result", "]", "return", "{", "keys_result", "[", "0", "]", ":", "values_result", "}" ]
Apply a function on the record and return the corresponding new record :param fn: a function :param record: a dictionary :returns: a dictionary >>> find(max, {'Terry': 30, 'Graham': 35, 'John': 27}) {'Graham': 35}
[ "Apply", "a", "function", "on", "the", "record", "and", "return", "the", "corresponding", "new", "record" ]
python
train
belbio/bel
bel/lang/migrate_1_2.py
https://github.com/belbio/bel/blob/60333e8815625b942b4836903f3b618cf44b3771/bel/lang/migrate_1_2.py#L128-L144
def convert_activity(ast): """Convert BEL1 activities to BEL2 act()""" if len(ast.args) > 1: log.error(f"Activity should not have more than 1 argument {ast.to_string()}") p_arg = ast.args[0] # protein argument print("p_arg", p_arg) ma_arg = Function("ma", bo.spec) ma_arg.add_argument(StrArg(ast.name, ma_arg)) p_arg.change_parent_fn(ma_arg) ast = Function("activity", bo.spec) p_arg.change_parent_fn(ast) ast.add_argument(p_arg) ast.add_argument(ma_arg) return ast
[ "def", "convert_activity", "(", "ast", ")", ":", "if", "len", "(", "ast", ".", "args", ")", ">", "1", ":", "log", ".", "error", "(", "f\"Activity should not have more than 1 argument {ast.to_string()}\"", ")", "p_arg", "=", "ast", ".", "args", "[", "0", "]", "# protein argument", "print", "(", "\"p_arg\"", ",", "p_arg", ")", "ma_arg", "=", "Function", "(", "\"ma\"", ",", "bo", ".", "spec", ")", "ma_arg", ".", "add_argument", "(", "StrArg", "(", "ast", ".", "name", ",", "ma_arg", ")", ")", "p_arg", ".", "change_parent_fn", "(", "ma_arg", ")", "ast", "=", "Function", "(", "\"activity\"", ",", "bo", ".", "spec", ")", "p_arg", ".", "change_parent_fn", "(", "ast", ")", "ast", ".", "add_argument", "(", "p_arg", ")", "ast", ".", "add_argument", "(", "ma_arg", ")", "return", "ast" ]
Convert BEL1 activities to BEL2 act()
[ "Convert", "BEL1", "activities", "to", "BEL2", "act", "()" ]
python
train
lsst-epo/vela
astropixie-widgets/astropixie_widgets/visual.py
https://github.com/lsst-epo/vela/blob/8e17ebec509be5c3cc2063f4645dfe9e26b49c18/astropixie-widgets/astropixie_widgets/visual.py#L164-L172
def hr_diagram(cluster_name, output=None): """Create a :class:`~bokeh.plotting.figure.Figure` to create an H-R diagram using the cluster_name; then show it. Re """ cluster = get_hr_data(cluster_name) pf = hr_diagram_figure(cluster) show_with_bokeh_server(pf)
[ "def", "hr_diagram", "(", "cluster_name", ",", "output", "=", "None", ")", ":", "cluster", "=", "get_hr_data", "(", "cluster_name", ")", "pf", "=", "hr_diagram_figure", "(", "cluster", ")", "show_with_bokeh_server", "(", "pf", ")" ]
Create a :class:`~bokeh.plotting.figure.Figure` to create an H-R diagram using the cluster_name; then show it. Re
[ "Create", "a", ":", "class", ":", "~bokeh", ".", "plotting", ".", "figure", ".", "Figure", "to", "create", "an", "H", "-", "R", "diagram", "using", "the", "cluster_name", ";", "then", "show", "it", "." ]
python
valid
kwikteam/phy
phy/gui/actions.py
https://github.com/kwikteam/phy/blob/7e9313dc364304b7d2bd03b92938347343703003/phy/gui/actions.py#L285-L289
def remove(self, name): """Remove an action.""" self.gui.removeAction(self._actions_dict[name].qaction) del self._actions_dict[name] delattr(self, name)
[ "def", "remove", "(", "self", ",", "name", ")", ":", "self", ".", "gui", ".", "removeAction", "(", "self", ".", "_actions_dict", "[", "name", "]", ".", "qaction", ")", "del", "self", ".", "_actions_dict", "[", "name", "]", "delattr", "(", "self", ",", "name", ")" ]
Remove an action.
[ "Remove", "an", "action", "." ]
python
train
rwl/pylon
pylon/io/psat.py
https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/psat.py#L245-L278
def _get_demand_array_construct(self): """ Returns a construct for an array of power demand data. """ bus_no = integer.setResultsName("bus_no") s_rating = real.setResultsName("s_rating") # MVA p_direction = real.setResultsName("p_direction") # p.u. q_direction = real.setResultsName("q_direction") # p.u. p_bid_max = real.setResultsName("p_bid_max") # p.u. p_bid_min = real.setResultsName("p_bid_min") # p.u. p_optimal_bid = Optional(real).setResultsName("p_optimal_bid") p_fixed = real.setResultsName("p_fixed") # $/hr p_proportional = real.setResultsName("p_proportional") # $/MWh p_quadratic = real.setResultsName("p_quadratic") # $/MW^2h q_fixed = real.setResultsName("q_fixed") # $/hr q_proportional = real.setResultsName("q_proportional") # $/MVArh q_quadratic = real.setResultsName("q_quadratic") # $/MVAr^2h commitment = boolean.setResultsName("commitment") cost_tie_break = real.setResultsName("cost_tie_break") # $/MWh cost_cong_up = real.setResultsName("cost_cong_up") # $/h cost_cong_down = real.setResultsName("cost_cong_down") # $/h status = Optional(boolean).setResultsName("status") demand_data = bus_no + s_rating + p_direction + q_direction + \ p_bid_max + p_bid_min + p_optimal_bid + p_fixed + \ p_proportional + p_quadratic + q_fixed + q_proportional + \ q_quadratic + commitment + cost_tie_break + cost_cong_up + \ cost_cong_down + status + scolon demand_data.setParseAction(self.push_demand) demand_array = Literal("Demand.con") + "=" + "[" + "..." + \ ZeroOrMore(demand_data + Optional("]" + scolon)) return demand_array
[ "def", "_get_demand_array_construct", "(", "self", ")", ":", "bus_no", "=", "integer", ".", "setResultsName", "(", "\"bus_no\"", ")", "s_rating", "=", "real", ".", "setResultsName", "(", "\"s_rating\"", ")", "# MVA", "p_direction", "=", "real", ".", "setResultsName", "(", "\"p_direction\"", ")", "# p.u.", "q_direction", "=", "real", ".", "setResultsName", "(", "\"q_direction\"", ")", "# p.u.", "p_bid_max", "=", "real", ".", "setResultsName", "(", "\"p_bid_max\"", ")", "# p.u.", "p_bid_min", "=", "real", ".", "setResultsName", "(", "\"p_bid_min\"", ")", "# p.u.", "p_optimal_bid", "=", "Optional", "(", "real", ")", ".", "setResultsName", "(", "\"p_optimal_bid\"", ")", "p_fixed", "=", "real", ".", "setResultsName", "(", "\"p_fixed\"", ")", "# $/hr", "p_proportional", "=", "real", ".", "setResultsName", "(", "\"p_proportional\"", ")", "# $/MWh", "p_quadratic", "=", "real", ".", "setResultsName", "(", "\"p_quadratic\"", ")", "# $/MW^2h", "q_fixed", "=", "real", ".", "setResultsName", "(", "\"q_fixed\"", ")", "# $/hr", "q_proportional", "=", "real", ".", "setResultsName", "(", "\"q_proportional\"", ")", "# $/MVArh", "q_quadratic", "=", "real", ".", "setResultsName", "(", "\"q_quadratic\"", ")", "# $/MVAr^2h", "commitment", "=", "boolean", ".", "setResultsName", "(", "\"commitment\"", ")", "cost_tie_break", "=", "real", ".", "setResultsName", "(", "\"cost_tie_break\"", ")", "# $/MWh", "cost_cong_up", "=", "real", ".", "setResultsName", "(", "\"cost_cong_up\"", ")", "# $/h", "cost_cong_down", "=", "real", ".", "setResultsName", "(", "\"cost_cong_down\"", ")", "# $/h", "status", "=", "Optional", "(", "boolean", ")", ".", "setResultsName", "(", "\"status\"", ")", "demand_data", "=", "bus_no", "+", "s_rating", "+", "p_direction", "+", "q_direction", "+", "p_bid_max", "+", "p_bid_min", "+", "p_optimal_bid", "+", "p_fixed", "+", "p_proportional", "+", "p_quadratic", "+", "q_fixed", "+", "q_proportional", "+", "q_quadratic", "+", "commitment", "+", "cost_tie_break", "+", "cost_cong_up", "+", "cost_cong_down", "+", "status", "+", "scolon", "demand_data", ".", "setParseAction", "(", "self", ".", "push_demand", ")", "demand_array", "=", "Literal", "(", "\"Demand.con\"", ")", "+", "\"=\"", "+", "\"[\"", "+", "\"...\"", "+", "ZeroOrMore", "(", "demand_data", "+", "Optional", "(", "\"]\"", "+", "scolon", ")", ")", "return", "demand_array" ]
Returns a construct for an array of power demand data.
[ "Returns", "a", "construct", "for", "an", "array", "of", "power", "demand", "data", "." ]
python
train
nwilming/ocupy
ocupy/stimuli.py
https://github.com/nwilming/ocupy/blob/a0bd64f822576feaa502939d6bafd1183b237d16/ocupy/stimuli.py#L219-L278
def DirectoryStimuliFactory(loader): """ Takes an input path to the images folder of an experiment and generates automatically the category - filenumber list needed to construct an appropriate _categories object. Parameters : loader : Loader object which contains impath : string path to the input, i.e. image-, files of the experiment. All subfolders in that path will be treated as categories. If no subfolders are present, category 1 will be assigned and all files in the folder are considered input images. Images have to end in '.png'. ftrpath : string path to the feature folder. It is expected that the folder structure corresponds to the structure in impath, i.e. ftrpath/category/featurefolder/featuremap.mat Furthermore, features are assumed to be the same for all categories. """ impath = loader.impath ftrpath = loader.ftrpath # checks whether user has reading permission for the path assert os.access(impath, os.R_OK) assert os.access(ftrpath, os.R_OK) # EXTRACTING IMAGE NAMES img_per_cat = {} # extract only directories in the given folder subfolders = [name for name in os.listdir(impath) if os.path.isdir( os.path.join(impath, name))] # if there are no subfolders, walk through files. Take 1 as key for the # categories object if not subfolders: [_, _, files] = next(os.walk(os.path.join(impath))) # this only takes entries that end with '.png' entries = {1: [int(cur_file[cur_file.find('_')+1:-4]) for cur_file in files if cur_file.endswith('.png')]} img_per_cat.update(entries) subfolders = [''] # if there are subfolders, walk through them else: for directory in subfolders: [_, _, files] = next(os.walk(os.path.join(impath, directory))) # this only takes entries that end with '.png'. Strips ending and # considers everything after the first '_' as the imagenumber imagenumbers = [int(cur_file[cur_file.find('_')+1:-4]) for cur_file in files if (cur_file.endswith('.png') & (len(cur_file) > 4))] entries = {int(directory): imagenumbers} img_per_cat.update(entries) del directory del imagenumbers # in case subfolders do not exist, '' is appended here. _, features, files = next(os.walk(os.path.join(ftrpath, subfolders[0]))) return Categories(loader, img_per_cat = img_per_cat, features = features)
[ "def", "DirectoryStimuliFactory", "(", "loader", ")", ":", "impath", "=", "loader", ".", "impath", "ftrpath", "=", "loader", ".", "ftrpath", "# checks whether user has reading permission for the path", "assert", "os", ".", "access", "(", "impath", ",", "os", ".", "R_OK", ")", "assert", "os", ".", "access", "(", "ftrpath", ",", "os", ".", "R_OK", ")", "# EXTRACTING IMAGE NAMES", "img_per_cat", "=", "{", "}", "# extract only directories in the given folder", "subfolders", "=", "[", "name", "for", "name", "in", "os", ".", "listdir", "(", "impath", ")", "if", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "impath", ",", "name", ")", ")", "]", "# if there are no subfolders, walk through files. Take 1 as key for the ", "# categories object", "if", "not", "subfolders", ":", "[", "_", ",", "_", ",", "files", "]", "=", "next", "(", "os", ".", "walk", "(", "os", ".", "path", ".", "join", "(", "impath", ")", ")", ")", "# this only takes entries that end with '.png'", "entries", "=", "{", "1", ":", "[", "int", "(", "cur_file", "[", "cur_file", ".", "find", "(", "'_'", ")", "+", "1", ":", "-", "4", "]", ")", "for", "cur_file", "in", "files", "if", "cur_file", ".", "endswith", "(", "'.png'", ")", "]", "}", "img_per_cat", ".", "update", "(", "entries", ")", "subfolders", "=", "[", "''", "]", "# if there are subfolders, walk through them", "else", ":", "for", "directory", "in", "subfolders", ":", "[", "_", ",", "_", ",", "files", "]", "=", "next", "(", "os", ".", "walk", "(", "os", ".", "path", ".", "join", "(", "impath", ",", "directory", ")", ")", ")", "# this only takes entries that end with '.png'. Strips ending and", "# considers everything after the first '_' as the imagenumber", "imagenumbers", "=", "[", "int", "(", "cur_file", "[", "cur_file", ".", "find", "(", "'_'", ")", "+", "1", ":", "-", "4", "]", ")", "for", "cur_file", "in", "files", "if", "(", "cur_file", ".", "endswith", "(", "'.png'", ")", "&", "(", "len", "(", "cur_file", ")", ">", "4", ")", ")", "]", "entries", "=", "{", "int", "(", "directory", ")", ":", "imagenumbers", "}", "img_per_cat", ".", "update", "(", "entries", ")", "del", "directory", "del", "imagenumbers", "# in case subfolders do not exist, '' is appended here.", "_", ",", "features", ",", "files", "=", "next", "(", "os", ".", "walk", "(", "os", ".", "path", ".", "join", "(", "ftrpath", ",", "subfolders", "[", "0", "]", ")", ")", ")", "return", "Categories", "(", "loader", ",", "img_per_cat", "=", "img_per_cat", ",", "features", "=", "features", ")" ]
Takes an input path to the images folder of an experiment and generates automatically the category - filenumber list needed to construct an appropriate _categories object. Parameters : loader : Loader object which contains impath : string path to the input, i.e. image-, files of the experiment. All subfolders in that path will be treated as categories. If no subfolders are present, category 1 will be assigned and all files in the folder are considered input images. Images have to end in '.png'. ftrpath : string path to the feature folder. It is expected that the folder structure corresponds to the structure in impath, i.e. ftrpath/category/featurefolder/featuremap.mat Furthermore, features are assumed to be the same for all categories.
[ "Takes", "an", "input", "path", "to", "the", "images", "folder", "of", "an", "experiment", "and", "generates", "automatically", "the", "category", "-", "filenumber", "list", "needed", "to", "construct", "an", "appropriate", "_categories", "object", ".", "Parameters", ":", "loader", ":", "Loader", "object", "which", "contains", "impath", ":", "string", "path", "to", "the", "input", "i", ".", "e", ".", "image", "-", "files", "of", "the", "experiment", ".", "All", "subfolders", "in", "that", "path", "will", "be", "treated", "as", "categories", ".", "If", "no", "subfolders", "are", "present", "category", "1", "will", "be", "assigned", "and", "all", "files", "in", "the", "folder", "are", "considered", "input", "images", ".", "Images", "have", "to", "end", "in", ".", "png", ".", "ftrpath", ":", "string", "path", "to", "the", "feature", "folder", ".", "It", "is", "expected", "that", "the", "folder", "structure", "corresponds", "to", "the", "structure", "in", "impath", "i", ".", "e", ".", "ftrpath", "/", "category", "/", "featurefolder", "/", "featuremap", ".", "mat", "Furthermore", "features", "are", "assumed", "to", "be", "the", "same", "for", "all", "categories", "." ]
python
train
influxdata/influxdb-python
influxdb/client.py
https://github.com/influxdata/influxdb-python/blob/d5d12499f3755199d5eedd8b363450f1cf4073bd/influxdb/client.py#L454-L514
def write_points(self, points, time_precision=None, database=None, retention_policy=None, tags=None, batch_size=None, protocol='json', consistency=None ): """Write to multiple time series names. :param points: the list of points to be written in the database :type points: list of dictionaries, each dictionary represents a point :type points: (if protocol is 'json') list of dicts, where each dict represents a point. (if protocol is 'line') sequence of line protocol strings. :param time_precision: Either 's', 'm', 'ms' or 'u', defaults to None :type time_precision: str :param database: the database to write the points to. Defaults to the client's current database :type database: str :param tags: a set of key-value pairs associated with each point. Both keys and values must be strings. These are shared tags and will be merged with point-specific tags, defaults to None :type tags: dict :param retention_policy: the retention policy for the points. Defaults to None :type retention_policy: str :param batch_size: value to write the points in batches instead of all at one time. Useful for when doing data dumps from one database to another or when doing a massive write operation, defaults to None :type batch_size: int :param protocol: Protocol for writing data. Either 'line' or 'json'. :type protocol: str :param consistency: Consistency for the points. One of {'any','one','quorum','all'}. :type consistency: str :returns: True, if the operation is successful :rtype: bool .. note:: if no retention policy is specified, the default retention policy for the database is used """ if batch_size and batch_size > 0: for batch in self._batches(points, batch_size): self._write_points(points=batch, time_precision=time_precision, database=database, retention_policy=retention_policy, tags=tags, protocol=protocol, consistency=consistency) return True return self._write_points(points=points, time_precision=time_precision, database=database, retention_policy=retention_policy, tags=tags, protocol=protocol, consistency=consistency)
[ "def", "write_points", "(", "self", ",", "points", ",", "time_precision", "=", "None", ",", "database", "=", "None", ",", "retention_policy", "=", "None", ",", "tags", "=", "None", ",", "batch_size", "=", "None", ",", "protocol", "=", "'json'", ",", "consistency", "=", "None", ")", ":", "if", "batch_size", "and", "batch_size", ">", "0", ":", "for", "batch", "in", "self", ".", "_batches", "(", "points", ",", "batch_size", ")", ":", "self", ".", "_write_points", "(", "points", "=", "batch", ",", "time_precision", "=", "time_precision", ",", "database", "=", "database", ",", "retention_policy", "=", "retention_policy", ",", "tags", "=", "tags", ",", "protocol", "=", "protocol", ",", "consistency", "=", "consistency", ")", "return", "True", "return", "self", ".", "_write_points", "(", "points", "=", "points", ",", "time_precision", "=", "time_precision", ",", "database", "=", "database", ",", "retention_policy", "=", "retention_policy", ",", "tags", "=", "tags", ",", "protocol", "=", "protocol", ",", "consistency", "=", "consistency", ")" ]
Write to multiple time series names. :param points: the list of points to be written in the database :type points: list of dictionaries, each dictionary represents a point :type points: (if protocol is 'json') list of dicts, where each dict represents a point. (if protocol is 'line') sequence of line protocol strings. :param time_precision: Either 's', 'm', 'ms' or 'u', defaults to None :type time_precision: str :param database: the database to write the points to. Defaults to the client's current database :type database: str :param tags: a set of key-value pairs associated with each point. Both keys and values must be strings. These are shared tags and will be merged with point-specific tags, defaults to None :type tags: dict :param retention_policy: the retention policy for the points. Defaults to None :type retention_policy: str :param batch_size: value to write the points in batches instead of all at one time. Useful for when doing data dumps from one database to another or when doing a massive write operation, defaults to None :type batch_size: int :param protocol: Protocol for writing data. Either 'line' or 'json'. :type protocol: str :param consistency: Consistency for the points. One of {'any','one','quorum','all'}. :type consistency: str :returns: True, if the operation is successful :rtype: bool .. note:: if no retention policy is specified, the default retention policy for the database is used
[ "Write", "to", "multiple", "time", "series", "names", "." ]
python
train
earwig/mwparserfromhell
mwparserfromhell/wikicode.py
https://github.com/earwig/mwparserfromhell/blob/98dc30902d35c714a70aca8e6616f49d71cb24cc/mwparserfromhell/wikicode.py#L282-L298
def set(self, index, value): """Set the ``Node`` at *index* to *value*. Raises :exc:`IndexError` if *index* is out of range, or :exc:`ValueError` if *value* cannot be coerced into one :class:`.Node`. To insert multiple nodes at an index, use :meth:`get` with either :meth:`remove` and :meth:`insert` or :meth:`replace`. """ nodes = parse_anything(value).nodes if len(nodes) > 1: raise ValueError("Cannot coerce multiple nodes into one index") if index >= len(self.nodes) or -1 * index > len(self.nodes): raise IndexError("List assignment index out of range") if nodes: self.nodes[index] = nodes[0] else: self.nodes.pop(index)
[ "def", "set", "(", "self", ",", "index", ",", "value", ")", ":", "nodes", "=", "parse_anything", "(", "value", ")", ".", "nodes", "if", "len", "(", "nodes", ")", ">", "1", ":", "raise", "ValueError", "(", "\"Cannot coerce multiple nodes into one index\"", ")", "if", "index", ">=", "len", "(", "self", ".", "nodes", ")", "or", "-", "1", "*", "index", ">", "len", "(", "self", ".", "nodes", ")", ":", "raise", "IndexError", "(", "\"List assignment index out of range\"", ")", "if", "nodes", ":", "self", ".", "nodes", "[", "index", "]", "=", "nodes", "[", "0", "]", "else", ":", "self", ".", "nodes", ".", "pop", "(", "index", ")" ]
Set the ``Node`` at *index* to *value*. Raises :exc:`IndexError` if *index* is out of range, or :exc:`ValueError` if *value* cannot be coerced into one :class:`.Node`. To insert multiple nodes at an index, use :meth:`get` with either :meth:`remove` and :meth:`insert` or :meth:`replace`.
[ "Set", "the", "Node", "at", "*", "index", "*", "to", "*", "value", "*", "." ]
python
train
kata198/QueryableList
QueryableList/Base.py
https://github.com/kata198/QueryableList/blob/279286d46205ce8268af42e03b75820a7483fddb/QueryableList/Base.py#L22-L86
def getFiltersFromArgs(kwargs): ''' getFiltersFromArgs - Returns a dictionary of each filter type, and the corrosponding field/value @param kwargs <dict> - Dictionary of filter arguments @return - Dictionary of each filter type (minus the ones that are optimized into others), each containing a list of tuples, (fieldName, matchingValue) ''' # Create a copy of each possible filter in FILTER_TYPES and link to empty list. # This object will be filled with all of the filters requested ret = { filterType : list() for filterType in FILTER_TYPES } for key, value in kwargs.items(): matchObj = FILTER_PARAM_RE.match(key) if not matchObj: # Default ( no __$oper) is eq filterType = 'eq' field = key else: # We have an operation defined, extract it, and optimize if possible # (like if op is a case-insensitive, lowercase the value here) groupDict = matchObj.groupdict() filterType = groupDict['filterType'] field = groupDict['field'] if filterType not in FILTER_TYPES: raise ValueError('Unknown filter type: %s. Choices are: (%s)' %(filterType, ', '.join(FILTER_TYPES))) if filterType == 'isnull': # Convert "isnull" to one of the "is" or "isnot" filters against None if type(value) is not bool: raise ValueError('Filter type "isnull" requires True/False.') if value is True: filterType = "is" else: filterType = "isnot" value = None elif filterType in ('in', 'notin'): # Try to make more efficient by making a set. Fallback to just using what they provide, could be an object implementing "in" try: value = set(value) except: pass # Optimization - if case-insensitive, lowercase the comparison value here elif filterType in ('ieq', 'ine', 'icontains', 'noticontains'): value = value.lower() elif filterType.startswith('split'): if (not issubclass(type(value), tuple) and not issubclass(type(value), list)) or len(value) != 2: raise ValueError('Filter type %s expects a tuple of two params. (splitBy, matchPortion)' %(filterType,)) ret[filterType].append( (field, value) ) return ret
[ "def", "getFiltersFromArgs", "(", "kwargs", ")", ":", "# Create a copy of each possible filter in FILTER_TYPES and link to empty list.", "# This object will be filled with all of the filters requested", "ret", "=", "{", "filterType", ":", "list", "(", ")", "for", "filterType", "in", "FILTER_TYPES", "}", "for", "key", ",", "value", "in", "kwargs", ".", "items", "(", ")", ":", "matchObj", "=", "FILTER_PARAM_RE", ".", "match", "(", "key", ")", "if", "not", "matchObj", ":", "# Default ( no __$oper) is eq", "filterType", "=", "'eq'", "field", "=", "key", "else", ":", "# We have an operation defined, extract it, and optimize if possible", "# (like if op is a case-insensitive, lowercase the value here)", "groupDict", "=", "matchObj", ".", "groupdict", "(", ")", "filterType", "=", "groupDict", "[", "'filterType'", "]", "field", "=", "groupDict", "[", "'field'", "]", "if", "filterType", "not", "in", "FILTER_TYPES", ":", "raise", "ValueError", "(", "'Unknown filter type: %s. Choices are: (%s)'", "%", "(", "filterType", ",", "', '", ".", "join", "(", "FILTER_TYPES", ")", ")", ")", "if", "filterType", "==", "'isnull'", ":", "# Convert \"isnull\" to one of the \"is\" or \"isnot\" filters against None", "if", "type", "(", "value", ")", "is", "not", "bool", ":", "raise", "ValueError", "(", "'Filter type \"isnull\" requires True/False.'", ")", "if", "value", "is", "True", ":", "filterType", "=", "\"is\"", "else", ":", "filterType", "=", "\"isnot\"", "value", "=", "None", "elif", "filterType", "in", "(", "'in'", ",", "'notin'", ")", ":", "# Try to make more efficient by making a set. Fallback to just using what they provide, could be an object implementing \"in\"", "try", ":", "value", "=", "set", "(", "value", ")", "except", ":", "pass", "# Optimization - if case-insensitive, lowercase the comparison value here", "elif", "filterType", "in", "(", "'ieq'", ",", "'ine'", ",", "'icontains'", ",", "'noticontains'", ")", ":", "value", "=", "value", ".", "lower", "(", ")", "elif", "filterType", ".", "startswith", "(", "'split'", ")", ":", "if", "(", "not", "issubclass", "(", "type", "(", "value", ")", ",", "tuple", ")", "and", "not", "issubclass", "(", "type", "(", "value", ")", ",", "list", ")", ")", "or", "len", "(", "value", ")", "!=", "2", ":", "raise", "ValueError", "(", "'Filter type %s expects a tuple of two params. (splitBy, matchPortion)'", "%", "(", "filterType", ",", ")", ")", "ret", "[", "filterType", "]", ".", "append", "(", "(", "field", ",", "value", ")", ")", "return", "ret" ]
getFiltersFromArgs - Returns a dictionary of each filter type, and the corrosponding field/value @param kwargs <dict> - Dictionary of filter arguments @return - Dictionary of each filter type (minus the ones that are optimized into others), each containing a list of tuples, (fieldName, matchingValue)
[ "getFiltersFromArgs", "-", "Returns", "a", "dictionary", "of", "each", "filter", "type", "and", "the", "corrosponding", "field", "/", "value" ]
python
train
MisterY/gnucash-portfolio
gnucash_portfolio/accounts.py
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/accounts.py#L197-L217
def get_transactions(self, date_from: datetime, date_to: datetime) -> List[Transaction]: """ Returns account transactions """ assert isinstance(date_from, datetime) assert isinstance(date_to, datetime) # fix up the parameters as we need datetime dt_from = Datum() dt_from.from_datetime(date_from) dt_from.start_of_day() dt_to = Datum() dt_to.from_datetime(date_to) dt_to.end_of_day() query = ( self.book.session.query(Transaction) .join(Split) .filter(Split.account_guid == self.account.guid) .filter(Transaction.post_date >= dt_from.date, Transaction.post_date <= dt_to.date) .order_by(Transaction.post_date) ) return query.all()
[ "def", "get_transactions", "(", "self", ",", "date_from", ":", "datetime", ",", "date_to", ":", "datetime", ")", "->", "List", "[", "Transaction", "]", ":", "assert", "isinstance", "(", "date_from", ",", "datetime", ")", "assert", "isinstance", "(", "date_to", ",", "datetime", ")", "# fix up the parameters as we need datetime", "dt_from", "=", "Datum", "(", ")", "dt_from", ".", "from_datetime", "(", "date_from", ")", "dt_from", ".", "start_of_day", "(", ")", "dt_to", "=", "Datum", "(", ")", "dt_to", ".", "from_datetime", "(", "date_to", ")", "dt_to", ".", "end_of_day", "(", ")", "query", "=", "(", "self", ".", "book", ".", "session", ".", "query", "(", "Transaction", ")", ".", "join", "(", "Split", ")", ".", "filter", "(", "Split", ".", "account_guid", "==", "self", ".", "account", ".", "guid", ")", ".", "filter", "(", "Transaction", ".", "post_date", ">=", "dt_from", ".", "date", ",", "Transaction", ".", "post_date", "<=", "dt_to", ".", "date", ")", ".", "order_by", "(", "Transaction", ".", "post_date", ")", ")", "return", "query", ".", "all", "(", ")" ]
Returns account transactions
[ "Returns", "account", "transactions" ]
python
train
RudolfCardinal/pythonlib
cardinal_pythonlib/rnc_db.py
https://github.com/RudolfCardinal/pythonlib/blob/0b84cb35f38bd7d8723958dae51b480a829b7227/cardinal_pythonlib/rnc_db.py#L863-L868
def set_verbose_logging(verbose: bool) -> None: """Chooses basic or verbose logging.""" if verbose: set_loglevel(logging.DEBUG) else: set_loglevel(logging.INFO)
[ "def", "set_verbose_logging", "(", "verbose", ":", "bool", ")", "->", "None", ":", "if", "verbose", ":", "set_loglevel", "(", "logging", ".", "DEBUG", ")", "else", ":", "set_loglevel", "(", "logging", ".", "INFO", ")" ]
Chooses basic or verbose logging.
[ "Chooses", "basic", "or", "verbose", "logging", "." ]
python
train
splitkeycoffee/pyhottop
pyhottop/pyhottop.py
https://github.com/splitkeycoffee/pyhottop/blob/2986bbb2d848f7e41fa3ece5ebb1b33c8882219c/pyhottop/pyhottop.py#L668-L702
def add_roast_event(self, event): """Add an event to the roast log. This method should be used for registering events that may be worth tracking like first crack, second crack and the dropping of coffee. Similar to the standard reading output from the roaster, manually created events will include the current configuration reading, time and metadata passed in. :param event: Details describing what happened :type event: dict :returns: dict """ event_time = self.get_roast_time() def get_valid_config(): """Keep grabbing configs until we have a valid one. In rare cases, the configuration will be invalid when the user registers an event. This malformation can occur across several events, so we use this helper to find a valid config to associate to the event while preserving the original time. Due to fast interval checking, this is not liable to skew data that much and it's better than extreme false data. """ config = self.get_roast_properties()['last']['config'] if not config['valid']: self._log.debug("Invalid config at event time, retrying...") self.get_valid_config() return config event.update({'time': event_time, 'config': get_valid_config()}) self._roast['events'].append(event) return self.get_roast_properties()
[ "def", "add_roast_event", "(", "self", ",", "event", ")", ":", "event_time", "=", "self", ".", "get_roast_time", "(", ")", "def", "get_valid_config", "(", ")", ":", "\"\"\"Keep grabbing configs until we have a valid one.\n\n In rare cases, the configuration will be invalid when the user\n registers an event. This malformation can occur across several\n events, so we use this helper to find a valid config to associate\n to the event while preserving the original time. Due to fast\n interval checking, this is not liable to skew data that much and\n it's better than extreme false data.\n \"\"\"", "config", "=", "self", ".", "get_roast_properties", "(", ")", "[", "'last'", "]", "[", "'config'", "]", "if", "not", "config", "[", "'valid'", "]", ":", "self", ".", "_log", ".", "debug", "(", "\"Invalid config at event time, retrying...\"", ")", "self", ".", "get_valid_config", "(", ")", "return", "config", "event", ".", "update", "(", "{", "'time'", ":", "event_time", ",", "'config'", ":", "get_valid_config", "(", ")", "}", ")", "self", ".", "_roast", "[", "'events'", "]", ".", "append", "(", "event", ")", "return", "self", ".", "get_roast_properties", "(", ")" ]
Add an event to the roast log. This method should be used for registering events that may be worth tracking like first crack, second crack and the dropping of coffee. Similar to the standard reading output from the roaster, manually created events will include the current configuration reading, time and metadata passed in. :param event: Details describing what happened :type event: dict :returns: dict
[ "Add", "an", "event", "to", "the", "roast", "log", "." ]
python
train
trailofbits/manticore
manticore/platforms/evm.py
https://github.com/trailofbits/manticore/blob/54c5a15b1119c523ae54c09972413e8b97f11629/manticore/platforms/evm.py#L1101-L1105
def _store(self, offset, value, size=1): """Stores value in memory as a big endian""" self.memory.write_BE(offset, value, size) for i in range(size): self._publish('did_evm_write_memory', offset + i, Operators.EXTRACT(value, (size - i - 1) * 8, 8))
[ "def", "_store", "(", "self", ",", "offset", ",", "value", ",", "size", "=", "1", ")", ":", "self", ".", "memory", ".", "write_BE", "(", "offset", ",", "value", ",", "size", ")", "for", "i", "in", "range", "(", "size", ")", ":", "self", ".", "_publish", "(", "'did_evm_write_memory'", ",", "offset", "+", "i", ",", "Operators", ".", "EXTRACT", "(", "value", ",", "(", "size", "-", "i", "-", "1", ")", "*", "8", ",", "8", ")", ")" ]
Stores value in memory as a big endian
[ "Stores", "value", "in", "memory", "as", "a", "big", "endian" ]
python
valid
pallets/flask-sqlalchemy
flask_sqlalchemy/__init__.py
https://github.com/pallets/flask-sqlalchemy/blob/3d3261f4fc6d28f5bf407cf7d523e36a09a8c144/flask_sqlalchemy/__init__.py#L758-L772
def create_session(self, options): """Create the session factory used by :meth:`create_scoped_session`. The factory **must** return an object that SQLAlchemy recognizes as a session, or registering session events may raise an exception. Valid factories include a :class:`~sqlalchemy.orm.session.Session` class or a :class:`~sqlalchemy.orm.session.sessionmaker`. The default implementation creates a ``sessionmaker`` for :class:`SignallingSession`. :param options: dict of keyword arguments passed to session class """ return orm.sessionmaker(class_=SignallingSession, db=self, **options)
[ "def", "create_session", "(", "self", ",", "options", ")", ":", "return", "orm", ".", "sessionmaker", "(", "class_", "=", "SignallingSession", ",", "db", "=", "self", ",", "*", "*", "options", ")" ]
Create the session factory used by :meth:`create_scoped_session`. The factory **must** return an object that SQLAlchemy recognizes as a session, or registering session events may raise an exception. Valid factories include a :class:`~sqlalchemy.orm.session.Session` class or a :class:`~sqlalchemy.orm.session.sessionmaker`. The default implementation creates a ``sessionmaker`` for :class:`SignallingSession`. :param options: dict of keyword arguments passed to session class
[ "Create", "the", "session", "factory", "used", "by", ":", "meth", ":", "create_scoped_session", "." ]
python
train
zyga/call
call/__init__.py
https://github.com/zyga/call/blob/dcef9a5aac7f9085bd4829dd6bcedc5fc2945d87/call/__init__.py#L46-L62
def bind(self, args, kwargs): """ Bind arguments and keyword arguments to the encapsulated function. Returns a dictionary of parameters (named according to function parameters) with the values that were bound to each name. """ spec = self._spec resolution = self.resolve(args, kwargs) params = dict(zip(spec.args, resolution.slots)) if spec.varargs: params[spec.varargs] = resolution.varargs if spec.varkw: params[spec.varkw] = resolution.varkw if spec.kwonlyargs: params.update(resolution.kwonlyargs) return params
[ "def", "bind", "(", "self", ",", "args", ",", "kwargs", ")", ":", "spec", "=", "self", ".", "_spec", "resolution", "=", "self", ".", "resolve", "(", "args", ",", "kwargs", ")", "params", "=", "dict", "(", "zip", "(", "spec", ".", "args", ",", "resolution", ".", "slots", ")", ")", "if", "spec", ".", "varargs", ":", "params", "[", "spec", ".", "varargs", "]", "=", "resolution", ".", "varargs", "if", "spec", ".", "varkw", ":", "params", "[", "spec", ".", "varkw", "]", "=", "resolution", ".", "varkw", "if", "spec", ".", "kwonlyargs", ":", "params", ".", "update", "(", "resolution", ".", "kwonlyargs", ")", "return", "params" ]
Bind arguments and keyword arguments to the encapsulated function. Returns a dictionary of parameters (named according to function parameters) with the values that were bound to each name.
[ "Bind", "arguments", "and", "keyword", "arguments", "to", "the", "encapsulated", "function", "." ]
python
train
dw/mitogen
ansible_mitogen/connection.py
https://github.com/dw/mitogen/blob/a7fdb55e1300a7e0a5e404b09eb730cf9a525da7/ansible_mitogen/connection.py#L259-L274
def _connect_su(spec): """ Return ContextService arguments for su as a become method. """ return { 'method': 'su', 'enable_lru': True, 'kwargs': { 'username': spec.become_user(), 'password': spec.become_pass(), 'python_path': spec.python_path(), 'su_path': spec.become_exe(), 'connect_timeout': spec.timeout(), 'remote_name': get_remote_name(spec), } }
[ "def", "_connect_su", "(", "spec", ")", ":", "return", "{", "'method'", ":", "'su'", ",", "'enable_lru'", ":", "True", ",", "'kwargs'", ":", "{", "'username'", ":", "spec", ".", "become_user", "(", ")", ",", "'password'", ":", "spec", ".", "become_pass", "(", ")", ",", "'python_path'", ":", "spec", ".", "python_path", "(", ")", ",", "'su_path'", ":", "spec", ".", "become_exe", "(", ")", ",", "'connect_timeout'", ":", "spec", ".", "timeout", "(", ")", ",", "'remote_name'", ":", "get_remote_name", "(", "spec", ")", ",", "}", "}" ]
Return ContextService arguments for su as a become method.
[ "Return", "ContextService", "arguments", "for", "su", "as", "a", "become", "method", "." ]
python
train
proycon/pynlpl
pynlpl/formats/folia.py
https://github.com/proycon/pynlpl/blob/7707f69a91caaa6cde037f0d0379f1d42500a68b/pynlpl/formats/folia.py#L3263-L3266
def layers(self, annotationtype=None,set=None): """Returns a list of annotation layers found *directly* under this element, does not include alternative layers""" if inspect.isclass(annotationtype): annotationtype = annotationtype.ANNOTATIONTYPE return [ x for x in self.select(AbstractAnnotationLayer,set,False,True) if annotationtype is None or x.ANNOTATIONTYPE == annotationtype ]
[ "def", "layers", "(", "self", ",", "annotationtype", "=", "None", ",", "set", "=", "None", ")", ":", "if", "inspect", ".", "isclass", "(", "annotationtype", ")", ":", "annotationtype", "=", "annotationtype", ".", "ANNOTATIONTYPE", "return", "[", "x", "for", "x", "in", "self", ".", "select", "(", "AbstractAnnotationLayer", ",", "set", ",", "False", ",", "True", ")", "if", "annotationtype", "is", "None", "or", "x", ".", "ANNOTATIONTYPE", "==", "annotationtype", "]" ]
Returns a list of annotation layers found *directly* under this element, does not include alternative layers
[ "Returns", "a", "list", "of", "annotation", "layers", "found", "*", "directly", "*", "under", "this", "element", "does", "not", "include", "alternative", "layers" ]
python
train
pinterest/pymemcache
pymemcache/client/base.py
https://github.com/pinterest/pymemcache/blob/f3a348f4ce2248cce8b398e93e08d984fb9100e5/pymemcache/client/base.py#L504-L526
def delete(self, key, noreply=None): """ The memcached "delete" command. Args: key: str, see class docs for details. noreply: optional bool, True to not wait for the reply (defaults to self.default_noreply). Returns: If noreply is True, always returns True. Otherwise returns True if the key was deleted, and False if it wasn't found. """ if noreply is None: noreply = self.default_noreply cmd = b'delete ' + self.check_key(key) if noreply: cmd += b' noreply' cmd += b'\r\n' results = self._misc_cmd([cmd], b'delete', noreply) if noreply: return True return results[0] == b'DELETED'
[ "def", "delete", "(", "self", ",", "key", ",", "noreply", "=", "None", ")", ":", "if", "noreply", "is", "None", ":", "noreply", "=", "self", ".", "default_noreply", "cmd", "=", "b'delete '", "+", "self", ".", "check_key", "(", "key", ")", "if", "noreply", ":", "cmd", "+=", "b' noreply'", "cmd", "+=", "b'\\r\\n'", "results", "=", "self", ".", "_misc_cmd", "(", "[", "cmd", "]", ",", "b'delete'", ",", "noreply", ")", "if", "noreply", ":", "return", "True", "return", "results", "[", "0", "]", "==", "b'DELETED'" ]
The memcached "delete" command. Args: key: str, see class docs for details. noreply: optional bool, True to not wait for the reply (defaults to self.default_noreply). Returns: If noreply is True, always returns True. Otherwise returns True if the key was deleted, and False if it wasn't found.
[ "The", "memcached", "delete", "command", "." ]
python
train
senaite/senaite.core.supermodel
src/senaite/core/supermodel/model.py
https://github.com/senaite/senaite.core.supermodel/blob/1819154332b8776f187aa98a2e299701983a0119/src/senaite/core/supermodel/model.py#L243-L249
def brain(self): """Catalog brain of the wrapped object """ if self._brain is None: logger.debug("SuperModel::brain: *Fetch catalog brain*") self._brain = self.get_brain_by_uid(self.uid) return self._brain
[ "def", "brain", "(", "self", ")", ":", "if", "self", ".", "_brain", "is", "None", ":", "logger", ".", "debug", "(", "\"SuperModel::brain: *Fetch catalog brain*\"", ")", "self", ".", "_brain", "=", "self", ".", "get_brain_by_uid", "(", "self", ".", "uid", ")", "return", "self", ".", "_brain" ]
Catalog brain of the wrapped object
[ "Catalog", "brain", "of", "the", "wrapped", "object" ]
python
train
selik/xport
xport/v56.py
https://github.com/selik/xport/blob/fafd15a24ccd102fc92d0c0123b9877a0c752182/xport/v56.py#L421-L426
def header_match(cls, data): ''' Parse a member namestrs header (1 line, 80 bytes). ''' mo = cls.header_re.match(data) return int(mo['n_variables'])
[ "def", "header_match", "(", "cls", ",", "data", ")", ":", "mo", "=", "cls", ".", "header_re", ".", "match", "(", "data", ")", "return", "int", "(", "mo", "[", "'n_variables'", "]", ")" ]
Parse a member namestrs header (1 line, 80 bytes).
[ "Parse", "a", "member", "namestrs", "header", "(", "1", "line", "80", "bytes", ")", "." ]
python
train
ThreatConnect-Inc/tcex
tcex/tcex_bin_lib.py
https://github.com/ThreatConnect-Inc/tcex/blob/dd4d7a1ef723af1561687120191886b9a2fd4b47/tcex/tcex_bin_lib.py#L144-L230
def install_libs(self): """Install Required Libraries using pip.""" # default or current python version lib_data = [{'python_executable': sys.executable, 'lib_dir': self.lib_directory}] # check for requirements.txt if not os.path.isfile(self.requirements_file): self.handle_error('A requirements.txt file is required to install modules.') # if branch arg is provide use git branch instead of pypi if self.args.branch is not None: self._create_temp_requirements() # overwrite default with config data if self.tcex_json.get('lib_versions'): lib_data = self.tcex_json.get('lib_versions') print('{}Using "lib" directories defined in tcex.json file.'.format(c.Style.BRIGHT)) # configure proxy settings proxy_enabled = self._configure_proxy() # install all requested lib directories for data in lib_data: # pattern to match env vars in data env_var = re.compile(r'\$env\.([a-zA-Z0-9]+)') lib_dir = data.get('lib_dir') # replace env vars with env val in the lib dir matches = re.findall(env_var, lib_dir) if matches: env_val = os.environ.get(matches[0]) if env_val is None: self.handle_error( '"{}" env variable set in tcex.json, but could not be resolved.'.format( matches[0] ) ) lib_dir = re.sub(env_var, env_val, lib_dir) lib_dir_fq = os.path.join(self.app_path, lib_dir) if os.access(lib_dir_fq, os.W_OK): # remove lib directory from previous runs shutil.rmtree(lib_dir_fq) # replace env vars with env val in the python executable python_executable = data.get('python_executable') matches = re.findall(env_var, python_executable) if matches: env_val = os.environ.get(matches[0]) python_executable = re.sub(env_var, env_val, python_executable) print('Building Lib Dir: {}{}{}'.format(c.Style.BRIGHT, c.Fore.CYAN, lib_dir_fq)) exe_command = self._build_command(python_executable, lib_dir_fq, proxy_enabled) print('Running: {}{}{}'.format(c.Style.BRIGHT, c.Fore.GREEN, ' '.join(exe_command))) p = subprocess.Popen( exe_command, shell=False, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) out, err = p.communicate() # pylint: disable=W0612 if p.returncode != 0: print('{}{}FAIL'.format(c.Style.BRIGHT, c.Fore.RED)) print('{}{}{}'.format(c.Style.BRIGHT, c.Fore.RED, err.decode('utf-8'))) sys.exit('ERROR: {}'.format(err.decode('utf-8'))) # version comparison try: python_version = lib_dir.split('_', 1)[1] except IndexError: self.handle_error('Could not determine version from lib string.') # track the latest Python version if self.latest_version is None: self.latest_version = python_version elif StrictVersion(python_version) > StrictVersion(self.latest_version): self.latest_version = python_version # cleanup temp file if required if self.use_temp_requirements_file: os.remove(self.requirements_file) # create lib_latest self._create_lib_latest()
[ "def", "install_libs", "(", "self", ")", ":", "# default or current python version", "lib_data", "=", "[", "{", "'python_executable'", ":", "sys", ".", "executable", ",", "'lib_dir'", ":", "self", ".", "lib_directory", "}", "]", "# check for requirements.txt", "if", "not", "os", ".", "path", ".", "isfile", "(", "self", ".", "requirements_file", ")", ":", "self", ".", "handle_error", "(", "'A requirements.txt file is required to install modules.'", ")", "# if branch arg is provide use git branch instead of pypi", "if", "self", ".", "args", ".", "branch", "is", "not", "None", ":", "self", ".", "_create_temp_requirements", "(", ")", "# overwrite default with config data", "if", "self", ".", "tcex_json", ".", "get", "(", "'lib_versions'", ")", ":", "lib_data", "=", "self", ".", "tcex_json", ".", "get", "(", "'lib_versions'", ")", "print", "(", "'{}Using \"lib\" directories defined in tcex.json file.'", ".", "format", "(", "c", ".", "Style", ".", "BRIGHT", ")", ")", "# configure proxy settings", "proxy_enabled", "=", "self", ".", "_configure_proxy", "(", ")", "# install all requested lib directories", "for", "data", "in", "lib_data", ":", "# pattern to match env vars in data", "env_var", "=", "re", ".", "compile", "(", "r'\\$env\\.([a-zA-Z0-9]+)'", ")", "lib_dir", "=", "data", ".", "get", "(", "'lib_dir'", ")", "# replace env vars with env val in the lib dir", "matches", "=", "re", ".", "findall", "(", "env_var", ",", "lib_dir", ")", "if", "matches", ":", "env_val", "=", "os", ".", "environ", ".", "get", "(", "matches", "[", "0", "]", ")", "if", "env_val", "is", "None", ":", "self", ".", "handle_error", "(", "'\"{}\" env variable set in tcex.json, but could not be resolved.'", ".", "format", "(", "matches", "[", "0", "]", ")", ")", "lib_dir", "=", "re", ".", "sub", "(", "env_var", ",", "env_val", ",", "lib_dir", ")", "lib_dir_fq", "=", "os", ".", "path", ".", "join", "(", "self", ".", "app_path", ",", "lib_dir", ")", "if", "os", ".", "access", "(", "lib_dir_fq", ",", "os", ".", "W_OK", ")", ":", "# remove lib directory from previous runs", "shutil", ".", "rmtree", "(", "lib_dir_fq", ")", "# replace env vars with env val in the python executable", "python_executable", "=", "data", ".", "get", "(", "'python_executable'", ")", "matches", "=", "re", ".", "findall", "(", "env_var", ",", "python_executable", ")", "if", "matches", ":", "env_val", "=", "os", ".", "environ", ".", "get", "(", "matches", "[", "0", "]", ")", "python_executable", "=", "re", ".", "sub", "(", "env_var", ",", "env_val", ",", "python_executable", ")", "print", "(", "'Building Lib Dir: {}{}{}'", ".", "format", "(", "c", ".", "Style", ".", "BRIGHT", ",", "c", ".", "Fore", ".", "CYAN", ",", "lib_dir_fq", ")", ")", "exe_command", "=", "self", ".", "_build_command", "(", "python_executable", ",", "lib_dir_fq", ",", "proxy_enabled", ")", "print", "(", "'Running: {}{}{}'", ".", "format", "(", "c", ".", "Style", ".", "BRIGHT", ",", "c", ".", "Fore", ".", "GREEN", ",", "' '", ".", "join", "(", "exe_command", ")", ")", ")", "p", "=", "subprocess", ".", "Popen", "(", "exe_command", ",", "shell", "=", "False", ",", "stdin", "=", "subprocess", ".", "PIPE", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ",", ")", "out", ",", "err", "=", "p", ".", "communicate", "(", ")", "# pylint: disable=W0612", "if", "p", ".", "returncode", "!=", "0", ":", "print", "(", "'{}{}FAIL'", ".", "format", "(", "c", ".", "Style", ".", "BRIGHT", ",", "c", ".", "Fore", ".", "RED", ")", ")", "print", "(", "'{}{}{}'", ".", "format", "(", "c", ".", "Style", ".", "BRIGHT", ",", "c", ".", "Fore", ".", "RED", ",", "err", ".", "decode", "(", "'utf-8'", ")", ")", ")", "sys", ".", "exit", "(", "'ERROR: {}'", ".", "format", "(", "err", ".", "decode", "(", "'utf-8'", ")", ")", ")", "# version comparison", "try", ":", "python_version", "=", "lib_dir", ".", "split", "(", "'_'", ",", "1", ")", "[", "1", "]", "except", "IndexError", ":", "self", ".", "handle_error", "(", "'Could not determine version from lib string.'", ")", "# track the latest Python version", "if", "self", ".", "latest_version", "is", "None", ":", "self", ".", "latest_version", "=", "python_version", "elif", "StrictVersion", "(", "python_version", ")", ">", "StrictVersion", "(", "self", ".", "latest_version", ")", ":", "self", ".", "latest_version", "=", "python_version", "# cleanup temp file if required", "if", "self", ".", "use_temp_requirements_file", ":", "os", ".", "remove", "(", "self", ".", "requirements_file", ")", "# create lib_latest", "self", ".", "_create_lib_latest", "(", ")" ]
Install Required Libraries using pip.
[ "Install", "Required", "Libraries", "using", "pip", "." ]
python
train
megacool/flask-canonical
flask_canonical/canonical_logger.py
https://github.com/megacool/flask-canonical/blob/384c10205a1f5eefe859b3ae3c3152327bd4e7b7/flask_canonical/canonical_logger.py#L160-L182
def get_view_function(app, url, method): """Match a url and return the view and arguments it will be called with, or None if there is no view. Creds: http://stackoverflow.com/a/38488506 """ # pylint: disable=too-many-return-statements adapter = app.create_url_adapter(request) try: match = adapter.match(url, method=method) except RequestRedirect as ex: # recursively match redirects return get_view_function(app, ex.new_url, method) except (MethodNotAllowed, NotFound): # no match return None try: return app.view_functions[match[0]] except KeyError: # no view is associated with the endpoint return None
[ "def", "get_view_function", "(", "app", ",", "url", ",", "method", ")", ":", "# pylint: disable=too-many-return-statements", "adapter", "=", "app", ".", "create_url_adapter", "(", "request", ")", "try", ":", "match", "=", "adapter", ".", "match", "(", "url", ",", "method", "=", "method", ")", "except", "RequestRedirect", "as", "ex", ":", "# recursively match redirects", "return", "get_view_function", "(", "app", ",", "ex", ".", "new_url", ",", "method", ")", "except", "(", "MethodNotAllowed", ",", "NotFound", ")", ":", "# no match", "return", "None", "try", ":", "return", "app", ".", "view_functions", "[", "match", "[", "0", "]", "]", "except", "KeyError", ":", "# no view is associated with the endpoint", "return", "None" ]
Match a url and return the view and arguments it will be called with, or None if there is no view. Creds: http://stackoverflow.com/a/38488506
[ "Match", "a", "url", "and", "return", "the", "view", "and", "arguments", "it", "will", "be", "called", "with", "or", "None", "if", "there", "is", "no", "view", ".", "Creds", ":", "http", ":", "//", "stackoverflow", ".", "com", "/", "a", "/", "38488506" ]
python
valid
fabiobatalha/crossrefapi
crossref/restful.py
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L1418-L1427
def works(self, member_id): """ This method retrieve a iterable of Works of the given member. args: Member ID (Integer) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(member_id)) return Works(context=context)
[ "def", "works", "(", "self", ",", "member_id", ")", ":", "context", "=", "'%s/%s'", "%", "(", "self", ".", "ENDPOINT", ",", "str", "(", "member_id", ")", ")", "return", "Works", "(", "context", "=", "context", ")" ]
This method retrieve a iterable of Works of the given member. args: Member ID (Integer) return: Works()
[ "This", "method", "retrieve", "a", "iterable", "of", "Works", "of", "the", "given", "member", "." ]
python
train
openstack/proliantutils
proliantutils/hpssa/objects.py
https://github.com/openstack/proliantutils/blob/86ef3b47b4eca97c221577e3570b0240d6a25f22/proliantutils/hpssa/objects.py#L113-L124
def _convert_to_dict(stdout): """Wrapper function for parsing hpssacli/ssacli command. This function gets the output from hpssacli/ssacli command and calls the recursive function _get_dict to return the complete dictionary containing the RAID information. """ lines = stdout.split("\n") lines = list(filter(None, lines)) info_dict, j = _get_dict(lines, 0, 0, 0) return info_dict
[ "def", "_convert_to_dict", "(", "stdout", ")", ":", "lines", "=", "stdout", ".", "split", "(", "\"\\n\"", ")", "lines", "=", "list", "(", "filter", "(", "None", ",", "lines", ")", ")", "info_dict", ",", "j", "=", "_get_dict", "(", "lines", ",", "0", ",", "0", ",", "0", ")", "return", "info_dict" ]
Wrapper function for parsing hpssacli/ssacli command. This function gets the output from hpssacli/ssacli command and calls the recursive function _get_dict to return the complete dictionary containing the RAID information.
[ "Wrapper", "function", "for", "parsing", "hpssacli", "/", "ssacli", "command", "." ]
python
train
chimera0/accel-brain-code
Reinforcement-Learning/pyqlearning/q_learning.py
https://github.com/chimera0/accel-brain-code/blob/03661f6f544bed656269fcd4b3c23c9061629daa/Reinforcement-Learning/pyqlearning/q_learning.py#L255-L305
def learn(self, state_key, limit=1000): ''' Learning and searching the optimal solution. Args: state_key: Initial state. limit: The maximum number of iterative updates based on value iteration algorithms. ''' self.t = 1 while self.t <= limit: next_action_list = self.extract_possible_actions(state_key) if len(next_action_list): action_key = self.select_action( state_key=state_key, next_action_list=next_action_list ) reward_value = self.observe_reward_value(state_key, action_key) if len(next_action_list): # Max-Q-Value in next action time. next_state_key = self.update_state( state_key=state_key, action_key=action_key ) next_next_action_list = self.extract_possible_actions(next_state_key) next_action_key = self.predict_next_action(next_state_key, next_next_action_list) next_max_q = self.extract_q_df(next_state_key, next_action_key) # Update Q-Value. self.update_q( state_key=state_key, action_key=action_key, reward_value=reward_value, next_max_q=next_max_q ) # Update State. state_key = next_state_key # Normalize. self.normalize_q_value() self.normalize_r_value() # Vis. self.visualize_learning_result(state_key) # Check. if self.check_the_end_flag(state_key) is True: break # Epsode. self.t += 1
[ "def", "learn", "(", "self", ",", "state_key", ",", "limit", "=", "1000", ")", ":", "self", ".", "t", "=", "1", "while", "self", ".", "t", "<=", "limit", ":", "next_action_list", "=", "self", ".", "extract_possible_actions", "(", "state_key", ")", "if", "len", "(", "next_action_list", ")", ":", "action_key", "=", "self", ".", "select_action", "(", "state_key", "=", "state_key", ",", "next_action_list", "=", "next_action_list", ")", "reward_value", "=", "self", ".", "observe_reward_value", "(", "state_key", ",", "action_key", ")", "if", "len", "(", "next_action_list", ")", ":", "# Max-Q-Value in next action time.", "next_state_key", "=", "self", ".", "update_state", "(", "state_key", "=", "state_key", ",", "action_key", "=", "action_key", ")", "next_next_action_list", "=", "self", ".", "extract_possible_actions", "(", "next_state_key", ")", "next_action_key", "=", "self", ".", "predict_next_action", "(", "next_state_key", ",", "next_next_action_list", ")", "next_max_q", "=", "self", ".", "extract_q_df", "(", "next_state_key", ",", "next_action_key", ")", "# Update Q-Value.", "self", ".", "update_q", "(", "state_key", "=", "state_key", ",", "action_key", "=", "action_key", ",", "reward_value", "=", "reward_value", ",", "next_max_q", "=", "next_max_q", ")", "# Update State.", "state_key", "=", "next_state_key", "# Normalize.", "self", ".", "normalize_q_value", "(", ")", "self", ".", "normalize_r_value", "(", ")", "# Vis.", "self", ".", "visualize_learning_result", "(", "state_key", ")", "# Check.", "if", "self", ".", "check_the_end_flag", "(", "state_key", ")", "is", "True", ":", "break", "# Epsode.", "self", ".", "t", "+=", "1" ]
Learning and searching the optimal solution. Args: state_key: Initial state. limit: The maximum number of iterative updates based on value iteration algorithms.
[ "Learning", "and", "searching", "the", "optimal", "solution", ".", "Args", ":", "state_key", ":", "Initial", "state", ".", "limit", ":", "The", "maximum", "number", "of", "iterative", "updates", "based", "on", "value", "iteration", "algorithms", "." ]
python
train
brocade/pynos
pynos/versions/ver_7/ver_7_1_0/yang/brocade_tunnels.py
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_7/ver_7_1_0/yang/brocade_tunnels.py#L372-L389
def overlay_gateway_site_bfd_params_interval_min_tx(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") overlay_gateway = ET.SubElement(config, "overlay-gateway", xmlns="urn:brocade.com:mgmt:brocade-tunnels") name_key = ET.SubElement(overlay_gateway, "name") name_key.text = kwargs.pop('name') site = ET.SubElement(overlay_gateway, "site") name_key = ET.SubElement(site, "name") name_key.text = kwargs.pop('name') bfd = ET.SubElement(site, "bfd") params = ET.SubElement(bfd, "params") interval = ET.SubElement(params, "interval") min_tx = ET.SubElement(interval, "min-tx") min_tx.text = kwargs.pop('min_tx') callback = kwargs.pop('callback', self._callback) return callback(config)
[ "def", "overlay_gateway_site_bfd_params_interval_min_tx", "(", "self", ",", "*", "*", "kwargs", ")", ":", "config", "=", "ET", ".", "Element", "(", "\"config\"", ")", "overlay_gateway", "=", "ET", ".", "SubElement", "(", "config", ",", "\"overlay-gateway\"", ",", "xmlns", "=", "\"urn:brocade.com:mgmt:brocade-tunnels\"", ")", "name_key", "=", "ET", ".", "SubElement", "(", "overlay_gateway", ",", "\"name\"", ")", "name_key", ".", "text", "=", "kwargs", ".", "pop", "(", "'name'", ")", "site", "=", "ET", ".", "SubElement", "(", "overlay_gateway", ",", "\"site\"", ")", "name_key", "=", "ET", ".", "SubElement", "(", "site", ",", "\"name\"", ")", "name_key", ".", "text", "=", "kwargs", ".", "pop", "(", "'name'", ")", "bfd", "=", "ET", ".", "SubElement", "(", "site", ",", "\"bfd\"", ")", "params", "=", "ET", ".", "SubElement", "(", "bfd", ",", "\"params\"", ")", "interval", "=", "ET", ".", "SubElement", "(", "params", ",", "\"interval\"", ")", "min_tx", "=", "ET", ".", "SubElement", "(", "interval", ",", "\"min-tx\"", ")", "min_tx", ".", "text", "=", "kwargs", ".", "pop", "(", "'min_tx'", ")", "callback", "=", "kwargs", ".", "pop", "(", "'callback'", ",", "self", ".", "_callback", ")", "return", "callback", "(", "config", ")" ]
Auto Generated Code
[ "Auto", "Generated", "Code" ]
python
train
yymao/generic-catalog-reader
GCR/query.py
https://github.com/yymao/generic-catalog-reader/blob/bc6267ac41b9f68106ed6065184469ac13fdc0b6/GCR/query.py#L28-L33
def check_scalar(self, scalar_dict): """ check if `scalar_dict` satisfy query """ table = {k: np.array([v]) for k, v in scalar_dict.items()} return self.mask(table)[0]
[ "def", "check_scalar", "(", "self", ",", "scalar_dict", ")", ":", "table", "=", "{", "k", ":", "np", ".", "array", "(", "[", "v", "]", ")", "for", "k", ",", "v", "in", "scalar_dict", ".", "items", "(", ")", "}", "return", "self", ".", "mask", "(", "table", ")", "[", "0", "]" ]
check if `scalar_dict` satisfy query
[ "check", "if", "scalar_dict", "satisfy", "query" ]
python
train
gem/oq-engine
openquake/baselib/sap.py
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/baselib/sap.py#L116-L128
def _add(self, name, *args, **kw): """ Add an argument to the underlying parser and grow the list .all_arguments and the set .names """ argname = list(self.argdict)[self._argno] if argname != name: raise NameError( 'Setting argument %s, but it should be %s' % (name, argname)) self._group.add_argument(*args, **kw) self.all_arguments.append((args, kw)) self.names.append(name) self._argno += 1
[ "def", "_add", "(", "self", ",", "name", ",", "*", "args", ",", "*", "*", "kw", ")", ":", "argname", "=", "list", "(", "self", ".", "argdict", ")", "[", "self", ".", "_argno", "]", "if", "argname", "!=", "name", ":", "raise", "NameError", "(", "'Setting argument %s, but it should be %s'", "%", "(", "name", ",", "argname", ")", ")", "self", ".", "_group", ".", "add_argument", "(", "*", "args", ",", "*", "*", "kw", ")", "self", ".", "all_arguments", ".", "append", "(", "(", "args", ",", "kw", ")", ")", "self", ".", "names", ".", "append", "(", "name", ")", "self", ".", "_argno", "+=", "1" ]
Add an argument to the underlying parser and grow the list .all_arguments and the set .names
[ "Add", "an", "argument", "to", "the", "underlying", "parser", "and", "grow", "the", "list", ".", "all_arguments", "and", "the", "set", ".", "names" ]
python
train
NiklasRosenstein/py-bundler
bundler/nativedeps/windll.py
https://github.com/NiklasRosenstein/py-bundler/blob/80dd6dc971667ba015f7f67481417c45cc757231/bundler/nativedeps/windll.py#L60-L94
def get_dependency_walker(): """ Checks if `depends.exe` is in the system PATH. If not, it will be downloaded and extracted to a temporary directory. Note that the file will not be deleted afterwards. Returns the path to the Dependency Walker executable. """ for dirname in os.getenv('PATH', '').split(os.pathsep): filename = os.path.join(dirname, 'depends.exe') if os.path.isfile(filename): logger.info('Dependency Walker found at "{}"'.format(filename)) return filename temp_exe = os.path.join(tempfile.gettempdir(), 'depends.exe') temp_dll = os.path.join(tempfile.gettempdir(), 'depends.dll') if os.path.isfile(temp_exe): logger.info('Dependency Walker found at "{}"'.format(temp_exe)) return temp_exe logger.info('Dependency Walker not found. Downloading ...') with urlopen('http://dependencywalker.com/depends22_x64.zip') as fp: data = fp.read() logger.info('Extracting Dependency Walker to "{}"'.format(temp_exe)) with zipfile.ZipFile(io.BytesIO(data)) as fp: with fp.open('depends.exe') as src: with open(temp_exe, 'wb') as dst: shutil.copyfileobj(src, dst) with fp.open('depends.dll') as src: with open(temp_dll, 'wb') as dst: shutil.copyfileobj(src, dst) return temp_exe
[ "def", "get_dependency_walker", "(", ")", ":", "for", "dirname", "in", "os", ".", "getenv", "(", "'PATH'", ",", "''", ")", ".", "split", "(", "os", ".", "pathsep", ")", ":", "filename", "=", "os", ".", "path", ".", "join", "(", "dirname", ",", "'depends.exe'", ")", "if", "os", ".", "path", ".", "isfile", "(", "filename", ")", ":", "logger", ".", "info", "(", "'Dependency Walker found at \"{}\"'", ".", "format", "(", "filename", ")", ")", "return", "filename", "temp_exe", "=", "os", ".", "path", ".", "join", "(", "tempfile", ".", "gettempdir", "(", ")", ",", "'depends.exe'", ")", "temp_dll", "=", "os", ".", "path", ".", "join", "(", "tempfile", ".", "gettempdir", "(", ")", ",", "'depends.dll'", ")", "if", "os", ".", "path", ".", "isfile", "(", "temp_exe", ")", ":", "logger", ".", "info", "(", "'Dependency Walker found at \"{}\"'", ".", "format", "(", "temp_exe", ")", ")", "return", "temp_exe", "logger", ".", "info", "(", "'Dependency Walker not found. Downloading ...'", ")", "with", "urlopen", "(", "'http://dependencywalker.com/depends22_x64.zip'", ")", "as", "fp", ":", "data", "=", "fp", ".", "read", "(", ")", "logger", ".", "info", "(", "'Extracting Dependency Walker to \"{}\"'", ".", "format", "(", "temp_exe", ")", ")", "with", "zipfile", ".", "ZipFile", "(", "io", ".", "BytesIO", "(", "data", ")", ")", "as", "fp", ":", "with", "fp", ".", "open", "(", "'depends.exe'", ")", "as", "src", ":", "with", "open", "(", "temp_exe", ",", "'wb'", ")", "as", "dst", ":", "shutil", ".", "copyfileobj", "(", "src", ",", "dst", ")", "with", "fp", ".", "open", "(", "'depends.dll'", ")", "as", "src", ":", "with", "open", "(", "temp_dll", ",", "'wb'", ")", "as", "dst", ":", "shutil", ".", "copyfileobj", "(", "src", ",", "dst", ")", "return", "temp_exe" ]
Checks if `depends.exe` is in the system PATH. If not, it will be downloaded and extracted to a temporary directory. Note that the file will not be deleted afterwards. Returns the path to the Dependency Walker executable.
[ "Checks", "if", "depends", ".", "exe", "is", "in", "the", "system", "PATH", ".", "If", "not", "it", "will", "be", "downloaded", "and", "extracted", "to", "a", "temporary", "directory", ".", "Note", "that", "the", "file", "will", "not", "be", "deleted", "afterwards", "." ]
python
train
LettError/MutatorMath
Lib/mutatorMath/ufo/document.py
https://github.com/LettError/MutatorMath/blob/10318fc4e7c9cee9df6130826829baea3054a42b/Lib/mutatorMath/ufo/document.py#L231-L238
def endInstance(self): """ Finalise the instance definition started by startInstance(). """ if self.currentInstance is None: return allInstances = self.root.findall('.instances')[0].append(self.currentInstance) self.currentInstance = None
[ "def", "endInstance", "(", "self", ")", ":", "if", "self", ".", "currentInstance", "is", "None", ":", "return", "allInstances", "=", "self", ".", "root", ".", "findall", "(", "'.instances'", ")", "[", "0", "]", ".", "append", "(", "self", ".", "currentInstance", ")", "self", ".", "currentInstance", "=", "None" ]
Finalise the instance definition started by startInstance().
[ "Finalise", "the", "instance", "definition", "started", "by", "startInstance", "()", "." ]
python
train
saltstack/salt
salt/modules/neutron.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/neutron.py#L643-L668
def update_router(router, name=None, admin_state_up=None, profile=None, **kwargs): ''' Updates a router CLI Example: .. code-block:: bash salt '*' neutron.update_router router_id name=new-router-name admin_state_up=True :param router: ID or name of router to update :param name: Name of this router :param ext_network: ID or name of the external for the gateway (Optional) :param admin_state_up: Set admin state up to true or false, default: true (Optional) :param profile: Profile to build on (Optional) :param kwargs: :return: Value of updated router information ''' conn = _auth(profile) return conn.update_router(router, name, admin_state_up, **kwargs)
[ "def", "update_router", "(", "router", ",", "name", "=", "None", ",", "admin_state_up", "=", "None", ",", "profile", "=", "None", ",", "*", "*", "kwargs", ")", ":", "conn", "=", "_auth", "(", "profile", ")", "return", "conn", ".", "update_router", "(", "router", ",", "name", ",", "admin_state_up", ",", "*", "*", "kwargs", ")" ]
Updates a router CLI Example: .. code-block:: bash salt '*' neutron.update_router router_id name=new-router-name admin_state_up=True :param router: ID or name of router to update :param name: Name of this router :param ext_network: ID or name of the external for the gateway (Optional) :param admin_state_up: Set admin state up to true or false, default: true (Optional) :param profile: Profile to build on (Optional) :param kwargs: :return: Value of updated router information
[ "Updates", "a", "router" ]
python
train
pycontribs/pyrax
pyrax/cloudloadbalancers.py
https://github.com/pycontribs/pyrax/blob/9ddfd5064b3a292d7337906f3b2d5dce95b50b99/pyrax/cloudloadbalancers.py#L1052-L1061
def _get_lb(self, lb_or_id): """ Accepts either a loadbalancer or the ID of a loadbalancer, and returns the CloudLoadBalancer instance. """ if isinstance(lb_or_id, CloudLoadBalancer): ret = lb_or_id else: ret = self.get(lb_or_id) return ret
[ "def", "_get_lb", "(", "self", ",", "lb_or_id", ")", ":", "if", "isinstance", "(", "lb_or_id", ",", "CloudLoadBalancer", ")", ":", "ret", "=", "lb_or_id", "else", ":", "ret", "=", "self", ".", "get", "(", "lb_or_id", ")", "return", "ret" ]
Accepts either a loadbalancer or the ID of a loadbalancer, and returns the CloudLoadBalancer instance.
[ "Accepts", "either", "a", "loadbalancer", "or", "the", "ID", "of", "a", "loadbalancer", "and", "returns", "the", "CloudLoadBalancer", "instance", "." ]
python
train
arokem/python-matlab-bridge
pymatbridge/messenger/make.py
https://github.com/arokem/python-matlab-bridge/blob/9822c7b55435662f4f033c5479cc03fea2255755/pymatbridge/messenger/make.py#L88-L118
def which(filename): '''This takes a given filename; tries to find it in the environment path; then checks if it is executable. This returns the full path to the filename if found and executable. Otherwise this returns None. Note ---- This function is taken from the pexpect module, see module doc-string for license. ''' # Special case where filename contains an explicit path. if os.path.dirname(filename) != '' and is_executable_file(filename): return filename if 'PATH' not in os.environ or os.environ['PATH'] == '': p = os.defpath else: p = os.environ['PATH'] pathlist = p.split(os.pathsep) for path in pathlist: ff = os.path.join(path, filename) if pty: if is_executable_file(ff): return ff else: pathext = os.environ.get('Pathext', '.exe;.com;.bat;.cmd') pathext = pathext.split(os.pathsep) + [''] for ext in pathext: if os.access(ff + ext, os.X_OK): return ff + ext return None
[ "def", "which", "(", "filename", ")", ":", "# Special case where filename contains an explicit path.", "if", "os", ".", "path", ".", "dirname", "(", "filename", ")", "!=", "''", "and", "is_executable_file", "(", "filename", ")", ":", "return", "filename", "if", "'PATH'", "not", "in", "os", ".", "environ", "or", "os", ".", "environ", "[", "'PATH'", "]", "==", "''", ":", "p", "=", "os", ".", "defpath", "else", ":", "p", "=", "os", ".", "environ", "[", "'PATH'", "]", "pathlist", "=", "p", ".", "split", "(", "os", ".", "pathsep", ")", "for", "path", "in", "pathlist", ":", "ff", "=", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", "if", "pty", ":", "if", "is_executable_file", "(", "ff", ")", ":", "return", "ff", "else", ":", "pathext", "=", "os", ".", "environ", ".", "get", "(", "'Pathext'", ",", "'.exe;.com;.bat;.cmd'", ")", "pathext", "=", "pathext", ".", "split", "(", "os", ".", "pathsep", ")", "+", "[", "''", "]", "for", "ext", "in", "pathext", ":", "if", "os", ".", "access", "(", "ff", "+", "ext", ",", "os", ".", "X_OK", ")", ":", "return", "ff", "+", "ext", "return", "None" ]
This takes a given filename; tries to find it in the environment path; then checks if it is executable. This returns the full path to the filename if found and executable. Otherwise this returns None. Note ---- This function is taken from the pexpect module, see module doc-string for license.
[ "This", "takes", "a", "given", "filename", ";", "tries", "to", "find", "it", "in", "the", "environment", "path", ";", "then", "checks", "if", "it", "is", "executable", ".", "This", "returns", "the", "full", "path", "to", "the", "filename", "if", "found", "and", "executable", ".", "Otherwise", "this", "returns", "None", "." ]
python
train
eandersson/amqpstorm
examples/flask_threaded_rpc_client.py
https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/examples/flask_threaded_rpc_client.py#L38-L44
def _create_process_thread(self): """Create a thread responsible for consuming messages in response to RPC requests. """ thread = threading.Thread(target=self._process_data_events) thread.setDaemon(True) thread.start()
[ "def", "_create_process_thread", "(", "self", ")", ":", "thread", "=", "threading", ".", "Thread", "(", "target", "=", "self", ".", "_process_data_events", ")", "thread", ".", "setDaemon", "(", "True", ")", "thread", ".", "start", "(", ")" ]
Create a thread responsible for consuming messages in response to RPC requests.
[ "Create", "a", "thread", "responsible", "for", "consuming", "messages", "in", "response", "to", "RPC", "requests", "." ]
python
train
idlesign/django-admirarchy
admirarchy/utils.py
https://github.com/idlesign/django-admirarchy/blob/723e4fd212fdebcc156492cb16b9d65356f5ca73/admirarchy/utils.py#L56-L92
def hierarchy_nav(self, obj): """Renders hierarchy navigation elements (folders).""" result_repr = '' # For items without children. ch_count = getattr(obj, Hierarchy.CHILD_COUNT_MODEL_ATTR, 0) is_parent_link = getattr(obj, Hierarchy.UPPER_LEVEL_MODEL_ATTR, False) if is_parent_link or ch_count: # For items with children and parent links. icon = 'icon icon-folder' title = _('Objects inside: %s') % ch_count if is_parent_link: icon = 'icon icon-folder-up' title = _('Upper level') url = './' if obj.pk: url = '?%s=%s' % (Hierarchy.PARENT_ID_QS_PARAM, obj.pk) if self._current_changelist.is_popup: qs_get = copy(self._current_changelist._request.GET) try: del qs_get[Hierarchy.PARENT_ID_QS_PARAM] except KeyError: pass qs_get = qs_get.urlencode() url = ('%s&%s' if '?' in url else '%s?%s') % (url, qs_get) result_repr = format_html('<a href="{0}" class="{1}" title="{2}"></a>', url, icon, force_text(title)) return result_repr
[ "def", "hierarchy_nav", "(", "self", ",", "obj", ")", ":", "result_repr", "=", "''", "# For items without children.", "ch_count", "=", "getattr", "(", "obj", ",", "Hierarchy", ".", "CHILD_COUNT_MODEL_ATTR", ",", "0", ")", "is_parent_link", "=", "getattr", "(", "obj", ",", "Hierarchy", ".", "UPPER_LEVEL_MODEL_ATTR", ",", "False", ")", "if", "is_parent_link", "or", "ch_count", ":", "# For items with children and parent links.", "icon", "=", "'icon icon-folder'", "title", "=", "_", "(", "'Objects inside: %s'", ")", "%", "ch_count", "if", "is_parent_link", ":", "icon", "=", "'icon icon-folder-up'", "title", "=", "_", "(", "'Upper level'", ")", "url", "=", "'./'", "if", "obj", ".", "pk", ":", "url", "=", "'?%s=%s'", "%", "(", "Hierarchy", ".", "PARENT_ID_QS_PARAM", ",", "obj", ".", "pk", ")", "if", "self", ".", "_current_changelist", ".", "is_popup", ":", "qs_get", "=", "copy", "(", "self", ".", "_current_changelist", ".", "_request", ".", "GET", ")", "try", ":", "del", "qs_get", "[", "Hierarchy", ".", "PARENT_ID_QS_PARAM", "]", "except", "KeyError", ":", "pass", "qs_get", "=", "qs_get", ".", "urlencode", "(", ")", "url", "=", "(", "'%s&%s'", "if", "'?'", "in", "url", "else", "'%s?%s'", ")", "%", "(", "url", ",", "qs_get", ")", "result_repr", "=", "format_html", "(", "'<a href=\"{0}\" class=\"{1}\" title=\"{2}\"></a>'", ",", "url", ",", "icon", ",", "force_text", "(", "title", ")", ")", "return", "result_repr" ]
Renders hierarchy navigation elements (folders).
[ "Renders", "hierarchy", "navigation", "elements", "(", "folders", ")", "." ]
python
train
peri-source/peri
peri/util.py
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/util.py#L34-L59
def listify(a): """ Convert a scalar ``a`` to a list and all iterables to list as well. Examples -------- >>> listify(0) [0] >>> listify([1,2,3]) [1, 2, 3] >>> listify('a') ['a'] >>> listify(np.array([1,2,3])) [1, 2, 3] >>> listify('string') ['string'] """ if a is None: return [] elif not isinstance(a, (tuple, list, np.ndarray)): return [a] return list(a)
[ "def", "listify", "(", "a", ")", ":", "if", "a", "is", "None", ":", "return", "[", "]", "elif", "not", "isinstance", "(", "a", ",", "(", "tuple", ",", "list", ",", "np", ".", "ndarray", ")", ")", ":", "return", "[", "a", "]", "return", "list", "(", "a", ")" ]
Convert a scalar ``a`` to a list and all iterables to list as well. Examples -------- >>> listify(0) [0] >>> listify([1,2,3]) [1, 2, 3] >>> listify('a') ['a'] >>> listify(np.array([1,2,3])) [1, 2, 3] >>> listify('string') ['string']
[ "Convert", "a", "scalar", "a", "to", "a", "list", "and", "all", "iterables", "to", "list", "as", "well", "." ]
python
valid