File size: 5,904 Bytes
19e6cbd
 
 
 
 
 
 
d879709
19e6cbd
 
 
 
 
 
 
 
 
 
 
 
d879709
19e6cbd
 
 
 
 
 
d879709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e6cbd
d879709
 
19e6cbd
d879709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e6cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d879709
19e6cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d879709
19e6cbd
 
 
 
 
 
 
d879709
19e6cbd
 
 
d879709
 
19e6cbd
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import collections
import json
import os

import datasets


_HOMEPAGE = "https://universe.roboflow.com/home-mxzv1/nfl-competition/dataset/1?ref=roboflow2huggingface"
_LICENSE = "Public Domain"
_CITATION = """\
@misc{ nfl-competition_dataset,
    title = { NFL-competition Dataset },
    type = { Open Source Dataset },
    author = { home },
    howpublished = { \\url{ https://universe.roboflow.com/home-mxzv1/nfl-competition } },
    url = { https://universe.roboflow.com/home-mxzv1/nfl-competition },
    journal = { Roboflow Universe },
    publisher = { Roboflow },
    year = { 2022 },
    month = { sep },
    note = { visited on 2023-01-18 },
}
"""
_CATEGORIES = ['helmet', 'helmet-blurred', 'helmet-difficult', 'helmet-partial', 'helmet-sideline']
_ANNOTATION_FILENAME = "_annotations.coco.json"


class NFLOBJECTDETECTIONConfig(datasets.BuilderConfig):
    """Builder Config for nfl-object-detection"""

    def __init__(self, data_urls, **kwargs):
        """
        BuilderConfig for nfl-object-detection.

        Args:
          data_urls: `dict`, name to url to download the zip file from.
          **kwargs: keyword arguments forwarded to super.
        """
        super(NFLOBJECTDETECTIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_urls = data_urls


class NFLOBJECTDETECTION(datasets.GeneratorBasedBuilder):
    """nfl-object-detection object detection dataset"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        NFLOBJECTDETECTIONConfig(
            name="full",
            description="Full version of nfl-object-detection dataset.",
            data_urls={
                "train": "https://huggingface.co/datasets/keremberke/nfl-object-detection/resolve/main/data/train.zip",
                "validation": "https://huggingface.co/datasets/keremberke/nfl-object-detection/resolve/main/data/valid.zip",
                "test": "https://huggingface.co/datasets/keremberke/nfl-object-detection/resolve/main/data/test.zip",
            },
        ),
        NFLOBJECTDETECTIONConfig(
            name="mini",
            description="Mini version of nfl-object-detection dataset.",
            data_urls={
                "train": "https://huggingface.co/datasets/keremberke/nfl-object-detection/resolve/main/data/valid-mini.zip",
                "validation": "https://huggingface.co/datasets/keremberke/nfl-object-detection/resolve/main/data/valid-mini.zip",
                "test": "https://huggingface.co/datasets/keremberke/nfl-object-detection/resolve/main/data/valid-mini.zip",
            },
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "image_id": datasets.Value("int64"),
                "image": datasets.Image(),
                "width": datasets.Value("int32"),
                "height": datasets.Value("int32"),
                "objects": datasets.Sequence(
                    {
                        "id": datasets.Value("int64"),
                        "area": datasets.Value("int64"),
                        "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                        "category": datasets.ClassLabel(names=_CATEGORIES),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(self.config.data_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "folder_dir": data_files["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "folder_dir": data_files["validation"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "folder_dir": data_files["test"],
                },
            ),
]

    def _generate_examples(self, folder_dir):
        def process_annot(annot, category_id_to_category):
            return {
                "id": annot["id"],
                "area": annot["area"],
                "bbox": annot["bbox"],
                "category": category_id_to_category[annot["category_id"]],
            }

        image_id_to_image = {}
        idx = 0

        annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
        with open(annotation_filepath, "r") as f:
            annotations = json.load(f)
        category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
        image_id_to_annotations = collections.defaultdict(list)
        for annot in annotations["annotations"]:
            image_id_to_annotations[annot["image_id"]].append(annot)
        filename_to_image = {image["file_name"]: image for image in annotations["images"]}

        for filename in os.listdir(folder_dir):
            filepath = os.path.join(folder_dir, filename)
            if filename in filename_to_image:
                image = filename_to_image[filename]
                objects = [
                    process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
                ]
                with open(filepath, "rb") as f:
                    image_bytes = f.read()
                yield idx, {
                    "image_id": image["id"],
                    "image": {"path": filepath, "bytes": image_bytes},
                    "width": image["width"],
                    "height": image["height"],
                    "objects": objects,
                }
                idx += 1