ketong3906 commited on
Commit
836bb07
·
1 Parent(s): ba50421

Upload imdb.py

Browse files
Files changed (1) hide show
  1. processed/imdb.py +111 -0
processed/imdb.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """IMDB movie reviews dataset."""
18
+
19
+ import datasets
20
+ from datasets.tasks import TextClassification
21
+
22
+
23
+ _DESCRIPTION = """\
24
+ Large Movie Review Dataset.
25
+ This is a dataset for binary sentiment classification containing substantially \
26
+ more data than previous benchmark datasets. We provide a set of 25,000 highly \
27
+ polar movie reviews for training, and 25,000 for testing. There is additional \
28
+ unlabeled data for use as well.\
29
+ """
30
+
31
+ _CITATION = """\
32
+ @InProceedings{maas-EtAl:2011:ACL-HLT2011,
33
+ author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
34
+ title = {Learning Word Vectors for Sentiment Analysis},
35
+ booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
36
+ month = {June},
37
+ year = {2011},
38
+ address = {Portland, Oregon, USA},
39
+ publisher = {Association for Computational Linguistics},
40
+ pages = {142--150},
41
+ url = {http://www.aclweb.org/anthology/P11-1015}
42
+ }
43
+ """
44
+
45
+ _DOWNLOAD_URL = "https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
46
+
47
+
48
+ class IMDBReviewsConfig(datasets.BuilderConfig):
49
+ """BuilderConfig for IMDBReviews."""
50
+
51
+ def __init__(self, **kwargs):
52
+ """BuilderConfig for IMDBReviews.
53
+
54
+ Args:
55
+ **kwargs: keyword arguments forwarded to super.
56
+ """
57
+ super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
58
+
59
+
60
+ class Imdb(datasets.GeneratorBasedBuilder):
61
+ """IMDB movie reviews dataset."""
62
+
63
+ BUILDER_CONFIGS = [
64
+ IMDBReviewsConfig(
65
+ name="plain_text",
66
+ description="Plain text",
67
+ )
68
+ ]
69
+
70
+ def _info(self):
71
+ return datasets.DatasetInfo(
72
+ description=_DESCRIPTION,
73
+ features=datasets.Features(
74
+ {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
75
+ ),
76
+ supervised_keys=None,
77
+ homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
78
+ citation=_CITATION,
79
+ task_templates=[TextClassification(text_column="text", label_column="label")],
80
+ )
81
+
82
+ def _split_generators(self, dl_manager):
83
+ archive = dl_manager.download(_DOWNLOAD_URL)
84
+ return [
85
+ datasets.SplitGenerator(
86
+ name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"}
87
+ ),
88
+ datasets.SplitGenerator(
89
+ name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"}
90
+ ),
91
+ datasets.SplitGenerator(
92
+ name=datasets.Split("unsupervised"),
93
+ gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train", "labeled": False},
94
+ ),
95
+ ]
96
+
97
+ def _generate_examples(self, files, split, labeled=True):
98
+ """Generate aclImdb examples."""
99
+ # For labeled examples, extract the label from the path.
100
+ if labeled:
101
+ label_mapping = {"pos": 1, "neg": 0}
102
+ for path, f in files:
103
+ if path.startswith(f"aclImdb/{split}"):
104
+ label = label_mapping.get(path.split("/")[2])
105
+ if label is not None:
106
+ yield path, {"text": f.read().decode("utf-8"), "label": label}
107
+ else:
108
+ for path, f in files:
109
+ if path.startswith(f"aclImdb/{split}"):
110
+ if path.split("/")[2] == "unsup":
111
+ yield path, {"text": f.read().decode("utf-8"), "label": -1}