Datasets:
Tasks:
Text Classification
Languages:
English
ketong3906
commited on
Commit
·
836bb07
1
Parent(s):
ba50421
Upload imdb.py
Browse files- processed/imdb.py +111 -0
processed/imdb.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""IMDB movie reviews dataset."""
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
from datasets.tasks import TextClassification
|
21 |
+
|
22 |
+
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
Large Movie Review Dataset.
|
25 |
+
This is a dataset for binary sentiment classification containing substantially \
|
26 |
+
more data than previous benchmark datasets. We provide a set of 25,000 highly \
|
27 |
+
polar movie reviews for training, and 25,000 for testing. There is additional \
|
28 |
+
unlabeled data for use as well.\
|
29 |
+
"""
|
30 |
+
|
31 |
+
_CITATION = """\
|
32 |
+
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
|
33 |
+
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
|
34 |
+
title = {Learning Word Vectors for Sentiment Analysis},
|
35 |
+
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
|
36 |
+
month = {June},
|
37 |
+
year = {2011},
|
38 |
+
address = {Portland, Oregon, USA},
|
39 |
+
publisher = {Association for Computational Linguistics},
|
40 |
+
pages = {142--150},
|
41 |
+
url = {http://www.aclweb.org/anthology/P11-1015}
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DOWNLOAD_URL = "https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
|
46 |
+
|
47 |
+
|
48 |
+
class IMDBReviewsConfig(datasets.BuilderConfig):
|
49 |
+
"""BuilderConfig for IMDBReviews."""
|
50 |
+
|
51 |
+
def __init__(self, **kwargs):
|
52 |
+
"""BuilderConfig for IMDBReviews.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
**kwargs: keyword arguments forwarded to super.
|
56 |
+
"""
|
57 |
+
super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
58 |
+
|
59 |
+
|
60 |
+
class Imdb(datasets.GeneratorBasedBuilder):
|
61 |
+
"""IMDB movie reviews dataset."""
|
62 |
+
|
63 |
+
BUILDER_CONFIGS = [
|
64 |
+
IMDBReviewsConfig(
|
65 |
+
name="plain_text",
|
66 |
+
description="Plain text",
|
67 |
+
)
|
68 |
+
]
|
69 |
+
|
70 |
+
def _info(self):
|
71 |
+
return datasets.DatasetInfo(
|
72 |
+
description=_DESCRIPTION,
|
73 |
+
features=datasets.Features(
|
74 |
+
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
|
75 |
+
),
|
76 |
+
supervised_keys=None,
|
77 |
+
homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
|
78 |
+
citation=_CITATION,
|
79 |
+
task_templates=[TextClassification(text_column="text", label_column="label")],
|
80 |
+
)
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager):
|
83 |
+
archive = dl_manager.download(_DOWNLOAD_URL)
|
84 |
+
return [
|
85 |
+
datasets.SplitGenerator(
|
86 |
+
name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"}
|
87 |
+
),
|
88 |
+
datasets.SplitGenerator(
|
89 |
+
name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"}
|
90 |
+
),
|
91 |
+
datasets.SplitGenerator(
|
92 |
+
name=datasets.Split("unsupervised"),
|
93 |
+
gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train", "labeled": False},
|
94 |
+
),
|
95 |
+
]
|
96 |
+
|
97 |
+
def _generate_examples(self, files, split, labeled=True):
|
98 |
+
"""Generate aclImdb examples."""
|
99 |
+
# For labeled examples, extract the label from the path.
|
100 |
+
if labeled:
|
101 |
+
label_mapping = {"pos": 1, "neg": 0}
|
102 |
+
for path, f in files:
|
103 |
+
if path.startswith(f"aclImdb/{split}"):
|
104 |
+
label = label_mapping.get(path.split("/")[2])
|
105 |
+
if label is not None:
|
106 |
+
yield path, {"text": f.read().decode("utf-8"), "label": label}
|
107 |
+
else:
|
108 |
+
for path, f in files:
|
109 |
+
if path.startswith(f"aclImdb/{split}"):
|
110 |
+
if path.split("/")[2] == "unsup":
|
111 |
+
yield path, {"text": f.read().decode("utf-8"), "label": -1}
|