Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
ksoman commited on
Commit
db27f99
1 Parent(s): c713c28

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -0
README.md CHANGED
@@ -60,6 +60,36 @@ Hence, this dataset is designed to support research and development in biomedica
60
  3. Assessing retrieval capabilities of various RAG (Retrieval-Augmented Generation) frameworks
61
  4. Supporting research in biomedical ontologies and knowledge graphs
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  ## Source Data
65
 
 
60
  3. Assessing retrieval capabilities of various RAG (Retrieval-Augmented Generation) frameworks
61
  4. Supporting research in biomedical ontologies and knowledge graphs
62
 
63
+ # BiomixQA Dataset
64
+
65
+ [Previous sections remain unchanged]
66
+
67
+ ## Performance Analysis
68
+
69
+ We conducted a comprehensive analysis of the performance of three Large Language Models (LLMs) - Llama-2-13b, GPT-3.5-Turbo (0613), and GPT-4 - on the BiomixQA dataset. We compared their performance using both a standard prompt-based approach and our novel Knowledge Graph Retrieval-Augmented Generation (KG-RAG) framework.
70
+
71
+ ### Performance Summary
72
+
73
+ Table 1: Performance (accuracy) of LLMs on BiomixQA datasets using prompt-based (zero-shot) and KG-RAG approaches (For more details refer [this](https://arxiv.org/abs/2311.17330) paper)
74
+
75
+ | Model | True/False Dataset | | MCQ Dataset | |
76
+ |-------|-------------------:|---:|------------:|---:|
77
+ | | Prompt-based | KG-RAG | Prompt-based | KG-RAG |
78
+ | Llama-2-13b | 0.89 ± 0.02 | 0.94 ± 0.01 | 0.31 ± 0.03 | 0.53 ± 0.03 |
79
+ | GPT-3.5-Turbo (0613) | 0.87 ± 0.02 | 0.95 ± 0.01 | 0.63 ± 0.03 | 0.79 ± 0.02 |
80
+ | GPT-4 | 0.90 ± 0.02 | 0.95 ± 0.01 | 0.68 ± 0.03 | 0.74 ± 0.03 |
81
+
82
+ ### Key Observations
83
+
84
+ 1. **Consistent Performance Enhancement**: We observed a consistent performance enhancement for all LLM models when using the KG-RAG framework on both True/False and MCQ datasets.
85
+
86
+ 2. **Significant Improvement for Llama-2**: The KG-RAG framework significantly elevated the performance of Llama-2-13b, particularly on the more challenging MCQ dataset. We observed an impressive 71% increase in accuracy, from 0.31 ± 0.03 to 0.53 ± 0.03.
87
+
88
+ 3. **GPT-4 vs GPT-3.5-Turbo on MCQ**: Intriguingly, we observed a small but statistically significant drop in the performance of the GPT-4 model (0.74 ± 0.03) compared to the GPT-3.5-Turbo model (0.79 ± 0.02) on the MCQ dataset when using the KG-RAG framework. This difference was not observed in the prompt-based approach.
89
+ - Statistical significance: T-test, p-value < 0.0001, t-statistic = -47.7, N = 1000
90
+
91
+ 4. **True/False Dataset Performance**: All models showed high performance on the True/False dataset, with the KG-RAG approach yielding slightly better results across all models.
92
+
93
 
94
  ## Source Data
95