khaledalganem
commited on
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,155 +1,152 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
## Audio Data
|
8 |
-
|
9 |
-
The audio files are divided into four batches (directories) containing the full audios for the training, testing, and validation sets with the following properties:
|
10 |
-
|
11 |
-
- number of audio files: 4563 (average duration 10 min)
|
12 |
-
- audio format: .wav
|
13 |
-
- audio channels: mono
|
14 |
-
- audio sampling rate: 16KHz
|
15 |
-
- audio codec: pcm_s16le (PCM signed 16-bit little-endian)
|
16 |
-
|
17 |
-
## CSV Files
|
18 |
-
|
19 |
-
There are three *.csv files (train.csv, test.csv, and valid.csv). All files are encoded in UTF8. Each of them contains the transcription of each segment, together with their annotation. In total there are 13 columns. The column headings are listed in the first line of each csv file, and explained below:
|
20 |
-
|
21 |
-
- **FileName**: `batch_folder/audio_file`.
|
22 |
-
- **ShowName**: TV show name.
|
23 |
-
- **FullFileLength**: duration of the audio file in seconds.
|
24 |
-
- **SegmentID**: unique ID for each segment.
|
25 |
-
- **SegmentLength**: segment's duration in seconds.
|
26 |
-
- **SegmentStart**: start of segment as offset from the beginning of the audio file in seconds.
|
27 |
-
- **SegmentEnd**: end of segment as offset from the beginning of the audio file in seconds.
|
28 |
-
- **SpeakerAge**: the age group of the speaker (Adult, Child, Young Adult, Elderly, More than 1 speaker, or Unknown).
|
29 |
-
- **SpeakerGender**: the gender of the speaker (Male, Female, More than 1 speaker, or Unknown).
|
30 |
-
- **SpeakerDialect**: the dialect of the speaker (Najdi, Hijazi, Janubi, Shamali, Khaliji, ModernStandardArabic,Levantine, Egyptian, Iraqi, Yemeni, Maghrebi, More than 1 speaker, Unknown, or Notapplicable).
|
31 |
-
- **Environment**: the surrounding environment of the segment (Clean, Car, Music, or Noisy).
|
32 |
-
- **Speaker**: unique speaker ID within each audio file, however not across files.
|
33 |
-
- **GroundTruthText**: the actual uttered text of that segment.
|
34 |
-
- **ProcessedText**: the pre-processed text of the GroundTruthText.
|
35 |
-
- **Category**: the category of the show (كوميدي,درامي,مسابقات,اطفال,طبخ,اجتماعي,توعوي ارشادي,سياحي,وثائقي,ترفيهي,تاريخي).
|
36 |
-
|
37 |
-
|
38 |
-
**Note**: Text processing includes normalizing Arabic letters to unified forms such as آأإ to ا, removing punctuations, emojis, diacritics, and any special characters. Utterances with empty text, English words or digits are discarded.
|
39 |
-
|
40 |
-
## Datasets Distribution
|
41 |
-
The following tables are a distribution overview of each set.
|
42 |
-
|
43 |
-
### **Training set**
|
44 |
-
|
45 |
-
| Age | Percentage |
|
46 |
-
| --- | :---: |
|
47 |
-
| Adult | 45.17% |
|
48 |
-
| More than one speaker | 44.73% |
|
49 |
-
| Unknown | 7.80% |
|
50 |
-
| Other | 2.30% |
|
51 |
-
|
52 |
-
| Gender | Percentage |
|
53 |
-
| --- | :---: |
|
54 |
-
| More than one speaker | 44.73% |
|
55 |
-
| Male | 34.65% |
|
56 |
-
| Female | 12.75% |
|
57 |
-
| Unknown | 7.87% |
|
58 |
-
|
59 |
-
| Dialect | Percentage |
|
60 |
-
| --- | :---: |
|
61 |
-
| More than one speaker | 44.73% |
|
62 |
-
| Najdi | 28.01% |
|
63 |
-
| Hijazi | 9.63% |
|
64 |
-
| Unknown | 7.87% |
|
65 |
-
| Khaliji | 7.01% |
|
66 |
-
| Other | 2.75% |
|
67 |
-
|
68 |
-
| Environment | Percentage |
|
69 |
-
| --- | :---: |
|
70 |
-
| Music | 38.14% |
|
71 |
-
| Noisy | 33.94% |
|
72 |
-
| Clean | 27.82% |
|
73 |
-
| Car | 0.10% |
|
74 |
-
|
75 |
-
### **Validation set**
|
76 |
-
|
77 |
-
| Age | Percentage |
|
78 |
-
| --- | :---: |
|
79 |
-
| Adult | 51.14% |
|
80 |
-
| More than one speaker | 41.67% |
|
81 |
-
| Other | 7.19% |
|
82 |
-
|
83 |
-
| Gender | Percentage |
|
84 |
-
| --- | :---: |
|
85 |
-
| More than one speaker | 41.67% |
|
86 |
-
| Male | 35.13% |
|
87 |
-
| Female | 17.91% |
|
88 |
-
| Unknown | 5.29% |
|
89 |
-
|
90 |
-
| Dialect | Percentage |
|
91 |
-
| --- | :---: |
|
92 |
-
| More than one speaker | 41.67% |
|
93 |
-
| Najdi | 36.18% |
|
94 |
-
| Hijazi | 7.01% |
|
95 |
-
| Khaliji | 6.89% |
|
96 |
-
| Other | 8.25% |
|
97 |
-
|
98 |
-
| Environment | Percentage |
|
99 |
-
| --- | :---: |
|
100 |
-
| Music | 45.04% |
|
101 |
-
| Noisy | 24.65% |
|
102 |
-
| Clean | 30.27% |
|
103 |
-
| Car | 0.04% |
|
104 |
-
|
105 |
-
### **Testing set**
|
106 |
-
|
107 |
-
| Age | Percentage |
|
108 |
-
| --- | :---: |
|
109 |
-
| Adult | 46.01% |
|
110 |
-
| More than one speaker | 44.69% |
|
111 |
-
| Other | 9.3% |
|
112 |
-
|
113 |
-
| Gender | Percentage |
|
114 |
-
| --- | :---: |
|
115 |
-
| More than one speaker | 44.69% |
|
116 |
-
| Male | 41.05% |
|
117 |
-
| Unknown | 7.75% |
|
118 |
-
| Female | 6.51% |
|
119 |
-
|
120 |
-
| Dialect | Percentage |
|
121 |
-
| --- | :---: |
|
122 |
-
| More than one speaker | 44.69% |
|
123 |
-
| Najdi | 19.27% |
|
124 |
-
| Khaliji | 10.51% |
|
125 |
-
| Hijazi | 10.42% |
|
126 |
-
| Other | 15.11% |
|
127 |
-
|
128 |
-
| Environment | Percentage |
|
129 |
-
| --- | :---: |
|
130 |
-
| Music | 29.52% |
|
131 |
-
| Noisy | 35.75% |
|
132 |
-
| Clean | 34.69% |
|
133 |
-
| Car | 0.04% |
|
134 |
-
|
135 |
-
## Licenses
|
136 |
-
|
137 |
-
This work is licensed under a CC BY-NC-SA 4.0 license.
|
138 |
-
|
139 |
-
## Citation
|
140 |
-
|
141 |
-
If you use SADA dataset please use the following citation:
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
```
|
144 |
-
@inproceedings{SADA2023,
|
145 |
-
Title= {SADA - SBA & SDAIA Audio Dataset for Arabic},
|
146 |
-
Author= {Areeb Alowisheq,Abdullah Alrajeh, Sadeen Alharbi Abdulmajeed Alrowithi, Aljawharah Bin Tamran, Asma Ibrahim, Raghad Aloraini, Raneem Alnajim,
|
147 |
-
Ranya Alkahtani, Renad Almuasaad, Sara Alrasheed, Shaykhah Alsubaie, Yaser Alonaizan},
|
148 |
-
Booktitle = {To be published},
|
149 |
-
affiliation = {NCAI-SDAIA}
|
150 |
-
Year = {2023}
|
151 |
-
}
|
152 |
-
```
|
153 |
-
________________________________
|
154 |
|
155 |
-
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license:
|
3 |
+
- cc-by-nc-sa-4.0
|
4 |
+
converted_from: kaggle
|
5 |
+
kaggle_id: sdaiancai/sada2022
|
6 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Dataset Card for SADA صدى
|
9 |
+
|
10 |
+
## Table of Contents
|
11 |
+
- [Table of Contents](#table-of-contents)
|
12 |
+
- [Dataset Description](#dataset-description)
|
13 |
+
- [Dataset Summary](#dataset-summary)
|
14 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
15 |
+
- [Languages](#languages)
|
16 |
+
- [Dataset Structure](#dataset-structure)
|
17 |
+
- [Data Instances](#data-instances)
|
18 |
+
- [Data Fields](#data-fields)
|
19 |
+
- [Data Splits](#data-splits)
|
20 |
+
- [Dataset Creation](#dataset-creation)
|
21 |
+
- [Curation Rationale](#curation-rationale)
|
22 |
+
- [Source Data](#source-data)
|
23 |
+
- [Annotations](#annotations)
|
24 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
25 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
26 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
27 |
+
- [Discussion of Biases](#discussion-of-biases)
|
28 |
+
- [Other Known Limitations](#other-known-limitations)
|
29 |
+
- [Additional Information](#additional-information)
|
30 |
+
- [Dataset Curators](#dataset-curators)
|
31 |
+
- [Licensing Information](#licensing-information)
|
32 |
+
- [Citation Information](#citation-information)
|
33 |
+
- [Contributions](#contributions)
|
34 |
+
|
35 |
+
## Dataset Description
|
36 |
+
|
37 |
+
- **Homepage:** https://kaggle.com/datasets/sdaiancai/sada2022
|
38 |
+
- **Repository:**
|
39 |
+
- **Paper:**
|
40 |
+
- **Leaderboard:**
|
41 |
+
- **Point of Contact:**
|
42 |
+
|
43 |
+
### Dataset Summary
|
44 |
+
|
45 |
+
![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12941505%2F49fd5ab234d4a07cdd3cd0d2620416a6%2FSADALOGOM-01.png?generation=1671618140958663&alt=media)
|
46 |
+
|
47 |
+
يعتبر توفر البيانات من أهم ممكنات تطوير نماذج ذكاء اصطناعي متفوقة إن لم يكن أهمها، ولكن لا تزال البيانات الصوتية المفتوحة وخصوصاً باللغة العربية ولهجاتها المختلفة شحيحة المصدر.
|
48 |
+
|
49 |
+
ومن هذا المنطلق وحرصًا على إطلاق القيمة الكامنة للبيانات وتمكين تطوير منتجات مبنية على الذكاء الاصطناعي، قام المركز الوطني للذكاء الاصطناعي في سدايا (الهيئة الوطنية للبيانات والذكاء الاصطناعي) بالتعاون مع الهيئة السعودية للإذاعة والتلفزيون بنشر مجموعة بيانات "صدى". وتحتوي تقريبًا على ٦٦٧ ساعة صوتية مع تفريغها النصي وهذه الساعات باللغة العربية حيث تشكل اللهجات السعودية معظمها.
|
50 |
+
|
51 |
+
تتجاوز البيانات الموجودة ٦٠٠ ساعة من أكثر من ٥٧ برنامج ومسلسل تلفزيوني وفرتها الهيئة السعودية للإذاعة والتلفزيون باللغة العربية بمختلف اللهجات المحلية، وفرغها المركز الوطني للذكاء الاصطناعي في سدايا وجهزها للتدريب والمعالجة الآلية مع تحديد ۲٠ ساعة للاختبار والتحقق.
|
52 |
+
|
53 |
+
تمكن هذه البيانات المجتمع البحثي والأكاديمي من تطوير نماذج ذكاء اصطناعي صوتية مختلفة مثل نماذج التعرف الآلي على الكلام، ونطق النصوص، وفصل المتحدثين، وتحديد لهجة أو جنس أو عمر المتحدث وغيرها.
|
54 |
+
|
55 |
+
إن نشر هذه البيانات هو إيماناً بأهمية إثراء المحتوى العربي وذلك لأن اللغة العربية لغة القرآن الكريم ويتحدث بها أكثر من ٤٠٠ مليون شخص حول العالم.
|
56 |
+
|
57 |
+
|
58 |
+
Data availability is an important, if not the most important element for developing Artificial Intelligence models. However, open audio data especially in Arabic and its different dialects, is still scarce.
|
59 |
+
|
60 |
+
To unlock the value of data and enable the development of advanced AI products, the National Center for Artificial Intelligence at the Saudi Data and Artificial Intelligence Authority (SDAIA), in collaboration with the Saudi Broadcasting Authority (SBA), have published the “SADA” dataset, which stands for “Saudi Audio Dataset for Arabic”.
|
61 |
+
|
62 |
+
The published data exceeds 600 hours of Arabic audio recordings in various local Saudi dialects, sourced from more than 57 TV shows provided by the Saudi Broadcasting Authority. The National Center for Artificial Intelligence in SDAIA transcribed the data and prepared it for training and processing, together with providing 20 hours for development and testing.
|
63 |
+
|
64 |
+
This data enables the research community to develop AI models for various tasks such as automatic speech recognition, text-to-speech, speaker diarization, and models for dialect, gender and age identification and many others.
|
65 |
+
|
66 |
+
Releasing “SADA” stems from the belief in the importance of enriching Arabic content, as Arabic is the language of the Holy Quran and is spoken by more than 400 million people worldwide. ٠
|
67 |
+
|
68 |
+
### Supported Tasks and Leaderboards
|
69 |
+
|
70 |
+
[More Information Needed]
|
71 |
+
|
72 |
+
### Languages
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Dataset Structure
|
77 |
+
|
78 |
+
### Data Instances
|
79 |
+
|
80 |
+
[More Information Needed]
|
81 |
+
|
82 |
+
### Data Fields
|
83 |
+
|
84 |
+
[More Information Needed]
|
85 |
+
|
86 |
+
### Data Splits
|
87 |
+
|
88 |
+
[More Information Needed]
|
89 |
+
|
90 |
+
## Dataset Creation
|
91 |
+
|
92 |
+
### Curation Rationale
|
93 |
+
|
94 |
+
[More Information Needed]
|
95 |
+
|
96 |
+
### Source Data
|
97 |
+
|
98 |
+
#### Initial Data Collection and Normalization
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
#### Who are the source language producers?
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
### Annotations
|
107 |
+
|
108 |
+
#### Annotation process
|
109 |
+
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
#### Who are the annotators?
|
113 |
+
|
114 |
+
[More Information Needed]
|
115 |
+
|
116 |
+
### Personal and Sensitive Information
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
## Considerations for Using the Data
|
121 |
+
|
122 |
+
### Social Impact of Dataset
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Discussion of Biases
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
### Other Known Limitations
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
## Additional Information
|
135 |
+
|
136 |
+
### Dataset Curators
|
137 |
+
|
138 |
+
This dataset was shared by [@sdaiancai](https://kaggle.com/sdaiancai)
|
139 |
+
|
140 |
+
### Licensing Information
|
141 |
+
|
142 |
+
The license for this dataset is cc-by-nc-sa-4.0
|
143 |
+
|
144 |
+
### Citation Information
|
145 |
+
|
146 |
+
```bibtex
|
147 |
+
[More Information Needed]
|
148 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
### Contributions
|
151 |
+
|
152 |
+
[More Information Needed]
|