Datasets:
File size: 11,363 Bytes
4849086 0bb73c7 4849086 0bb73c7 4849086 7e942ff 4849086 0bb73c7 4849086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
#!/usr/bin/env python
r"""
Builds a WebDataset from the Cityscapes Video dataset.
Adapted from the `WebDataset documentation<https://github.com/webdataset/webdataset/>`_.
"""
import itertools
import collections
import typing as T
from pprint import pformat
import argparse
import multiprocessing as mp
import tarfile
import pandas as pd
from io import BytesIO
import json
from pathlib import Path
from tqdm import tqdm
def parse_args():
ap = argparse.ArgumentParser(
description="Build a WebDataset from the Cityscapes Video dataset."
)
# Flags and optional
ap.add_argument(
"--shard-size",
"-s",
type=int,
default=10,
help=("Number of sequences per shard."),
)
ap.add_argument(
"--name",
"-n",
type=str,
default="csvps",
help=(
"Name of the dataset. This will be used as the prefix for the tar files."
),
)
ap.add_argument(
"--variant",
type=str,
default="",
help=(
"When passing different manifest variants, this will be used to postfix "
"each split such that the resulting dataset name is unique."
),
)
ap.add_argument(
"--force", "-f", action="store_true", help="Overwrite existing data."
)
ap.add_argument(
"--splits", nargs="+", default=["train", "val", "test"], help="Splits to build."
)
ap.add_argument("--compression", "-c", default="", help="Compression to use")
# Positional
ap.add_argument("manifest", type=Path, help="Path to the manifest CSV file.")
ap.add_argument("data", type=Path, help="Path to the Cityscapes Video dataset.")
ap.add_argument("output", type=Path, help="Path to the output directory.")
rt = ap.parse_args()
# Validation
if rt.shard_size < 1:
ap.error("Shard size must be a positive integer.")
if rt.name == "":
ap.error("Name must be a non-empty string.")
if not rt.name.isalnum() and not rt.name.islower():
ap.error("Name must be a lowercase alpha-numeric string.")
if rt.variant != "" and not rt.variant.isalnum() and not rt.variant.islower():
ap.error("Variant must be a lowercase alpha-numeric string.")
if not rt.manifest.exists():
ap.error(f"Manifest file not found: {rt.manifest}")
if not rt.data.exists():
ap.error(f"Data directory not found: {rt.data}")
if not rt.output.exists():
rt.output.mkdir(parents=True)
print(f"Created output directory: {rt.output}")
return rt
PAD_TO: T.Final[int] = 6 # 06-padding is given by the dataset and should not be changed
def pad_number(n: int) -> str:
r"""
For sorting, numbers are padded with zeros to a fixed width.
"""
if not isinstance(n, int):
msg = f"Expected an integer, got {n} of type {type(n)}"
raise TypeError(msg)
return f"{n:0{PAD_TO}d}"
def read_timestamp(path: Path) -> int:
with path.open("r") as f:
ts = f.read().strip()
if not ts.isdigit():
msg = f"Expected a timestamp, got {ts} from {path}"
raise ValueError(msg)
return int(ts)
def write_bytes(tar: tarfile.TarFile, bt: bytes, arc: str):
r""" "
Simple utility to write the bytes (e.g. metadata json) directly from memory to
the tarfile, since these do not exist as a file.
"""
with BytesIO() as buf:
buf.write(bt)
# The TarInfo object must be created manually since the meta-data
# JSON is written to a buffer (BytesIO) and not a file.
tar_info = tarfile.TarInfo(arc)
tar_info.size = buf.tell() # number of bytes written
# Reset the buffer to the beginning before adding it to the tarfile
buf.seek(0)
tar.addfile(tar_info, buf)
def find_sequence_files(
seq: int,
group: pd.DataFrame,
*,
data_dir: Path,
dataset_name: str,
compression: str,
missing_ok: bool = False,
frame_inputs: T.Sequence[str] = ("image.png", "vehicle.json"),
frame_annotations: T.Sequence[str] = ("panoptic.png", "depth.tiff"),
sequence_data: T.Sequence[str] = ("camera.json",),
separator: str = "/",
) -> T.Iterator[tuple[Path | bytes, str]]:
seq_pad = pad_number(seq)
seq_dir = data_dir / seq_pad
group = group.sort_values("frame")
# Add frame-wise data
primary_keys = group.index.tolist()
frame_numbers = list(map(pad_number, group["frame"].tolist()))
for i, meta in enumerate(
group.drop(columns=["sequence", "frame", "split"]).to_dict(
orient="records", index=True
)
):
frame_06 = frame_numbers[i]
is_ann = meta["is_annotated"]
# Write primary key
meta["primary_key"] = primary_keys[i]
# Add files to the tarfile
for var in frame_inputs + frame_annotations:
path_file = seq_dir / f"{frame_06}.{var}"
if not path_file.exists():
if missing_ok or (var in frame_annotations and not is_ann):
continue # missing annotation OK
msg = f"File not found: {path_file}"
raise FileNotFoundError(msg)
yield (
path_file,
separator.join(
(
dataset_name,
# {seq}.{frame}.{var}.{ext}
path_file.relative_to(data_dir).as_posix().replace("/", "."),
)
),
)
# Add the timestamp to the meta-data if it exists
path_ts = seq_dir / f"{frame_06}.timestamp.txt"
if not path_ts.exists():
if not missing_ok:
msg = f"Timestamp file not found: {path_ts}"
raise FileNotFoundError(msg)
meta["timestamp"] = None
else:
meta["timestamp"] = read_timestamp(path_ts)
# Write frame metadata
yield (
json.dumps(meta).encode("utf-8"),
f"{dataset_name}/{seq_pad}.{frame_06}.metadata.json",
)
# Add sequence-wise files {seq}.{var}.{ext}, e.g. 000000.camera.json
for var in sequence_data:
path_file = seq_dir.with_suffix("." + var)
if not path_file.exists():
if missing_ok:
continue
msg = f"File not found: {path_file}"
raise FileNotFoundError(msg)
yield (
path_file,
separator.join(
(
dataset_name,
# {seq}.{var}.{ext}
path_file.relative_to(data_dir).as_posix(),
)
),
)
# Write frames array
yield (
json.dumps(frame_numbers).encode("utf-8"),
f"{dataset_name}/{seq_pad}.frames.json",
)
def run_collector(
seq: int, group: pd.DataFrame, kwargs: dict
) -> tuple[int, list[tuple[Path | bytes, str]]]:
r"""
Worker that collects the files for a single sequence.
"""
return (seq, list(find_sequence_files(seq, group, **kwargs)))
def run_writer(
tar_path: Path, items: list[list[tuple[Path | bytes, str]]], compression: str = "gz"
) -> None:
r"""
Worker that writes the files to a tar archive.
"""
if compression != "":
tar_path = tar_path.with_suffix(f".tar.{compression}")
write_mode = f"w:{compression}"
else:
tar_path = tar_path.with_suffix(".tar")
write_mode = "w"
with tarfile.open(tar_path, write_mode) as tar:
for item in itertools.chain.from_iterable(items):
try:
path, arc = item
except ValueError:
msg = f"Expected a tuple of length 2, got {item}"
raise ValueError(msg)
if isinstance(path, Path):
tar.add(path, arcname=arc)
else:
write_bytes(tar, path, arc)
def build_shard(
mfst: pd.DataFrame,
*,
tar_dir: Path,
shard_size: int,
**kwargs,
):
# Make dirs
tar_dir.mkdir(exist_ok=True, parents=True)
write_log = collections.defaultdict(list)
# Create a list of all sequences
# groups = [(seq, group) for seq, group in mfst.groupby("sequence")]
# shards = [groups[i : i + shard_size] for i in range(0, len(groups), shard_size)
n_groups = len(mfst["sequence"].unique())
n_shards = n_groups // shard_size
targets = [None] * n_groups
# Start a multiprocessing pool
n_proc = min(mp.cpu_count(), 16)
with mp.Pool(n_proc) as pool:
write_jobs: list[mp.AsyncResult] = []
# Data collection
with tqdm(total=n_groups, desc="Collecting data") as pbar_group:
for seq, files in pool.starmap(
run_collector,
[(seq, group, kwargs) for seq, group in mfst.groupby("sequence")],
chunksize=min(8, shard_size),
):
assert targets[seq] is None, f"Duplicate sequence: {seq}"
pbar_group.update()
# Write to the file specs list
targets[seq] = files
# Get a view of only the current shards's files
shard_index = seq // shard_size
shard_offset = shard_index * shard_size
shard_specs = targets[shard_offset : shard_offset + shard_size]
# Pad the shard index
shard_06 = pad_number(shard_index)
write_log[shard_06].append(pad_number(seq))
# If the shard is fully populated, write it to a tar file in another process
if all(s is not None for s in shard_specs):
tar_path = tar_dir / shard_06
write_jobs.append(
pool.apply_async(
run_writer,
(tar_path, shard_specs, ""),
)
)
# Wait for write-workers to finish generating the TAR files
with tqdm(total=n_shards, desc="Writing shards") as pbar_shard:
for j in write_jobs:
j.get()
pbar_shard.update()
pool.close()
pool.join()
print("Created shard files:\n" + pformat(dict(write_log)))
def main():
args = parse_args()
manifest = pd.read_csv(args.manifest, index_col="primary_key")
# For each split, build a tar archive containing the sorted files
for split in args.splits:
split_out = "-".join([s for s in (split, args.variant) if len(s) > 0])
tar_dir = args.output / split_out
if tar_dir.exists():
if args.force:
print(f"Removing existing dataset: {tar_dir}")
for f in tar_dir.glob("*.tar"):
f.unlink()
else:
msg = f"Dataset already exists: {tar_dir}"
raise FileExistsError(msg)
print(f"Generating {split_out} split...")
build_shard(
manifest[manifest["split"] == split],
tar_dir=tar_dir,
data_dir=args.data / split,
shard_size=args.shard_size,
dataset_name=f"{args.name}-{split_out}",
missing_ok=True,
compression=args.compression
)
if __name__ == "__main__":
main()
|