kisejin commited on
Commit
9f61031
·
verified ·
1 Parent(s): d9b932a

Upload 486 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +9 -0
  2. .gitignore +6 -0
  3. PFLlib/.gitattributes +1 -0
  4. PFLlib/.gitignore +1 -0
  5. PFLlib/LICENSE +339 -0
  6. PFLlib/README.md +328 -0
  7. PFLlib/dataset/Cifar10_iid/config.json +1 -0
  8. PFLlib/dataset/Cifar10_iid/test/0.npz +3 -0
  9. PFLlib/dataset/Cifar10_iid/test/1.npz +3 -0
  10. PFLlib/dataset/Cifar10_iid/test/10.npz +3 -0
  11. PFLlib/dataset/Cifar10_iid/test/11.npz +3 -0
  12. PFLlib/dataset/Cifar10_iid/test/12.npz +3 -0
  13. PFLlib/dataset/Cifar10_iid/test/13.npz +3 -0
  14. PFLlib/dataset/Cifar10_iid/test/14.npz +3 -0
  15. PFLlib/dataset/Cifar10_iid/test/15.npz +3 -0
  16. PFLlib/dataset/Cifar10_iid/test/16.npz +3 -0
  17. PFLlib/dataset/Cifar10_iid/test/17.npz +3 -0
  18. PFLlib/dataset/Cifar10_iid/test/18.npz +3 -0
  19. PFLlib/dataset/Cifar10_iid/test/19.npz +3 -0
  20. PFLlib/dataset/Cifar10_iid/test/2.npz +3 -0
  21. PFLlib/dataset/Cifar10_iid/test/20.npz +3 -0
  22. PFLlib/dataset/Cifar10_iid/test/21.npz +3 -0
  23. PFLlib/dataset/Cifar10_iid/test/22.npz +3 -0
  24. PFLlib/dataset/Cifar10_iid/test/23.npz +3 -0
  25. PFLlib/dataset/Cifar10_iid/test/24.npz +3 -0
  26. PFLlib/dataset/Cifar10_iid/test/25.npz +3 -0
  27. PFLlib/dataset/Cifar10_iid/test/26.npz +3 -0
  28. PFLlib/dataset/Cifar10_iid/test/27.npz +3 -0
  29. PFLlib/dataset/Cifar10_iid/test/28.npz +3 -0
  30. PFLlib/dataset/Cifar10_iid/test/29.npz +3 -0
  31. PFLlib/dataset/Cifar10_iid/test/3.npz +3 -0
  32. PFLlib/dataset/Cifar10_iid/test/30.npz +3 -0
  33. PFLlib/dataset/Cifar10_iid/test/31.npz +3 -0
  34. PFLlib/dataset/Cifar10_iid/test/32.npz +3 -0
  35. PFLlib/dataset/Cifar10_iid/test/33.npz +3 -0
  36. PFLlib/dataset/Cifar10_iid/test/34.npz +3 -0
  37. PFLlib/dataset/Cifar10_iid/test/35.npz +3 -0
  38. PFLlib/dataset/Cifar10_iid/test/36.npz +3 -0
  39. PFLlib/dataset/Cifar10_iid/test/37.npz +3 -0
  40. PFLlib/dataset/Cifar10_iid/test/38.npz +3 -0
  41. PFLlib/dataset/Cifar10_iid/test/39.npz +3 -0
  42. PFLlib/dataset/Cifar10_iid/test/4.npz +3 -0
  43. PFLlib/dataset/Cifar10_iid/test/40.npz +3 -0
  44. PFLlib/dataset/Cifar10_iid/test/41.npz +3 -0
  45. PFLlib/dataset/Cifar10_iid/test/42.npz +3 -0
  46. PFLlib/dataset/Cifar10_iid/test/43.npz +3 -0
  47. PFLlib/dataset/Cifar10_iid/test/44.npz +3 -0
  48. PFLlib/dataset/Cifar10_iid/test/45.npz +3 -0
  49. PFLlib/dataset/Cifar10_iid/test/46.npz +3 -0
  50. PFLlib/dataset/Cifar10_iid/test/47.npz +3 -0
.gitattributes CHANGED
@@ -56,3 +56,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
59
+ PFLlib/dataset/Cifar10_rawdata/cifar-10-batches-py/data_batch_1 filter=lfs diff=lfs merge=lfs -text
60
+ PFLlib/dataset/Cifar10_rawdata/cifar-10-batches-py/data_batch_2 filter=lfs diff=lfs merge=lfs -text
61
+ PFLlib/dataset/Cifar10_rawdata/cifar-10-batches-py/data_batch_3 filter=lfs diff=lfs merge=lfs -text
62
+ PFLlib/dataset/Cifar10_rawdata/cifar-10-batches-py/data_batch_4 filter=lfs diff=lfs merge=lfs -text
63
+ PFLlib/dataset/Cifar10_rawdata/cifar-10-batches-py/data_batch_5 filter=lfs diff=lfs merge=lfs -text
64
+ PFLlib/dataset/Cifar10_rawdata/cifar-10-batches-py/test_batch filter=lfs diff=lfs merge=lfs -text
65
+ PFLlib/dataset/MNIST/rawdata/MNIST/raw/t10k-images-idx3-ubyte filter=lfs diff=lfs merge=lfs -text
66
+ PFLlib/dataset/MNIST/rawdata/MNIST/raw/train-images-idx3-ubyte filter=lfs diff=lfs merge=lfs -text
67
+ PFLlib/dataset/utils/LEAF/data/shakespeare/data/train/all_data_niid_2_keep_0_train_9.json filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .history
2
+ .gitignore
3
+ .mypy_cache
4
+ .idea
5
+ test.ipynb
6
+ .github
PFLlib/.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ dataset/sogou_news_csv.tar.gz filter=lfs diff=lfs merge=lfs -text
PFLlib/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *__pycache__*
PFLlib/LICENSE ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 2, June 1991
3
+
4
+ Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
5
+ 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
6
+ Everyone is permitted to copy and distribute verbatim copies
7
+ of this license document, but changing it is not allowed.
8
+
9
+ Preamble
10
+
11
+ The licenses for most software are designed to take away your
12
+ freedom to share and change it. By contrast, the GNU General Public
13
+ License is intended to guarantee your freedom to share and change free
14
+ software--to make sure the software is free for all its users. This
15
+ General Public License applies to most of the Free Software
16
+ Foundation's software and to any other program whose authors commit to
17
+ using it. (Some other Free Software Foundation software is covered by
18
+ the GNU Lesser General Public License instead.) You can apply it to
19
+ your programs, too.
20
+
21
+ When we speak of free software, we are referring to freedom, not
22
+ price. Our General Public Licenses are designed to make sure that you
23
+ have the freedom to distribute copies of free software (and charge for
24
+ this service if you wish), that you receive source code or can get it
25
+ if you want it, that you can change the software or use pieces of it
26
+ in new free programs; and that you know you can do these things.
27
+
28
+ To protect your rights, we need to make restrictions that forbid
29
+ anyone to deny you these rights or to ask you to surrender the rights.
30
+ These restrictions translate to certain responsibilities for you if you
31
+ distribute copies of the software, or if you modify it.
32
+
33
+ For example, if you distribute copies of such a program, whether
34
+ gratis or for a fee, you must give the recipients all the rights that
35
+ you have. You must make sure that they, too, receive or can get the
36
+ source code. And you must show them these terms so they know their
37
+ rights.
38
+
39
+ We protect your rights with two steps: (1) copyright the software, and
40
+ (2) offer you this license which gives you legal permission to copy,
41
+ distribute and/or modify the software.
42
+
43
+ Also, for each author's protection and ours, we want to make certain
44
+ that everyone understands that there is no warranty for this free
45
+ software. If the software is modified by someone else and passed on, we
46
+ want its recipients to know that what they have is not the original, so
47
+ that any problems introduced by others will not reflect on the original
48
+ authors' reputations.
49
+
50
+ Finally, any free program is threatened constantly by software
51
+ patents. We wish to avoid the danger that redistributors of a free
52
+ program will individually obtain patent licenses, in effect making the
53
+ program proprietary. To prevent this, we have made it clear that any
54
+ patent must be licensed for everyone's free use or not licensed at all.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ GNU GENERAL PUBLIC LICENSE
60
+ TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
61
+
62
+ 0. This License applies to any program or other work which contains
63
+ a notice placed by the copyright holder saying it may be distributed
64
+ under the terms of this General Public License. The "Program", below,
65
+ refers to any such program or work, and a "work based on the Program"
66
+ means either the Program or any derivative work under copyright law:
67
+ that is to say, a work containing the Program or a portion of it,
68
+ either verbatim or with modifications and/or translated into another
69
+ language. (Hereinafter, translation is included without limitation in
70
+ the term "modification".) Each licensee is addressed as "you".
71
+
72
+ Activities other than copying, distribution and modification are not
73
+ covered by this License; they are outside its scope. The act of
74
+ running the Program is not restricted, and the output from the Program
75
+ is covered only if its contents constitute a work based on the
76
+ Program (independent of having been made by running the Program).
77
+ Whether that is true depends on what the Program does.
78
+
79
+ 1. You may copy and distribute verbatim copies of the Program's
80
+ source code as you receive it, in any medium, provided that you
81
+ conspicuously and appropriately publish on each copy an appropriate
82
+ copyright notice and disclaimer of warranty; keep intact all the
83
+ notices that refer to this License and to the absence of any warranty;
84
+ and give any other recipients of the Program a copy of this License
85
+ along with the Program.
86
+
87
+ You may charge a fee for the physical act of transferring a copy, and
88
+ you may at your option offer warranty protection in exchange for a fee.
89
+
90
+ 2. You may modify your copy or copies of the Program or any portion
91
+ of it, thus forming a work based on the Program, and copy and
92
+ distribute such modifications or work under the terms of Section 1
93
+ above, provided that you also meet all of these conditions:
94
+
95
+ a) You must cause the modified files to carry prominent notices
96
+ stating that you changed the files and the date of any change.
97
+
98
+ b) You must cause any work that you distribute or publish, that in
99
+ whole or in part contains or is derived from the Program or any
100
+ part thereof, to be licensed as a whole at no charge to all third
101
+ parties under the terms of this License.
102
+
103
+ c) If the modified program normally reads commands interactively
104
+ when run, you must cause it, when started running for such
105
+ interactive use in the most ordinary way, to print or display an
106
+ announcement including an appropriate copyright notice and a
107
+ notice that there is no warranty (or else, saying that you provide
108
+ a warranty) and that users may redistribute the program under
109
+ these conditions, and telling the user how to view a copy of this
110
+ License. (Exception: if the Program itself is interactive but
111
+ does not normally print such an announcement, your work based on
112
+ the Program is not required to print an announcement.)
113
+
114
+ These requirements apply to the modified work as a whole. If
115
+ identifiable sections of that work are not derived from the Program,
116
+ and can be reasonably considered independent and separate works in
117
+ themselves, then this License, and its terms, do not apply to those
118
+ sections when you distribute them as separate works. But when you
119
+ distribute the same sections as part of a whole which is a work based
120
+ on the Program, the distribution of the whole must be on the terms of
121
+ this License, whose permissions for other licensees extend to the
122
+ entire whole, and thus to each and every part regardless of who wrote it.
123
+
124
+ Thus, it is not the intent of this section to claim rights or contest
125
+ your rights to work written entirely by you; rather, the intent is to
126
+ exercise the right to control the distribution of derivative or
127
+ collective works based on the Program.
128
+
129
+ In addition, mere aggregation of another work not based on the Program
130
+ with the Program (or with a work based on the Program) on a volume of
131
+ a storage or distribution medium does not bring the other work under
132
+ the scope of this License.
133
+
134
+ 3. You may copy and distribute the Program (or a work based on it,
135
+ under Section 2) in object code or executable form under the terms of
136
+ Sections 1 and 2 above provided that you also do one of the following:
137
+
138
+ a) Accompany it with the complete corresponding machine-readable
139
+ source code, which must be distributed under the terms of Sections
140
+ 1 and 2 above on a medium customarily used for software interchange; or,
141
+
142
+ b) Accompany it with a written offer, valid for at least three
143
+ years, to give any third party, for a charge no more than your
144
+ cost of physically performing source distribution, a complete
145
+ machine-readable copy of the corresponding source code, to be
146
+ distributed under the terms of Sections 1 and 2 above on a medium
147
+ customarily used for software interchange; or,
148
+
149
+ c) Accompany it with the information you received as to the offer
150
+ to distribute corresponding source code. (This alternative is
151
+ allowed only for noncommercial distribution and only if you
152
+ received the program in object code or executable form with such
153
+ an offer, in accord with Subsection b above.)
154
+
155
+ The source code for a work means the preferred form of the work for
156
+ making modifications to it. For an executable work, complete source
157
+ code means all the source code for all modules it contains, plus any
158
+ associated interface definition files, plus the scripts used to
159
+ control compilation and installation of the executable. However, as a
160
+ special exception, the source code distributed need not include
161
+ anything that is normally distributed (in either source or binary
162
+ form) with the major components (compiler, kernel, and so on) of the
163
+ operating system on which the executable runs, unless that component
164
+ itself accompanies the executable.
165
+
166
+ If distribution of executable or object code is made by offering
167
+ access to copy from a designated place, then offering equivalent
168
+ access to copy the source code from the same place counts as
169
+ distribution of the source code, even though third parties are not
170
+ compelled to copy the source along with the object code.
171
+
172
+ 4. You may not copy, modify, sublicense, or distribute the Program
173
+ except as expressly provided under this License. Any attempt
174
+ otherwise to copy, modify, sublicense or distribute the Program is
175
+ void, and will automatically terminate your rights under this License.
176
+ However, parties who have received copies, or rights, from you under
177
+ this License will not have their licenses terminated so long as such
178
+ parties remain in full compliance.
179
+
180
+ 5. You are not required to accept this License, since you have not
181
+ signed it. However, nothing else grants you permission to modify or
182
+ distribute the Program or its derivative works. These actions are
183
+ prohibited by law if you do not accept this License. Therefore, by
184
+ modifying or distributing the Program (or any work based on the
185
+ Program), you indicate your acceptance of this License to do so, and
186
+ all its terms and conditions for copying, distributing or modifying
187
+ the Program or works based on it.
188
+
189
+ 6. Each time you redistribute the Program (or any work based on the
190
+ Program), the recipient automatically receives a license from the
191
+ original licensor to copy, distribute or modify the Program subject to
192
+ these terms and conditions. You may not impose any further
193
+ restrictions on the recipients' exercise of the rights granted herein.
194
+ You are not responsible for enforcing compliance by third parties to
195
+ this License.
196
+
197
+ 7. If, as a consequence of a court judgment or allegation of patent
198
+ infringement or for any other reason (not limited to patent issues),
199
+ conditions are imposed on you (whether by court order, agreement or
200
+ otherwise) that contradict the conditions of this License, they do not
201
+ excuse you from the conditions of this License. If you cannot
202
+ distribute so as to satisfy simultaneously your obligations under this
203
+ License and any other pertinent obligations, then as a consequence you
204
+ may not distribute the Program at all. For example, if a patent
205
+ license would not permit royalty-free redistribution of the Program by
206
+ all those who receive copies directly or indirectly through you, then
207
+ the only way you could satisfy both it and this License would be to
208
+ refrain entirely from distribution of the Program.
209
+
210
+ If any portion of this section is held invalid or unenforceable under
211
+ any particular circumstance, the balance of the section is intended to
212
+ apply and the section as a whole is intended to apply in other
213
+ circumstances.
214
+
215
+ It is not the purpose of this section to induce you to infringe any
216
+ patents or other property right claims or to contest validity of any
217
+ such claims; this section has the sole purpose of protecting the
218
+ integrity of the free software distribution system, which is
219
+ implemented by public license practices. Many people have made
220
+ generous contributions to the wide range of software distributed
221
+ through that system in reliance on consistent application of that
222
+ system; it is up to the author/donor to decide if he or she is willing
223
+ to distribute software through any other system and a licensee cannot
224
+ impose that choice.
225
+
226
+ This section is intended to make thoroughly clear what is believed to
227
+ be a consequence of the rest of this License.
228
+
229
+ 8. If the distribution and/or use of the Program is restricted in
230
+ certain countries either by patents or by copyrighted interfaces, the
231
+ original copyright holder who places the Program under this License
232
+ may add an explicit geographical distribution limitation excluding
233
+ those countries, so that distribution is permitted only in or among
234
+ countries not thus excluded. In such case, this License incorporates
235
+ the limitation as if written in the body of this License.
236
+
237
+ 9. The Free Software Foundation may publish revised and/or new versions
238
+ of the General Public License from time to time. Such new versions will
239
+ be similar in spirit to the present version, but may differ in detail to
240
+ address new problems or concerns.
241
+
242
+ Each version is given a distinguishing version number. If the Program
243
+ specifies a version number of this License which applies to it and "any
244
+ later version", you have the option of following the terms and conditions
245
+ either of that version or of any later version published by the Free
246
+ Software Foundation. If the Program does not specify a version number of
247
+ this License, you may choose any version ever published by the Free Software
248
+ Foundation.
249
+
250
+ 10. If you wish to incorporate parts of the Program into other free
251
+ programs whose distribution conditions are different, write to the author
252
+ to ask for permission. For software which is copyrighted by the Free
253
+ Software Foundation, write to the Free Software Foundation; we sometimes
254
+ make exceptions for this. Our decision will be guided by the two goals
255
+ of preserving the free status of all derivatives of our free software and
256
+ of promoting the sharing and reuse of software generally.
257
+
258
+ NO WARRANTY
259
+
260
+ 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
261
+ FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
262
+ OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
263
+ PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
264
+ OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
265
+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
266
+ TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
267
+ PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
268
+ REPAIR OR CORRECTION.
269
+
270
+ 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
271
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
272
+ REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
273
+ INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
274
+ OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
275
+ TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
276
+ YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
277
+ PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
278
+ POSSIBILITY OF SUCH DAMAGES.
279
+
280
+ END OF TERMS AND CONDITIONS
281
+
282
+ How to Apply These Terms to Your New Programs
283
+
284
+ If you develop a new program, and you want it to be of the greatest
285
+ possible use to the public, the best way to achieve this is to make it
286
+ free software which everyone can redistribute and change under these terms.
287
+
288
+ To do so, attach the following notices to the program. It is safest
289
+ to attach them to the start of each source file to most effectively
290
+ convey the exclusion of warranty; and each file should have at least
291
+ the "copyright" line and a pointer to where the full notice is found.
292
+
293
+ <one line to give the program's name and a brief idea of what it does.>
294
+ Copyright (C) <year> <name of author>
295
+
296
+ This program is free software; you can redistribute it and/or modify
297
+ it under the terms of the GNU General Public License as published by
298
+ the Free Software Foundation; either version 2 of the License, or
299
+ (at your option) any later version.
300
+
301
+ This program is distributed in the hope that it will be useful,
302
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
303
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
304
+ GNU General Public License for more details.
305
+
306
+ You should have received a copy of the GNU General Public License along
307
+ with this program; if not, write to the Free Software Foundation, Inc.,
308
+ 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
309
+
310
+ Also add information on how to contact you by electronic and paper mail.
311
+
312
+ If the program is interactive, make it output a short notice like this
313
+ when it starts in an interactive mode:
314
+
315
+ Gnomovision version 69, Copyright (C) year name of author
316
+ Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
317
+ This is free software, and you are welcome to redistribute it
318
+ under certain conditions; type `show c' for details.
319
+
320
+ The hypothetical commands `show w' and `show c' should show the appropriate
321
+ parts of the General Public License. Of course, the commands you use may
322
+ be called something other than `show w' and `show c'; they could even be
323
+ mouse-clicks or menu items--whatever suits your program.
324
+
325
+ You should also get your employer (if you work as a programmer) or your
326
+ school, if any, to sign a "copyright disclaimer" for the program, if
327
+ necessary. Here is a sample; alter the names:
328
+
329
+ Yoyodyne, Inc., hereby disclaims all copyright interest in the program
330
+ `Gnomovision' (which makes passes at compilers) written by James Hacker.
331
+
332
+ <signature of Ty Coon>, 1 April 1989
333
+ Ty Coon, President of Vice
334
+
335
+ This General Public License does not permit incorporating your program into
336
+ proprietary programs. If your program is a subroutine library, you may
337
+ consider it more useful to permit linking proprietary applications with the
338
+ library. If this is what you want to do, use the GNU Lesser General
339
+ Public License instead of this License.
PFLlib/README.md ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PFLlib: Personalized Federated Learning Algorithm Library
2
+
3
+ [![License: GPL v2](https://img.shields.io/badge/License-GPL_v2-blue.svg)](https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html) [![arXiv](https://img.shields.io/badge/arXiv-2312.04992-b31b1b.svg)](https://arxiv.org/abs/2312.04992)
4
+
5
+ ![](./structure.png)
6
+ Figure 1: An Example for FedAvg. You can create a scenario using `generate_DATA.py` and run an algorithm using `main.py`, `clientNAME.py`, and `serverNAME.py`.
7
+
8
+ ***We've created a user-friendly algorithm library and evaluation platform for those new to federated learning. Join us in expanding the FL community by contributing your algorithms, datasets, and metrics to this project.***
9
+
10
+ - ***36 traditional FL ([tFL](#traditional-fl-tfl)) or personalized FL ([pFL](#personalized-fl-pfl)) algorithms, 3 scenarios, and 20 datasets**.*
11
+
12
+ - Some **experimental results** are avalible [here](#experimental-results).
13
+
14
+ - Refer to [this guide](#how-to-start-simulating-examples-for-fedavg) to learn how to use it.
15
+
16
+ - *This library can simulate scenarios using the 4-layer CNN on Cifar100 for **500 clients** on **one NVIDIA GeForce RTX 3090 GPU card** with only **5.08GB GPU memory** cost.*
17
+
18
+ - PFLlib primarily focuses on data (statistical) heterogeneity. For algorithms and an evaluation platform that address **both data and model heterogeneity**, please refer to our extended project **[Heterogeneous Federated Learning (HtFL)](https://github.com/TsingZ0/HtFL)**.
19
+
20
+ - As we strive to meet diverse user demands, frequent updates to the project may alter default settings and scenario creation codes, affecting experimental results.
21
+
22
+ - [Closed issues](https://github.com/TsingZ0/PFLlib/issues?q=is%3Aissue+is%3Aclosed) may help you a lot.
23
+
24
+ - When submitting pull requests, please provide sufficient *instructions* and *examples* in the comment box.
25
+
26
+ The origin of the **statistical heterogeneity** phenomenon is the personalization of users, who generate non-IID (not Independent and Identically Distributed) and unbalanced data. With statistical heterogeneity existing in the FL scenario, a myriad of approaches have been proposed to crack this hard nut. In contrast, the personalized FL (pFL) may take advantage of the statistically heterogeneous data to learn the personalized model for each user.
27
+
28
+ Thanks to [@Stonesjtu](https://github.com/Stonesjtu/pytorch_memlab/blob/d590c489236ee25d157ff60ecd18433e8f9acbe3/pytorch_memlab/mem_reporter.py#L185), this library can also record the **GPU memory usage** for the model. Following [FedCG](https://www.ijcai.org/proceedings/2022/0324.pdf), we also introduce the **[DLG (Deep Leakage from Gradients)](https://papers.nips.cc/paper_files/paper/2019/hash/60a6c4002cc7b29142def8871531281a-Abstract.html) attack** and **PSNR (Peak Signal-to-Noise Ratio) metric** to evaluate the privacy-preserving ability of tFL/pFL algorithms (please refer to `./system/flcore/servers/serveravg.py` for example). *Now we can train on some clients and evaluate performance on other new clients by setting `args.num_new_clients` in `./system/main.py`. Note that not all the tFL/pFL algorithms support this feature.*
29
+
30
+ **Citation**
31
+
32
+ ```
33
+ @article{zhang2023pfllib,
34
+ title={PFLlib: Personalized Federated Learning Algorithm Library},
35
+ author={Zhang, Jianqing and Liu, Yang and Hua, Yang and Wang, Hao and Song, Tao and Xue, Zhengui and Ma, Ruhui and Cao, Jian},
36
+ journal={arXiv preprint arXiv:2312.04992},
37
+ year={2023}
38
+ }
39
+ ```
40
+
41
+
42
+ ## Algorithms with code (updating)
43
+
44
+ > ### Traditional FL (tFL)
45
+
46
+ - **FedAvg** — [Communication-Efficient Learning of Deep Networks from Decentralized Data](http://proceedings.mlr.press/v54/mcmahan17a.html) *AISTATS 2017*
47
+
48
+ ***Update-correction-based tFL***
49
+
50
+ - **SCAFFOLD** - [SCAFFOLD: Stochastic Controlled Averaging for Federated Learning](http://proceedings.mlr.press/v119/karimireddy20a.html) *ICML 2020*
51
+
52
+ ***Regularization-based tFL***
53
+
54
+ - **FedProx** — [Federated Optimization in Heterogeneous Networks](https://arxiv.org/abs/1812.06127) *MLsys 2020*
55
+ - **FedDyn** — [Federated Learning Based on Dynamic Regularization](https://openreview.net/forum?id=B7v4QMR6Z9w) *ICLR 2021*
56
+
57
+ ***Model-splitting-based tFL***
58
+
59
+ - **MOON** — [Model-Contrastive Federated Learning](https://openaccess.thecvf.com/content/CVPR2021/html/Li_Model-Contrastive_Federated_Learning_CVPR_2021_paper.html) *CVPR 2021*
60
+
61
+ ***Knowledge-distillation-based tFL***
62
+
63
+ - **FedGen** — [Data-Free Knowledge Distillation for Heterogeneous Federated Learning](http://proceedings.mlr.press/v139/zhu21b.html) *ICML 2021*
64
+ - **FedNTD** — [Preservation of the Global Knowledge by Not-True Distillation in Federated Learning](https://proceedings.neurips.cc/paper_files/paper/2022/hash/fadec8f2e65f181d777507d1df69b92f-Abstract-Conference.html) *NeurIPS 2022*
65
+
66
+ > ### Personalized FL (pFL)
67
+
68
+ - **FedMTL (not MOCHA)** — [Federated multi-task learning](https://papers.nips.cc/paper/2017/hash/6211080fa89981f66b1a0c9d55c61d0f-Abstract.html) *NeurIPS 2017*
69
+ - **FedBN** — [FedBN: Federated Learning on non-IID Features via Local Batch Normalization](https://openreview.net/forum?id=6YEQUn0QICG) *ICLR 2021*
70
+
71
+ ***Meta-learning-based pFL***
72
+
73
+ - **Per-FedAvg** — [Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach](https://proceedings.neurips.cc/paper/2020/hash/24389bfe4fe2eba8bf9aa9203a44cdad-Abstract.html) *NeurIPS 2020*
74
+
75
+ ***Regularization-based pFL***
76
+
77
+ - **pFedMe** — [Personalized Federated Learning with Moreau Envelopes](https://papers.nips.cc/paper/2020/hash/f4f1f13c8289ac1b1ee0ff176b56fc60-Abstract.html) *NeurIPS 2020*
78
+ - **Ditto** — [Ditto: Fair and robust federated learning through personalization](https://proceedings.mlr.press/v139/li21h.html) *ICML 2021*
79
+
80
+ ***Personalized-aggregation-based pFL***
81
+
82
+ - **APFL** — [Adaptive Personalized Federated Learning](https://arxiv.org/abs/2003.13461) *2020*
83
+ - **FedFomo** — [Personalized Federated Learning with First Order Model Optimization](https://openreview.net/forum?id=ehJqJQk9cw) *ICLR 2021*
84
+ - **FedAMP** — [Personalized Cross-Silo Federated Learning on non-IID Data](https://ojs.aaai.org/index.php/AAAI/article/view/16960) *AAAI 2021*
85
+ - **FedPHP** — [FedPHP: Federated Personalization with Inherited Private Models](https://link.springer.com/chapter/10.1007/978-3-030-86486-6_36) *ECML PKDD 2021*
86
+ - **APPLE** — [Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning](https://www.ijcai.org/proceedings/2022/301) *IJCAI 2022*
87
+ - **FedALA** — [FedALA: Adaptive Local Aggregation for Personalized Federated Learning](https://ojs.aaai.org/index.php/AAAI/article/view/26330) *AAAI 2023*
88
+
89
+ ***Model-splitting-based pFL***
90
+
91
+ - **FedPer** — [Federated Learning with Personalization Layers](https://arxiv.org/abs/1912.00818) *2019*
92
+ - **LG-FedAvg** — [Think Locally, Act Globally: Federated Learning with Local and Global Representations](https://arxiv.org/abs/2001.01523) *2020*
93
+ - **FedRep** — [Exploiting Shared Representations for Personalized Federated Learning](http://proceedings.mlr.press/v139/collins21a.html) *ICML 2021*
94
+ - **FedRoD** — [On Bridging Generic and Personalized Federated Learning for Image Classification](https://openreview.net/forum?id=I1hQbx10Kxn) *ICLR 2022*
95
+ - **FedBABU** — [Fedbabu: Towards enhanced representation for federated image classification](https://openreview.net/forum?id=HuaYQfggn5u) *ICLR 2022*
96
+ - **FedGC** — [Federated Learning for Face Recognition with Gradient Correction](https://ojs.aaai.org/index.php/AAAI/article/view/20095/19854) *AAAI 2022*
97
+ - **FedCP** — [FedCP: Separating Feature Information for Personalized Federated Learning via Conditional Policy](https://arxiv.org/pdf/2307.01217v2.pdf) *KDD 2023*
98
+ - **GPFL** — [GPFL: Simultaneously Learning Generic and Personalized Feature Information for Personalized Federated Learning](https://arxiv.org/pdf/2308.10279v3.pdf) *ICCV 2023*
99
+ - **FedGH** — [FedGH: Heterogeneous Federated Learning with Generalized Global Header](https://dl.acm.org/doi/10.1145/3581783.3611781) *ACM MM 2023*
100
+ - **DBE** — [Eliminating Domain Bias for Federated Learning in Representation Space](https://openreview.net/forum?id=nO5i1XdUS0) *NeurIPS 2023*
101
+ - **FedCAC** — [Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration](https://arxiv.org/abs/2309.11103) *ICCV 2023*
102
+ - **PFL-DA** — [Personalized Federated Learning via Domain Adaptation with an Application to Distributed 3D Printing](https://www.tandfonline.com/doi/full/10.1080/00401706.2022.2157882) *Technometrics 2023*
103
+
104
+ ***Knowledge-distillation-based pFL***
105
+
106
+ - **FedDistill (FD)** — [Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data](https://arxiv.org/pdf/1811.11479.pdf) *2018*
107
+ - **FML** — [Federated Mutual Learning](https://arxiv.org/abs/2006.16765) *2020*
108
+ - **FedKD** — [Communication-efficient federated learning via knowledge distillation](https://www.nature.com/articles/s41467-022-29763-x) *Nature Communications 2022*
109
+ - **FedProto** — [FedProto: Federated Prototype Learning across Heterogeneous Clients](https://ojs.aaai.org/index.php/AAAI/article/view/20819) *AAAI 2022*
110
+ - **FedPCL (w/o pre-trained models)** — [Federated learning from pre-trained models: A contrastive learning approach](https://proceedings.neurips.cc/paper_files/paper/2022/file/7aa320d2b4b8f6400b18f6f77b6c1535-Paper-Conference.pdf) *NeurIPS 2022*
111
+ - **FedPAC** — [Personalized Federated Learning with Feature Alignment and Classifier Collaboration](https://openreview.net/pdf?id=SXZr8aDKia) *ICLR 2023*
112
+
113
+ ## Datasets and scenarios (updating)
114
+ For the ***label skew*** scenario, we introduce **14** famous datasets: **MNIST**, **EMNIST**, **Fashion-MNIST**, **Cifar10**, **Cifar100**, **AG News**, **Sogou News**, **Tiny-ImageNet**, **Country211**, **Flowers102**, **GTSRB**, **Shakespeare**, and **Stanford Cars**, they can be easy split into **IID** and **non-IID** version. Since some codes for generating datasets such as splitting are the same for all datasets, we move these codes into `./dataset/utils/dataset_utils.py`. In the **non-IID** scenario, 2 situations exist. The first one is the **pathological non-IID** scenario, the second one is the **practical non-IID** scenario. In the **pathological non-IID** scenario, for example, the data on each client only contains the specific number of labels (maybe only 2 labels), though the data on all clients contains 10 labels such as the MNIST dataset. In the **practical non-IID** scenario, Dirichlet distribution is utilized (please refer to this [paper](https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html) for details). We can input `balance` for the iid scenario, where the data are uniformly distributed.
115
+
116
+ For the ***feature shift*** scenario, we use **3** datasets that are widely used in Domain Adaptation: **Amazon Review** (fetch raw data from [this site](https://drive.google.com/file/d/1QbXFENNyqor1IlCpRRFtOluI2_hMEd1W/view?usp=sharing)), **Digit5** (fetch raw data from [this site](https://drive.google.com/file/d/1PT6K-_wmsUEUCxoYzDy0mxF-15tvb2Eu/view?usp=share_link)), and **DomainNet**.
117
+
118
+ For the ***real-world (or IoT)*** scenario, we also introduce **3** naturally separated datasets: **Omniglot** (20 clients, 50 labels), **HAR (Human Activity Recognition)** (30 clients, 6 labels), **PAMAP2** (9 clients, 12 labels). For the details of datasets and FL algorithms in **IoT**, please refer to [my FL-IoT repo](https://github.com/TsingZ0/FL-IoT).
119
+
120
+ *If you need another data set, just write another code to download it and then use the utils.*
121
+
122
+ ### Examples for **MNIST**
123
+ - MNIST
124
+ ```
125
+ cd ./dataset
126
+ # python generate_MNIST.py iid - - # for iid and unbalanced scenario
127
+ # python generate_MNIST.py iid balance - # for iid and balanced scenario
128
+ # python generate_MNIST.py noniid - pat # for pathological noniid and unbalanced scenario
129
+ python generate_MNIST.py noniid - dir # for practical noniid and unbalanced scenario
130
+ # python generate_MNIST.py noniid - exdir # for Extended Dirichlet strategy
131
+ ```
132
+
133
+ The output of `python generate_MNIST.py noniid - dir`
134
+ ```
135
+ Number of classes: 10
136
+ Client 0 Size of data: 2630 Labels: [0 1 4 5 7 8 9]
137
+ Samples of labels: [(0, 140), (1, 890), (4, 1), (5, 319), (7, 29), (8, 1067), (9, 184)]
138
+ --------------------------------------------------
139
+ Client 1 Size of data: 499 Labels: [0 2 5 6 8 9]
140
+ Samples of labels: [(0, 5), (2, 27), (5, 19), (6, 335), (8, 6), (9, 107)]
141
+ --------------------------------------------------
142
+ Client 2 Size of data: 1630 Labels: [0 3 6 9]
143
+ Samples of labels: [(0, 3), (3, 143), (6, 1461), (9, 23)]
144
+ --------------------------------------------------
145
+ ```
146
+ <details>
147
+ <summary>Show more</summary>
148
+
149
+ Client 3 Size of data: 2541 Labels: [0 4 7 8]
150
+ Samples of labels: [(0, 155), (4, 1), (7, 2381), (8, 4)]
151
+ --------------------------------------------------
152
+ Client 4 Size of data: 1917 Labels: [0 1 3 5 6 8 9]
153
+ Samples of labels: [(0, 71), (1, 13), (3, 207), (5, 1129), (6, 6), (8, 40), (9, 451)]
154
+ --------------------------------------------------
155
+ Client 5 Size of data: 6189 Labels: [1 3 4 8 9]
156
+ Samples of labels: [(1, 38), (3, 1), (4, 39), (8, 25), (9, 6086)]
157
+ --------------------------------------------------
158
+ Client 6 Size of data: 1256 Labels: [1 2 3 6 8 9]
159
+ Samples of labels: [(1, 873), (2, 176), (3, 46), (6, 42), (8, 13), (9, 106)]
160
+ --------------------------------------------------
161
+ Client 7 Size of data: 1269 Labels: [1 2 3 5 7 8]
162
+ Samples of labels: [(1, 21), (2, 5), (3, 11), (5, 787), (7, 4), (8, 441)]
163
+ --------------------------------------------------
164
+ Client 8 Size of data: 3600 Labels: [0 1]
165
+ Samples of labels: [(0, 1), (1, 3599)]
166
+ --------------------------------------------------
167
+ Client 9 Size of data: 4006 Labels: [0 1 2 4 6]
168
+ Samples of labels: [(0, 633), (1, 1997), (2, 89), (4, 519), (6, 768)]
169
+ --------------------------------------------------
170
+ Client 10 Size of data: 3116 Labels: [0 1 2 3 4 5]
171
+ Samples of labels: [(0, 920), (1, 2), (2, 1450), (3, 513), (4, 134), (5, 97)]
172
+ --------------------------------------------------
173
+ Client 11 Size of data: 3772 Labels: [2 3 5]
174
+ Samples of labels: [(2, 159), (3, 3055), (5, 558)]
175
+ --------------------------------------------------
176
+ Client 12 Size of data: 3613 Labels: [0 1 2 5]
177
+ Samples of labels: [(0, 8), (1, 180), (2, 3277), (5, 148)]
178
+ --------------------------------------------------
179
+ Client 13 Size of data: 2134 Labels: [1 2 4 5 7]
180
+ Samples of labels: [(1, 237), (2, 343), (4, 6), (5, 453), (7, 1095)]
181
+ --------------------------------------------------
182
+ Client 14 Size of data: 5730 Labels: [5 7]
183
+ Samples of labels: [(5, 2719), (7, 3011)]
184
+ --------------------------------------------------
185
+ Client 15 Size of data: 5448 Labels: [0 3 5 6 7 8]
186
+ Samples of labels: [(0, 31), (3, 1785), (5, 16), (6, 4), (7, 756), (8, 2856)]
187
+ --------------------------------------------------
188
+ Client 16 Size of data: 3628 Labels: [0]
189
+ Samples of labels: [(0, 3628)]
190
+ --------------------------------------------------
191
+ Client 17 Size of data: 5653 Labels: [1 2 3 4 5 7 8]
192
+ Samples of labels: [(1, 26), (2, 1463), (3, 1379), (4, 335), (5, 60), (7, 17), (8, 2373)]
193
+ --------------------------------------------------
194
+ Client 18 Size of data: 5266 Labels: [0 5 6]
195
+ Samples of labels: [(0, 998), (5, 8), (6, 4260)]
196
+ --------------------------------------------------
197
+ Client 19 Size of data: 6103 Labels: [0 1 2 3 4 9]
198
+ Samples of labels: [(0, 310), (1, 1), (2, 1), (3, 1), (4, 5789), (9, 1)]
199
+ --------------------------------------------------
200
+ Total number of samples: 70000
201
+ The number of train samples: [1972, 374, 1222, 1905, 1437, 4641, 942, 951, 2700, 3004, 2337, 2829, 2709, 1600, 4297, 4086, 2721, 4239, 3949, 4577]
202
+ The number of test samples: [658, 125, 408, 636, 480, 1548, 314, 318, 900, 1002, 779, 943, 904, 534, 1433, 1362, 907, 1414, 1317, 1526]
203
+
204
+ Saving to disk.
205
+
206
+ Finish generating dataset.
207
+ </details>
208
+
209
+ ## Models
210
+ - for MNIST and Fashion-MNIST
211
+
212
+ 1. Mclr_Logistic(1\*28\*28)
213
+ 2. LeNet()
214
+ 3. DNN(1\*28\*28, 100) # non-convex
215
+
216
+ - for Cifar10, Cifar100 and Tiny-ImageNet
217
+
218
+ 1. Mclr_Logistic(3\*32\*32)
219
+ 2. FedAvgCNN()
220
+ 3. DNN(3\*32\*32, 100) # non-convex
221
+ 4. ResNet18, AlexNet, MobileNet, GoogleNet, etc.
222
+
223
+ - for AG_News and Sogou_News
224
+
225
+ 1. LSTM()
226
+ 2. fastText() in [Bag of Tricks for Efficient Text Classification](https://aclanthology.org/E17-2068/)
227
+ 3. TextCNN() in [Convolutional Neural Networks for Sentence Classification](https://aclanthology.org/D14-1181/)
228
+ 4. TransformerModel() in [Attention is all you need](https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html)
229
+
230
+ - for AmazonReview
231
+
232
+ 1. AmazonMLP() in [Curriculum manager for source selection in multi-source domain adaptation](https://link.springer.com/chapter/10.1007/978-3-030-58568-6_36)
233
+
234
+ - for Omniglot
235
+
236
+ 1. FedAvgCNN()
237
+
238
+ - for HAR and PAMAP
239
+
240
+ 1. HARCNN() in [Convolutional neural networks for human activity recognition using mobile sensors](https://eudl.eu/pdf/10.4108/icst.mobicase.2014.257786)
241
+
242
+ ## Environments
243
+ Install [CUDA](https://developer.nvidia.com/cuda-11-6-0-download-archive).
244
+
245
+ Install [conda](https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh) and activate conda.
246
+
247
+ ```bash
248
+ conda env create -f env_cuda_latest.yaml # You may need to downgrade the torch using pip to match the CUDA version
249
+ ```
250
+
251
+ ## How to start simulating (examples for FedAvg)
252
+
253
+ - Create proper environments (see [Environments](#environments)).
254
+
255
+ - Download [this project](https://github.com/TsingZ0/PFLlib) to an appropriate location using [git](https://git-scm.com/).
256
+ ```bash
257
+ git clone https://github.com/TsingZ0/PFLlib.git
258
+ ```
259
+
260
+ - Build evaluation scenarios (see [Datasets and scenarios (updating)](#datasets-and-scenarios-updating)).
261
+
262
+ - Run evaluation:
263
+ ```bash
264
+ cd ./system
265
+ python main.py -data MNIST -m cnn -algo FedAvg -gr 2000 -did 0 # using the MNIST dataset, the FedAvg algorithm, and the 4-layer CNN model
266
+ ```
267
+
268
+ **Note**: It is preferable to tune algorithm-specific hyper-parameters before using any algorithm on a new machine.
269
+
270
+ ## Practical situations
271
+ If you need to simulate FL under practical situations, which includes **client dropout**, **slow trainers**, **slow senders**, and **network TTL**, you can set the following parameters to realize it.
272
+
273
+ - `-cdr`: The dropout rate for total clients. The selected clients will randomly drop at each training round.
274
+ - `-tsr` and `-ssr`: The rates for slow trainers and slow senders among all clients. Once a client is selected as a "slow trainer"/"slow sender", for example, it will always train/send slower than the original one.
275
+ - `-tth`: The threshold for network TTL (ms).
276
+
277
+ ## Easy to extend
278
+ It is easy to add new algorithms and datasets to this library.
279
+
280
+ - To add a **new dataset** into this library, all you need to do is write the download code and use the utils which is similar to `./dataset/generate_MNIST.py` (you can also consider it as the template).
281
+
282
+ - To add a **new algorithm**, you can utilize the class **Server** and class **Client**, which are wrote in `./system/flcore/servers/serverbase.py` and `./system/flcore/clients/clientbase.py`, respectively.
283
+
284
+ - To add a **new model**, just add it into `./system/flcore/trainmodel/models.py`.
285
+
286
+ - If you have a **new optimizer** while training, please add it into `./system/flcore/optimizers/fedoptimizer.py`
287
+
288
+ - The evaluation platform is also convenient for users to build a new platform for specific applications, such as our [FL-IoT](https://github.com/TsingZ0/FL-IoT) and [HtFL](https://github.com/TsingZ0/HtFL).
289
+
290
+
291
+ ## Experimental results
292
+
293
+ If you are interested in **the experimental results (e.g., the accuracy) of the above algorithms**, you can find some results in our accepted FL papers (i.e., [FedALA](https://github.com/TsingZ0/FedALA), [FedCP](https://github.com/TsingZ0/FedCP), [GPFL](https://github.com/TsingZ0/GPFL), and [DBE](https://github.com/TsingZ0/DBE)) listed as follows that also use this library. *Please note that this developing project may not be able to reproduce the results on these papers, since some basic settings may change due to the requests of the community. For example, we previously set `shuffle=False` in clientbase.py*
294
+
295
+ ```
296
+ @inproceedings{zhang2023fedala,
297
+ title={Fedala: Adaptive local aggregation for personalized federated learning},
298
+ author={Zhang, Jianqing and Hua, Yang and Wang, Hao and Song, Tao and Xue, Zhengui and Ma, Ruhui and Guan, Haibing},
299
+ booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
300
+ volume={37},
301
+ number={9},
302
+ pages={11237--11244},
303
+ year={2023}
304
+ }
305
+
306
+ @inproceedings{Zhang2023fedcp,
307
+ author = {Zhang, Jianqing and Hua, Yang and Wang, Hao and Song, Tao and Xue, Zhengui and Ma, Ruhui and Guan, Haibing},
308
+ title = {FedCP: Separating Feature Information for Personalized Federated Learning via Conditional Policy},
309
+ year = {2023},
310
+ booktitle = {Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining}
311
+ }
312
+
313
+ @inproceedings{zhang2023gpfl,
314
+ title={GPFL: Simultaneously Learning Global and Personalized Feature Information for Personalized Federated Learning},
315
+ author={Zhang, Jianqing and Hua, Yang and Wang, Hao and Song, Tao and Xue, Zhengui and Ma, Ruhui and Cao, Jian and Guan, Haibing},
316
+ booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
317
+ pages={5041--5051},
318
+ year={2023}
319
+ }
320
+
321
+ @inproceedings{zhang2023eliminating,
322
+ title={Eliminating Domain Bias for Federated Learning in Representation Space},
323
+ author={Jianqing Zhang and Yang Hua and Jian Cao and Hao Wang and Tao Song and Zhengui XUE and Ruhui Ma and Haibing Guan},
324
+ booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
325
+ year={2023},
326
+ url={https://openreview.net/forum?id=nO5i1XdUS0}
327
+ }
328
+ ```
PFLlib/dataset/Cifar10_iid/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"num_clients":50,"num_classes":10,"non_iid":false,"balance":true,"partition":null,"Size of samples for labels in clients":[[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]],[[0,120],[1,120],[2,120],[3,120],[4,120],[5,120],[6,120],[7,120],[8,120],[9,120]]],"alpha":0.1,"batch_size":50}
PFLlib/dataset/Cifar10_iid/test/0.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a0d4a40b494ab30584d9c80133d00ea260bd5372adbae64cf62ad9bdcddea1f
3
+ size 1202138
PFLlib/dataset/Cifar10_iid/test/1.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b56646e58f97c57947633f897f8f63eec8d7ea1419aa2268dbb1d3144344823f
3
+ size 1214216
PFLlib/dataset/Cifar10_iid/test/10.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c1c0d3a9ccccaf37dd01441cad02fd648eefa18cafc2c3252fd66398bad688e
3
+ size 1202478
PFLlib/dataset/Cifar10_iid/test/11.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6c9e20cfe2eec011cab63426f632ba764833c546c322c4503644d2f947da6d6
3
+ size 1217092
PFLlib/dataset/Cifar10_iid/test/12.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06f17bcb456992a3874a1c30338a1906e6fe22a3d3a95291ce4b4f92f19468f
3
+ size 1209091
PFLlib/dataset/Cifar10_iid/test/13.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a196e95e695fd81dd13c781d57fbc0f3bf2dd3ed4a8f642248bb7080666090
3
+ size 1208574
PFLlib/dataset/Cifar10_iid/test/14.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc73b66d131afd288d4b8ddef674fd8fff884744701cd663cea0bd370b180636
3
+ size 1196517
PFLlib/dataset/Cifar10_iid/test/15.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c09cab112a52ecf66d23f8a516ea91a90fbd94a48bec665151f672fa711e69bc
3
+ size 1190884
PFLlib/dataset/Cifar10_iid/test/16.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff778671e95463252fdcef2a3be25d1c4f61ecb95324d0e2efa7871a40d38280
3
+ size 1217439
PFLlib/dataset/Cifar10_iid/test/17.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e51fd2b09990c13e2f1240a36798444f27afb5df18ab3073293d3c7cdf7e8f5
3
+ size 1204458
PFLlib/dataset/Cifar10_iid/test/18.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b414b16154a27b34900a306b07a116eb2161e96c3fd34c4800a11b0c9782b41d
3
+ size 1207926
PFLlib/dataset/Cifar10_iid/test/19.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c42a93547b057b383daafb9c89a363dfb5de82cdec99079015ad86e38625671e
3
+ size 1198314
PFLlib/dataset/Cifar10_iid/test/2.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:113af6e18feedb23afcf98756741fe659b4f65fbf35c29e86a6d2ec80b7a70d2
3
+ size 1222141
PFLlib/dataset/Cifar10_iid/test/20.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:441e4e0fb9d961364560f19d9571055f8c1c8ec606c67e1cbfe8ec2c2db99846
3
+ size 1198616
PFLlib/dataset/Cifar10_iid/test/21.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4998287b61854c2ca7a3d76f5460fecde350a6b8f532ed196cc31d40844d0f06
3
+ size 1202514
PFLlib/dataset/Cifar10_iid/test/22.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3cc765e98336faf4bf4076e0b7246b8c842db5da2a3c63c6166495895fc5aa1
3
+ size 1192852
PFLlib/dataset/Cifar10_iid/test/23.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddca7f69a23d364df297b73c1a8bea2713256c4c8dedf2c5c3279ebe80712a47
3
+ size 1195109
PFLlib/dataset/Cifar10_iid/test/24.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55fa06455bc349f6a3e34b443015819336b6a03b265c9dc7ce8215e145fa1c89
3
+ size 1214239
PFLlib/dataset/Cifar10_iid/test/25.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e3f8d72ec680b14918293042d262cb92af9a95689cdc95c021d9a127d07ad7f
3
+ size 1220061
PFLlib/dataset/Cifar10_iid/test/26.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cc5140bb780d89e1f2d8ad62b248a234a9836a965fcbc11af62e3e897c875a7
3
+ size 1202840
PFLlib/dataset/Cifar10_iid/test/27.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caa00a29931c5cf4539c047ecde57f0925b57c38f8f489ef2b45b37b55e1014d
3
+ size 1207901
PFLlib/dataset/Cifar10_iid/test/28.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f7c629bf234e862a2c47561f611c835023fdbaddcb93102defb104b461069fa
3
+ size 1213057
PFLlib/dataset/Cifar10_iid/test/29.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54b2e1ec088feff754f570b1751b4bc3d994bda39b3ba499b20c12777ac32f60
3
+ size 1209282
PFLlib/dataset/Cifar10_iid/test/3.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:148fc41aab234d04a3ea21e0b11b3674067b93a2b77515aa1ed3d52191388363
3
+ size 1204088
PFLlib/dataset/Cifar10_iid/test/30.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e495419a7b757e9b1444ec123a8f804b8b0039dc389160817b7ce1013190f82
3
+ size 1196546
PFLlib/dataset/Cifar10_iid/test/31.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8b94f5541df1595fb6c1d989a4d3d5300dad677f6908ed8068fc2d3e65df92e
3
+ size 1199505
PFLlib/dataset/Cifar10_iid/test/32.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a46e830dbc1d20e62aa9ce940b17b33d3b92db9d5deb2f6494759b340ff0cf8f
3
+ size 1209933
PFLlib/dataset/Cifar10_iid/test/33.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edfc844dead243e10d26a53cc9e914acfdb61e16e2faa8123e2a9f58d5a708e7
3
+ size 1194695
PFLlib/dataset/Cifar10_iid/test/34.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:944aa89e3a4e696c44911077e0045e08e3e550126dcf7cba3fd4e8052b83532f
3
+ size 1185644
PFLlib/dataset/Cifar10_iid/test/35.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6e137a3bbd7f3fc9b0c24558c6d0408cd9b05a24f8a922294b14b5e18ada66a
3
+ size 1204396
PFLlib/dataset/Cifar10_iid/test/36.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19eaf3cd551537db4932d302ba9fc4931f8cf22ac9ecac34ce35f363128efe82
3
+ size 1195294
PFLlib/dataset/Cifar10_iid/test/37.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07a7f4b09cb19f5cb8185fd1e9f7be292980e29dd2c716c7dd3c05415c4e7bf3
3
+ size 1192263
PFLlib/dataset/Cifar10_iid/test/38.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:543f7057fc24dd3ce3145c040dadb912db5f08459634ab49e917667d8140450a
3
+ size 1220750
PFLlib/dataset/Cifar10_iid/test/39.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:096e36ea245d021230c9c021c77a29e9207fc10308c0f0c3898970911015f759
3
+ size 1209259
PFLlib/dataset/Cifar10_iid/test/4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe84b71e28e0e082402dd1bf0e3e7c72681c460f3ad53e2727833d83060f06e4
3
+ size 1215658
PFLlib/dataset/Cifar10_iid/test/40.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07858f1eb3ab95e6b65795930f7c6bd8ae0672bd0d37a6960197c79e9c733dd8
3
+ size 1210163
PFLlib/dataset/Cifar10_iid/test/41.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffd4c5300a9a9ec56a634dd11ef9c59973045827948bba89dbd48b288cef99ff
3
+ size 1197070
PFLlib/dataset/Cifar10_iid/test/42.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d411dbec424760cceadaa559941be1d8e6be63c75470837199e7127e431bf32
3
+ size 1199919
PFLlib/dataset/Cifar10_iid/test/43.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5bb66b41e481f19f6a13548ee241c0ad6e8abdc6e760c3085d0517b75f0841a
3
+ size 1212758
PFLlib/dataset/Cifar10_iid/test/44.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe8085d99891967490701895f8b9cf9fce9fd78f6654f7ad4cfd6805b6c4be6e
3
+ size 1203233
PFLlib/dataset/Cifar10_iid/test/45.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd6300e8a83867893e97a03fbbaa6bbc00a2c179282729c3b11ac3ef4be9d905
3
+ size 1205763
PFLlib/dataset/Cifar10_iid/test/46.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e194c8a88ed490714b4e2f1836feac019a77c082a808f24f109c4a41bf8585
3
+ size 1185653
PFLlib/dataset/Cifar10_iid/test/47.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14b22ca6c44ff5b09a64a71edc4be56a827171f0c2b3e544da118e9299f2db6d
3
+ size 1217936