kjj0 commited on
Commit
e85db8c
·
verified ·
1 Parent(s): a5af812

Delete airbench94.py

Browse files
Files changed (1) hide show
  1. airbench94.py +0 -483
airbench94.py DELETED
@@ -1,483 +0,0 @@
1
- # Uncompiled variant of airbench94_compiled.py
2
- # 3.83s runtime on an A100; 0.36 PFLOPs.
3
- # Evidence: 94.01 average accuracy in n=1000 runs.
4
- #
5
- # We recorded the runtime of 3.83 seconds on an NVIDIA A100-SXM4-80GB with the following nvidia-smi:
6
- # NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7
7
- # torch.__version__ == '2.1.2+cu118'
8
-
9
- #############################################
10
- # Setup/Hyperparameters #
11
- #############################################
12
-
13
- import os
14
- import sys
15
- import uuid
16
- from math import ceil
17
-
18
- import torch
19
- from torch import nn
20
- import torch.nn.functional as F
21
- import torchvision
22
- import torchvision.transforms as T
23
-
24
- torch.backends.cudnn.benchmark = True
25
-
26
- # We express the main training hyperparameters (batch size, learning rate, momentum, and weight decay)
27
- # in decoupled form, so that each one can be tuned independently. This accomplishes the following:
28
- # * Assuming time-constant gradients, the average step size is decoupled from everything but the lr.
29
- # * The size of the weight decay update is decoupled from everything but the wd.
30
- # In constrast, normally when we increase the (Nesterov) momentum, this also scales up the step size
31
- # proportionally to 1 + 1 / (1 - momentum), meaning we cannot change momentum without having to re-tune
32
- # the learning rate. Similarly, normally when we increase the learning rate this also increases the size
33
- # of the weight decay, requiring a proportional decrease in the wd to maintain the same decay strength.
34
- #
35
- # The practical impact is that hyperparameter tuning is faster, since this parametrization allows each
36
- # one to be tuned independently. See https://myrtle.ai/learn/how-to-train-your-resnet-5-hyperparameters/.
37
-
38
- hyp = {
39
- 'opt': {
40
- 'train_epochs': 9.9,
41
- 'batch_size': 1024,
42
- 'lr': 11.5, # learning rate per 1024 examples
43
- 'momentum': 0.85,
44
- 'weight_decay': 0.0153, # weight decay per 1024 examples (decoupled from learning rate)
45
- 'bias_scaler': 64.0, # scales up learning rate (but not weight decay) for BatchNorm biases
46
- 'label_smoothing': 0.2,
47
- 'whiten_bias_epochs': 3, # how many epochs to train the whitening layer bias before freezing
48
- },
49
- 'aug': {
50
- 'flip': True,
51
- 'translate': 2,
52
- },
53
- 'net': {
54
- 'widths': {
55
- 'block1': 64,
56
- 'block2': 256,
57
- 'block3': 256,
58
- },
59
- 'batchnorm_momentum': 0.6,
60
- 'scaling_factor': 1/9,
61
- 'tta_level': 2, # the level of test-time augmentation: 0=none, 1=mirror, 2=mirror+translate
62
- },
63
- }
64
-
65
- #############################################
66
- # DataLoader #
67
- #############################################
68
-
69
- CIFAR_MEAN = torch.tensor((0.4914, 0.4822, 0.4465))
70
- CIFAR_STD = torch.tensor((0.2470, 0.2435, 0.2616))
71
-
72
- def batch_flip_lr(inputs):
73
- flip_mask = (torch.rand(len(inputs), device=inputs.device) < 0.5).view(-1, 1, 1, 1)
74
- return torch.where(flip_mask, inputs.flip(-1), inputs)
75
-
76
- def batch_crop(images, crop_size):
77
- r = (images.size(-1) - crop_size)//2
78
- shifts = torch.randint(-r, r+1, size=(len(images), 2), device=images.device)
79
- images_out = torch.empty((len(images), 3, crop_size, crop_size), device=images.device, dtype=images.dtype)
80
- # The two cropping methods in this if-else produce equivalent results, but the second is faster for r > 2.
81
- if r <= 2:
82
- for sy in range(-r, r+1):
83
- for sx in range(-r, r+1):
84
- mask = (shifts[:, 0] == sy) & (shifts[:, 1] == sx)
85
- images_out[mask] = images[mask, :, r+sy:r+sy+crop_size, r+sx:r+sx+crop_size]
86
- else:
87
- images_tmp = torch.empty((len(images), 3, crop_size, crop_size+2*r), device=images.device, dtype=images.dtype)
88
- for s in range(-r, r+1):
89
- mask = (shifts[:, 0] == s)
90
- images_tmp[mask] = images[mask, :, r+s:r+s+crop_size, :]
91
- for s in range(-r, r+1):
92
- mask = (shifts[:, 1] == s)
93
- images_out[mask] = images_tmp[mask, :, :, r+s:r+s+crop_size]
94
- return images_out
95
-
96
- class CifarLoader:
97
-
98
- def __init__(self, path, train=True, batch_size=500, aug=None, drop_last=None, shuffle=None, gpu=0):
99
- data_path = os.path.join(path, 'train.pt' if train else 'test.pt')
100
- if not os.path.exists(data_path):
101
- dset = torchvision.datasets.CIFAR10(path, download=True, train=train)
102
- images = torch.tensor(dset.data)
103
- labels = torch.tensor(dset.targets)
104
- torch.save({'images': images, 'labels': labels, 'classes': dset.classes}, data_path)
105
-
106
- data = torch.load(data_path, map_location=torch.device(gpu))
107
- self.images, self.labels, self.classes = data['images'], data['labels'], data['classes']
108
- # It's faster to load+process uint8 data than to load preprocessed fp16 data
109
- self.images = (self.images.half() / 255).permute(0, 3, 1, 2).to(memory_format=torch.channels_last)
110
-
111
- self.normalize = T.Normalize(CIFAR_MEAN, CIFAR_STD)
112
- self.proc_images = {} # Saved results of image processing to be done on the first epoch
113
- self.epoch = 0
114
-
115
- self.aug = aug or {}
116
- for k in self.aug.keys():
117
- assert k in ['flip', 'translate'], 'Unrecognized key: %s' % k
118
-
119
- self.batch_size = batch_size
120
- self.drop_last = train if drop_last is None else drop_last
121
- self.shuffle = train if shuffle is None else shuffle
122
-
123
- def __len__(self):
124
- return len(self.images)//self.batch_size if self.drop_last else ceil(len(self.images)/self.batch_size)
125
-
126
- def __iter__(self):
127
-
128
- if self.epoch == 0:
129
- images = self.proc_images['norm'] = self.normalize(self.images)
130
- # Pre-flip images in order to do every-other epoch flipping scheme
131
- if self.aug.get('flip', False):
132
- images = self.proc_images['flip'] = batch_flip_lr(images)
133
- # Pre-pad images to save time when doing random translation
134
- pad = self.aug.get('translate', 0)
135
- if pad > 0:
136
- self.proc_images['pad'] = F.pad(images, (pad,)*4, 'reflect')
137
-
138
- if self.aug.get('translate', 0) > 0:
139
- images = batch_crop(self.proc_images['pad'], self.images.shape[-2])
140
- elif self.aug.get('flip', False):
141
- images = self.proc_images['flip']
142
- else:
143
- images = self.proc_images['norm']
144
- # Flip all images together every other epoch. This increases diversity relative to random flipping
145
- if self.aug.get('flip', False):
146
- if self.epoch % 2 == 1:
147
- images = images.flip(-1)
148
-
149
- self.epoch += 1
150
-
151
- indices = (torch.randperm if self.shuffle else torch.arange)(len(images), device=images.device)
152
- for i in range(len(self)):
153
- idxs = indices[i*self.batch_size:(i+1)*self.batch_size]
154
- yield (images[idxs], self.labels[idxs])
155
-
156
- #############################################
157
- # Network Components #
158
- #############################################
159
-
160
- class Flatten(nn.Module):
161
- def forward(self, x):
162
- return x.view(x.size(0), -1)
163
-
164
- class Mul(nn.Module):
165
- def __init__(self, scale):
166
- super().__init__()
167
- self.scale = scale
168
- def forward(self, x):
169
- return x * self.scale
170
-
171
- class BatchNorm(nn.BatchNorm2d):
172
- def __init__(self, num_features, momentum, eps=1e-12,
173
- weight=False, bias=True):
174
- super().__init__(num_features, eps=eps, momentum=1-momentum)
175
- self.weight.requires_grad = weight
176
- self.bias.requires_grad = bias
177
- # Note that PyTorch already initializes the weights to one and bias to zero
178
-
179
- class Conv(nn.Conv2d):
180
- def __init__(self, in_channels, out_channels, kernel_size=3, padding='same', bias=False):
181
- super().__init__(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
182
-
183
- def reset_parameters(self):
184
- super().reset_parameters()
185
- if self.bias is not None:
186
- self.bias.data.zero_()
187
- w = self.weight.data
188
- torch.nn.init.dirac_(w[:w.size(1)])
189
-
190
- class ConvGroup(nn.Module):
191
- def __init__(self, channels_in, channels_out, batchnorm_momentum):
192
- super().__init__()
193
- self.conv1 = Conv(channels_in, channels_out)
194
- self.pool = nn.MaxPool2d(2)
195
- self.norm1 = BatchNorm(channels_out, batchnorm_momentum)
196
- self.conv2 = Conv(channels_out, channels_out)
197
- self.norm2 = BatchNorm(channels_out, batchnorm_momentum)
198
- self.activ = nn.GELU()
199
-
200
- def forward(self, x):
201
- x = self.conv1(x)
202
- x = self.pool(x)
203
- x = self.norm1(x)
204
- x = self.activ(x)
205
- x = self.conv2(x)
206
- x = self.norm2(x)
207
- x = self.activ(x)
208
- return x
209
-
210
- #############################################
211
- # Network Definition #
212
- #############################################
213
-
214
- def make_net():
215
- widths = hyp['net']['widths']
216
- batchnorm_momentum = hyp['net']['batchnorm_momentum']
217
- whiten_kernel_size = 2
218
- whiten_width = 2 * 3 * whiten_kernel_size**2
219
- net = nn.Sequential(
220
- Conv(3, whiten_width, whiten_kernel_size, padding=0, bias=True),
221
- nn.GELU(),
222
- ConvGroup(whiten_width, widths['block1'], batchnorm_momentum),
223
- ConvGroup(widths['block1'], widths['block2'], batchnorm_momentum),
224
- ConvGroup(widths['block2'], widths['block3'], batchnorm_momentum),
225
- nn.MaxPool2d(3),
226
- Flatten(),
227
- nn.Linear(widths['block3'], 10, bias=False),
228
- Mul(hyp['net']['scaling_factor']),
229
- )
230
- net[0].weight.requires_grad = False
231
- net = net.half().cuda()
232
- net = net.to(memory_format=torch.channels_last)
233
- for mod in net.modules():
234
- if isinstance(mod, BatchNorm):
235
- mod.float()
236
- return net
237
-
238
- #############################################
239
- # Whitening Conv Initialization #
240
- #############################################
241
-
242
- def get_patches(x, patch_shape):
243
- c, (h, w) = x.shape[1], patch_shape
244
- return x.unfold(2,h,1).unfold(3,w,1).transpose(1,3).reshape(-1,c,h,w).float()
245
-
246
- def get_whitening_parameters(patches):
247
- n,c,h,w = patches.shape
248
- patches_flat = patches.view(n, -1)
249
- est_patch_covariance = (patches_flat.T @ patches_flat) / n
250
- eigenvalues, eigenvectors = torch.linalg.eigh(est_patch_covariance, UPLO='U')
251
- return eigenvalues.flip(0).view(-1, 1, 1, 1), eigenvectors.T.reshape(c*h*w,c,h,w).flip(0)
252
-
253
- def init_whitening_conv(layer, train_set, eps=5e-4):
254
- patches = get_patches(train_set, patch_shape=layer.weight.data.shape[2:])
255
- eigenvalues, eigenvectors = get_whitening_parameters(patches)
256
- eigenvectors_scaled = eigenvectors / torch.sqrt(eigenvalues + eps)
257
- layer.weight.data[:] = torch.cat((eigenvectors_scaled, -eigenvectors_scaled))
258
-
259
- ############################################
260
- # Lookahead #
261
- ############################################
262
-
263
- class LookaheadState:
264
- def __init__(self, net):
265
- self.net_ema = {k: v.clone() for k, v in net.state_dict().items()}
266
-
267
- def update(self, net, decay):
268
- for ema_param, net_param in zip(self.net_ema.values(), net.state_dict().values()):
269
- if net_param.dtype in (torch.half, torch.float):
270
- ema_param.lerp_(net_param, 1-decay)
271
- net_param.copy_(ema_param)
272
-
273
- ############################################
274
- # Logging #
275
- ############################################
276
-
277
- def print_columns(columns_list, is_head=False, is_final_entry=False):
278
- print_string = ''
279
- for col in columns_list:
280
- print_string += '| %s ' % col
281
- print_string += '|'
282
- if is_head:
283
- print('-'*len(print_string))
284
- print(print_string)
285
- if is_head or is_final_entry:
286
- print('-'*len(print_string))
287
-
288
- logging_columns_list = ['run ', 'epoch', 'train_loss', 'train_acc', 'val_acc', 'tta_val_acc', 'total_time_seconds']
289
- def print_training_details(variables, is_final_entry):
290
- formatted = []
291
- for col in logging_columns_list:
292
- var = variables.get(col.strip(), None)
293
- if type(var) in (int, str):
294
- res = str(var)
295
- elif type(var) is float:
296
- res = '{:0.4f}'.format(var)
297
- else:
298
- assert var is None
299
- res = ''
300
- formatted.append(res.rjust(len(col)))
301
- print_columns(formatted, is_final_entry=is_final_entry)
302
-
303
- ############################################
304
- # Evaluation #
305
- ############################################
306
-
307
- def infer(model, loader, tta_level=0):
308
-
309
- # Test-time augmentation strategy (for tta_level=2):
310
- # 1. Flip/mirror the image left-to-right (50% of the time).
311
- # 2. Translate the image by one pixel either up-and-left or down-and-right (50% of the time,
312
- # i.e. both happen 25% of the time).
313
- #
314
- # This creates 6 views per image (left/right times the two translations and no-translation),
315
- # which we evaluate and then weight according to the given probabilities.
316
-
317
- def infer_basic(inputs, net):
318
- return net(inputs).clone()
319
-
320
- def infer_mirror(inputs, net):
321
- return 0.5 * net(inputs) + 0.5 * net(inputs.flip(-1))
322
-
323
- def infer_mirror_translate(inputs, net):
324
- logits = infer_mirror(inputs, net)
325
- pad = 1
326
- padded_inputs = F.pad(inputs, (pad,)*4, 'reflect')
327
- inputs_translate_list = [
328
- padded_inputs[:, :, 0:32, 0:32],
329
- padded_inputs[:, :, 2:34, 2:34],
330
- ]
331
- logits_translate_list = [infer_mirror(inputs_translate, net)
332
- for inputs_translate in inputs_translate_list]
333
- logits_translate = torch.stack(logits_translate_list).mean(0)
334
- return 0.5 * logits + 0.5 * logits_translate
335
-
336
- model.eval()
337
- test_images = loader.normalize(loader.images)
338
- infer_fn = [infer_basic, infer_mirror, infer_mirror_translate][tta_level]
339
- with torch.no_grad():
340
- return torch.cat([infer_fn(inputs, model) for inputs in test_images.split(2000)])
341
-
342
- def evaluate(model, loader, tta_level=0):
343
- logits = infer(model, loader, tta_level)
344
- return (logits.argmax(1) == loader.labels).float().mean().item()
345
-
346
- ############################################
347
- # Training #
348
- ############################################
349
-
350
- def main(run):
351
-
352
- batch_size = hyp['opt']['batch_size']
353
- epochs = hyp['opt']['train_epochs']
354
- momentum = hyp['opt']['momentum']
355
- # Assuming gradients are constant in time, for Nesterov momentum, the below ratio is how much
356
- # larger the default steps will be than the underlying per-example gradients. We divide the
357
- # learning rate by this ratio in order to ensure steps are the same scale as gradients, regardless
358
- # of the choice of momentum.
359
- kilostep_scale = 1024 * (1 + 1 / (1 - momentum))
360
- lr = hyp['opt']['lr'] / kilostep_scale # un-decoupled learning rate for PyTorch SGD
361
- wd = hyp['opt']['weight_decay'] * batch_size / kilostep_scale
362
- lr_biases = lr * hyp['opt']['bias_scaler']
363
-
364
- loss_fn = nn.CrossEntropyLoss(label_smoothing=hyp['opt']['label_smoothing'], reduction='none')
365
- test_loader = CifarLoader('cifar10', train=False, batch_size=2000)
366
- train_loader = CifarLoader('cifar10', train=True, batch_size=batch_size, aug=hyp['aug'])
367
- if run == 'warmup':
368
- # The only purpose of the first run is to warmup, so we can use dummy data
369
- train_loader.labels = torch.randint(0, 10, size=(len(train_loader.labels),), device=train_loader.labels.device)
370
- total_train_steps = ceil(len(train_loader) * epochs)
371
-
372
- model = make_net()
373
- current_steps = 0
374
-
375
- norm_biases = [p for k, p in model.named_parameters() if 'norm' in k and p.requires_grad]
376
- other_params = [p for k, p in model.named_parameters() if 'norm' not in k and p.requires_grad]
377
- param_configs = [dict(params=norm_biases, lr=lr_biases, weight_decay=wd/lr_biases),
378
- dict(params=other_params, lr=lr, weight_decay=wd/lr)]
379
- optimizer = torch.optim.SGD(param_configs, momentum=momentum, nesterov=True)
380
-
381
- def get_lr(step):
382
- warmup_steps = int(total_train_steps * 0.23)
383
- warmdown_steps = total_train_steps - warmup_steps
384
- if step < warmup_steps:
385
- frac = step / warmup_steps
386
- return 0.2 * (1 - frac) + 1.0 * frac
387
- else:
388
- frac = (step - warmup_steps) / warmdown_steps
389
- return 1.0 * (1 - frac) + 0.07 * frac
390
- scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, get_lr)
391
-
392
- alpha_schedule = 0.95**5 * (torch.arange(total_train_steps+1) / total_train_steps)**3
393
- lookahead_state = LookaheadState(model)
394
-
395
- # For accurately timing GPU code
396
- starter = torch.cuda.Event(enable_timing=True)
397
- ender = torch.cuda.Event(enable_timing=True)
398
- total_time_seconds = 0.0
399
-
400
- # Initialize the whitening layer using training images
401
- starter.record()
402
- train_images = train_loader.normalize(train_loader.images[:5000])
403
- init_whitening_conv(model[0], train_images)
404
- ender.record()
405
- torch.cuda.synchronize()
406
- total_time_seconds += 1e-3 * starter.elapsed_time(ender)
407
-
408
- for epoch in range(ceil(epochs)):
409
-
410
- model[0].bias.requires_grad = (epoch < hyp['opt']['whiten_bias_epochs'])
411
-
412
- ####################
413
- # Training #
414
- ####################
415
-
416
- starter.record()
417
-
418
- model.train()
419
- for inputs, labels in train_loader:
420
-
421
- outputs = model(inputs)
422
- loss = loss_fn(outputs, labels).sum()
423
- optimizer.zero_grad(set_to_none=True)
424
- loss.backward()
425
- optimizer.step()
426
- scheduler.step()
427
-
428
- current_steps += 1
429
-
430
- if current_steps % 5 == 0:
431
- lookahead_state.update(model, decay=alpha_schedule[current_steps].item())
432
-
433
- if current_steps >= total_train_steps:
434
- if lookahead_state is not None:
435
- lookahead_state.update(model, decay=1.0)
436
- break
437
-
438
- ender.record()
439
- torch.cuda.synchronize()
440
- total_time_seconds += 1e-3 * starter.elapsed_time(ender)
441
-
442
- ####################
443
- # Evaluation #
444
- ####################
445
-
446
- # Save the accuracy and loss from the last training batch of the epoch
447
- train_acc = (outputs.detach().argmax(1) == labels).float().mean().item()
448
- train_loss = loss.item() / batch_size
449
- val_acc = evaluate(model, test_loader, tta_level=0)
450
- print_training_details(locals(), is_final_entry=False)
451
- run = None # Only print the run number once
452
-
453
- ####################
454
- # TTA Evaluation #
455
- ####################
456
-
457
- starter.record()
458
- tta_val_acc = evaluate(model, test_loader, tta_level=hyp['net']['tta_level'])
459
- ender.record()
460
- torch.cuda.synchronize()
461
- total_time_seconds += 1e-3 * starter.elapsed_time(ender)
462
-
463
- epoch = 'eval'
464
- print_training_details(locals(), is_final_entry=True)
465
-
466
- return tta_val_acc
467
-
468
- if __name__ == "__main__":
469
- with open(sys.argv[0]) as f:
470
- code = f.read()
471
-
472
- print_columns(logging_columns_list, is_head=True)
473
- #main('warmup')
474
- accs = torch.tensor([main(run) for run in range(25)])
475
- print('Mean: %.4f Std: %.4f' % (accs.mean(), accs.std()))
476
-
477
- log = {'code': code, 'accs': accs}
478
- log_dir = os.path.join('logs', str(uuid.uuid4()))
479
- os.makedirs(log_dir, exist_ok=True)
480
- log_path = os.path.join(log_dir, 'log.pt')
481
- print(os.path.abspath(log_path))
482
- torch.save(log, os.path.join(log_dir, 'log.pt'))
483
-