parquet-converter commited on
Commit
755962e
·
1 Parent(s): 5b94fa5

Update parquet files

Browse files
plain_text/qa_srl-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46b308d76581bc4973edf7d78fd1158665f074bbb2f3ac22cdf4a02abb822085
3
+ size 385978
plain_text/qa_srl-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaa9763a2021649d7d5f89784cff26ece23635e3595c4d836c96f1cab10847c4
3
+ size 12266936
plain_text/qa_srl-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fedf55e8e345535f2b70aa4fca85e112f7effd91a4eedea4adb85c1718da7e21
3
+ size 390955
qa_srl.py DELETED
@@ -1,147 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Dataset loading script for loading the Large-Scale-QASRL (FitzGeralds et. al., ACL 2018) training set, along with the QASRL-GS evaluation dataset (Roit et. al., ACL 2020)."""
16
-
17
-
18
- import datasets
19
- from pathlib import Path
20
- import gzip
21
- import json
22
-
23
-
24
- _CITATION = """\
25
- @inproceedings{fitzgerald2018large,
26
- title={Large-Scale QA-SRL Parsing},
27
- author={FitzGerald, Nicholas and Michael, Julian and He, Luheng and Zettlemoyer, Luke},
28
- booktitle={Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
29
- pages={2051--2060},
30
- year={2018}
31
- }
32
- @inproceedings{roit2020controlled,
33
- title={Controlled Crowdsourcing for High-Quality QA-SRL Annotation},
34
- author={Roit, Paul and Klein, Ayal and Stepanov, Daniela and Mamou, Jonathan and Michael, Julian and Stanovsky, Gabriel and Zettlemoyer, Luke and Dagan, Ido},
35
- booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
36
- pages={7008--7013},
37
- year={2020}
38
- }
39
- """
40
-
41
-
42
- _DESCRIPTION = """\
43
- The dataset contains question-answer pairs to model verbal predicate-argument structure.
44
- The questions start with wh-words (Who, What, Where, What, etc.) and contain a verb predicate in the sentence; the answers are phrases in the sentence.
45
- This dataset loads the train split from "QASRL Bank", a.k.a "QASRL-v2" or "QASRL-LS" (Large Scale),
46
- which was constructed via crowdsourcing and presented at (FitzGeralds et. al., ACL 2018),
47
- and the dev and test splits from QASRL-GS (Gold Standard), introduced in (Roit et. al., ACL 2020).
48
- """
49
-
50
- _HOMEPAGE = "https://qasrl.org"
51
-
52
- # TODO: Add the licence for the dataset here if you can find it
53
- _LICENSE = ""
54
-
55
- SpanFeatureType = datasets.Sequence(datasets.Value("int32"), length=2)
56
-
57
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
58
- class QaSrl(datasets.GeneratorBasedBuilder):
59
- """QA-SRL: Question-Answer Driven Semantic Role Labeling corpus"""
60
-
61
- VERSION = datasets.Version("1.0.0")
62
-
63
- BUILDER_CONFIGS = [
64
- datasets.BuilderConfig(
65
- name="plain_text", version=VERSION, description=""
66
- ),
67
- ]
68
-
69
- DEFAULT_CONFIG_NAME = (
70
- "plain_text" # It's not mandatory to have a default configuration. Just use one if it make sense.
71
- )
72
-
73
- def _info(self):
74
- features = datasets.Features(
75
- {
76
- "sentence": datasets.Value("string"),
77
- "sent_id": datasets.Value("string"),
78
- "predicate_idx": datasets.Value("int32"),
79
- "predicate": datasets.Value("string"),
80
- "is_verbal": datasets.Value("bool"),
81
- "verb_form": datasets.Value("string"),
82
- "question": datasets.Sequence(datasets.Value("string")),
83
- "answers": datasets.Sequence(datasets.Value("string")),
84
- "answer_ranges": datasets.Sequence(SpanFeatureType)
85
- }
86
- )
87
- return datasets.DatasetInfo(
88
- # This is the description that will appear on the datasets page.
89
- description=_DESCRIPTION,
90
- # This defines the different columns of the dataset and their types
91
- features=features, # Here we define them above because they are different between the two configurations
92
- # If there's a common (input, target) tuple from the features,
93
- # specify them here. They'll be used if as_supervised=True in
94
- # builder.as_dataset.
95
- supervised_keys=None,
96
- # Homepage of the dataset for documentation
97
- homepage=_HOMEPAGE,
98
- # License for the dataset if available
99
- license=_LICENSE,
100
- # Citation for the dataset
101
- citation=_CITATION,
102
- )
103
-
104
- def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
105
- """Returns SplitGenerators."""
106
-
107
- # iterate the tar file of the corpus
108
-
109
- # Older version of the corpus (has some format errors):
110
- # corpus_base_path = Path(dl_manager.download_and_extract(_URLs["qasrl_v2.0"]))
111
- # corpus_orig = corpus_base_path / "qasrl-v2" / "orig"
112
-
113
- self.qasrl2018 = datasets.load_dataset("biu-nlp/qa_srl2018")
114
- self.qasrl2020 = datasets.load_dataset("biu-nlp/qa_srl2020")
115
-
116
-
117
- # TODO add optional kwarg for genre (wikinews)
118
- return [
119
- datasets.SplitGenerator(
120
- name=datasets.Split.TRAIN,
121
- # These kwargs will be passed to _generate_examples
122
- gen_kwargs={
123
- "dataset": self.qasrl2018["train"],
124
- },
125
- ),
126
- datasets.SplitGenerator(
127
- name=datasets.Split.VALIDATION,
128
- # These kwargs will be passed to _generate_examples
129
- gen_kwargs={
130
- "dataset": self.qasrl2020["validation"],
131
- },
132
- ),
133
- datasets.SplitGenerator(
134
- name=datasets.Split.TEST,
135
- # These kwargs will be passed to _generate_examples
136
- gen_kwargs={
137
- "dataset": self.qasrl2020["test"],
138
- },
139
- ),
140
- ]
141
-
142
- def _generate_examples(self, dataset):
143
-
144
- """ Yields examples from a '.jsonl.gz' file ."""
145
- for idx, instance in enumerate(dataset):
146
- yield idx, instance
147
-