|
You are given a positive integer $x$. Find any array of integers $a_0, a_1, \ldots, a_{n-1}$ for which the following holds: |
|
|
|
* $1 \le n \le 32$, * $a_i$ is $1$, $0$, or $-1$ for all $0 \le i \le n - 1$, * $x = \displaystyle{\sum_{i=0}^{n - 1}{a_i \cdot 2^i}}$, * There does not exist an index $0 \le i \le n - 2$ such that both $a_{i} \neq 0$ and $a_{i + 1} \neq 0$. |
|
|
|
It can be proven that under the constraints of the problem, a valid array always exists. |
|
|
|
Each test contains multiple test cases. The first line of input contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases. The description of the test cases follows. |
|
|
|
The only line of each test case contains a single positive integer $x$ ($1 \le x < 2^{30}$). |
|
|
|
For each test case, output two lines. |
|
|
|
On the first line, output an integer $n$ ($1 \le n \le 32$) — the length of the array $a_0, a_1, \ldots, a_{n-1}$. |
|
|
|
On the second line, output the array $a_0, a_1, \ldots, a_{n-1}$. |
|
|
|
If there are multiple valid arrays, you can output any of them. |
|
|
|
In the first test case, one valid array is $[1]$, since $(1) \cdot 2^0 = 1$. |
|
|
|
In the second test case, one possible valid array is $[0,-1,0,0,1]$, since $(0) \cdot 2^0 + (-1) \cdot 2^1 + (0) \cdot 2^2 + (0) \cdot 2^3 + (1) \cdot 2^4 = -2 + 16 = 14$. |