koutch commited on
Commit
1fe29b6
·
1 Parent(s): 34efab0
README.md CHANGED
@@ -1,32 +1,24 @@
1
  ---
 
 
 
 
 
 
 
 
2
  configs:
3
- - config_name: 2024
4
  data_files:
5
- - split: evaluation
6
- path: "data/v1_bea/evaluation_dataset-*.csv"
7
- - split: final_dataset
8
- path: "data/v1_bea/final_dataset-*.csv"
9
- - split: manual_evaluation
10
- path: "data/v1_bea/manual_evaluation_dialogues-*.csv"
11
- - config_name: v2_sigcse
12
- data_files:
13
- - split: train
14
- path: "data/v2_sigcse/train-*.csv"
15
- - split: evaluation
16
- path: "data/v2_sigcse/evaluation_dataset-*.csv"
17
- - split: final_dataset
18
- path: "data/v2_sigcse/final_dataset-*.csv"
19
- - split: manual_evaluation
20
- path: "data/v2_sigcse/manual_evaluation_dialogues-*.csv"
21
- - split: testset
22
- path: "data/v2_sigcse/testset-*.csv"
23
- - config_name: v3
24
- data_files:
25
- - split: final_dataset
26
- path: "data/v3/final_dataset-*.csv"
27
- - split: testset
28
- path: "data/v3/testset-*.csv"
29
  ---
30
 
 
31
  # CodeBench dataset
32
 
 
1
  ---
2
+ task_categories:
3
+ - text-generation
4
+ language:
5
+ - en
6
+ tags:
7
+ - code
8
+ size_categories:
9
+ - 100K<n<1M
10
  configs:
11
+ - config_name: 2024-1
12
  data_files:
13
+ - split: assessment
14
+ path: data/2024-1/assessment*.csv
15
+ - split: execution
16
+ path: data/2024-1/execution*.csv
17
+ - split: grade
18
+ path: data/2024-1/grade*.csv
19
+ default: true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  ---
21
 
22
+
23
  # CodeBench dataset
24
 
data/2024-1/assessment_2024-1.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:533cb2f8227895beeb0313cea518db9d5c362e0986c73b78dc35d46b237303e1
3
+ size 58424
data/2024-1/execution_2024-1.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd97ab5c1455baf0b77e2c800522481a63b9c0e464095f45586d4068bdeb159b
3
+ size 1974098
data/2024-1/grade_2024-1.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66b8b3486c0f8b9429239d73146c1f0b1b43c15594223604934baad58148e3b6
3
+ size 180450
src/__pycache__/assessment.cpython-312.pyc ADDED
Binary file (3.26 kB). View file
 
src/__pycache__/execution.cpython-312.pyc ADDED
Binary file (8.74 kB). View file
 
src/__pycache__/grade.cpython-312.pyc ADDED
Binary file (4.37 kB). View file
 
src/__pycache__/utils.cpython-312.pyc ADDED
Binary file (455 Bytes). View file
 
src/assessment.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from src.utils import read_data_file
3
+
4
+ def parse_assessment_simple(full_path: str) -> pd.DataFrame:
5
+ """
6
+ Minimal parser:
7
+ - Split per line
8
+ - For lines starting with '----', strip it, then split on the first ':'
9
+ - Build a flat dict, then move keys like 'exercise 01' into an 'exercises' dict
10
+ - Return a one-row DataFrame
11
+ """
12
+
13
+ print(f"Parsing assessment data from {full_path}...")
14
+
15
+ assessment_number = int(full_path.split("/")[-1].replace(".data", ""))
16
+ text = read_data_file(full_path)
17
+
18
+ lines = [ln.strip() for ln in text.strip().splitlines()]
19
+ flat = {}
20
+
21
+ for ln in lines:
22
+ if not ln or ln.startswith("-- ASSESSMENT DATA") or ln.startswith("-- EXERCISES"):
23
+ continue
24
+ if ln.startswith("----"):
25
+ # drop leading dashes and spaces
26
+ core = ln.lstrip("-").strip()
27
+ if ":" not in core:
28
+ continue
29
+ k, v = core.split(":", 1)
30
+ k = k.strip().lower() # normalize a bit
31
+ v = v.strip()
32
+ flat[k] = v
33
+
34
+ # Extract exercises into a nested dict
35
+ exercises = {}
36
+ for k in list(flat.keys()):
37
+ if k.startswith("exercise "):
38
+ # 'exercise 01' -> 1
39
+ try:
40
+ idx = int(k.split()[1])
41
+ except Exception:
42
+ continue
43
+ try:
44
+ exercises[idx] = int(flat[k])
45
+ except Exception:
46
+ # keep as string if not an int
47
+ exercises[idx] = flat[k]
48
+ del flat[k]
49
+
50
+ # Optional light cleanup: turn common numerics into numbers
51
+ def to_int(x):
52
+ try: return int(x)
53
+ except: return x
54
+ def to_float(x):
55
+ try: return float(x)
56
+ except: return x
57
+
58
+ for key in ("class number", "total_exercises"):
59
+ if key in flat:
60
+ flat[key] = to_int(flat[key])
61
+ if "weight" in flat:
62
+ flat["weight"] = to_float(flat["weight"])
63
+
64
+ # Rename keys to snake_case (purely cosmetic)
65
+ snake = {k.replace(" ", "_"): v for k, v in flat.items()}
66
+ snake["exercises"] = exercises or None
67
+ snake["assessment_id"] = assessment_number
68
+
69
+ return pd.DataFrame([snake])
src/execution.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from src.utils import read_data_file
3
+
4
+ SEP = "*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"
5
+
6
+ def split_execution_traces(log_text: str):
7
+ parts = log_text.strip().split(SEP)
8
+ return [p.strip() for p in parts if p.strip()]
9
+
10
+ def _extract_code(block: str):
11
+ lines = block.splitlines()
12
+ start_idx = None
13
+ for i, ln in enumerate(lines):
14
+ if ln.strip().lower().startswith("-- code:"):
15
+ start_idx = i + 1
16
+ break
17
+ if start_idx is None:
18
+ return None, None # (code_text, code_end_idx)
19
+
20
+ end_idx = len(lines)
21
+ for j in range(start_idx, len(lines)):
22
+ s = lines[j].strip()
23
+ if s.startswith("-- ") and s.endswith(":"):
24
+ end_idx = j
25
+ break
26
+ code_block = "\n".join(lines[start_idx:end_idx]).strip("\n")
27
+ return (code_block if code_block.strip() else None), end_idx
28
+
29
+ def _extract_test_output(block: str):
30
+ lines = block.splitlines()
31
+ _, after_code_idx = _extract_code(block)
32
+ if after_code_idx is None:
33
+ return None, None
34
+
35
+ section_idx = None
36
+ section_tag = None
37
+ for k in range(after_code_idx, len(lines)):
38
+ tag = lines[k].strip().lower()
39
+ if tag.startswith("-- output:") or tag.startswith("-- error:"):
40
+ section_idx = k
41
+ section_tag = tag
42
+ break
43
+ if section_idx is None:
44
+ return None, None
45
+
46
+ end_idx = len(lines)
47
+ for t in range(section_idx + 1, len(lines)):
48
+ s = lines[t].strip()
49
+ if s.startswith("-- ") and s.endswith(":"):
50
+ end_idx = t
51
+ break
52
+
53
+ content = "\n".join(lines[section_idx + 1 : end_idx]).strip("\n")
54
+ if not content.strip():
55
+ content = None
56
+
57
+ out_type = "stdout" if section_tag.startswith("-- output:") else "stderr"
58
+ return out_type, content
59
+
60
+ def _read_scalar_after_section(lines, idx):
61
+ """Return the first non-empty line after lines[idx], or None."""
62
+ for j in range(idx + 1, len(lines)):
63
+ txt = lines[j].strip()
64
+ if not txt:
65
+ # allow empty line(s) before the scalar
66
+ continue
67
+ return txt
68
+ return None
69
+
70
+ def _extract_submission(block: str):
71
+ """
72
+ Extract from a SUBMISSION/SUBMITION block:
73
+ - execution_time (float, seconds)
74
+ - grade (float, percent 0..100)
75
+ - testcases (list of dicts with index, input, correct_output, user_output)
76
+ """
77
+ lines = block.splitlines()
78
+ # 1) Find where code ends to start scanning the sections after it
79
+ _, after_code_idx = _extract_code(block)
80
+ scan_start = after_code_idx if after_code_idx is not None else 0
81
+
82
+ execution_time = None
83
+ grade = None
84
+ testcases = []
85
+
86
+ i = scan_start
87
+ while i < len(lines):
88
+ raw = lines[i].strip()
89
+ low = raw.lower()
90
+
91
+ # -- EXECUTION TIME:
92
+ if low.startswith("-- execution time:"):
93
+ val = _read_scalar_after_section(lines, i)
94
+ if val is not None:
95
+ # parse float; ignore parse errors silently
96
+ try:
97
+ execution_time = float(val)
98
+ except:
99
+ pass
100
+ i += 1
101
+ continue
102
+
103
+ # -- TEST CASE N:
104
+ if low.startswith("-- test case"):
105
+ # parse index between "test case " and ":"
106
+ idx = None
107
+ try:
108
+ # e.g., "-- TEST CASE 3:"
109
+ head = raw.split(":", 1)[0]
110
+ idx = int(head.lower().split("test case", 1)[1].strip())
111
+ except:
112
+ pass
113
+
114
+ # collect subfields until next '-- TEST CASE' or '-- GRADE:' or end
115
+ j = i + 1
116
+ current = {"index": idx, "input": "", "correct_output": "", "user_output": ""}
117
+ active = None # "input" | "correct_output" | "user_output"
118
+
119
+ while j < len(lines):
120
+ sraw = lines[j].rstrip("\n")
121
+ slow = sraw.strip().lower()
122
+
123
+ if slow.startswith("-- test case") or slow.startswith("-- grade:"):
124
+ break # end of this test case section
125
+
126
+ if slow.startswith("---- input:"):
127
+ active = "input"
128
+ # reset to collect fresh content for this field
129
+ current["input"] = ""
130
+ elif slow.startswith("---- correct output:"):
131
+ active = "correct_output"
132
+ current["correct_output"] = ""
133
+ elif slow.startswith("---- user output:"):
134
+ active = "user_output"
135
+ current["user_output"] = ""
136
+ else:
137
+ if active:
138
+ # preserve newlines as in the log
139
+ current[active] += (sraw + "\n")
140
+ j += 1
141
+
142
+ # strip trailing newlines
143
+ for k in ("input", "correct_output", "user_output"):
144
+ current[k] = current[k].rstrip("\n")
145
+
146
+ testcases.append(current)
147
+ i = j
148
+ continue
149
+
150
+ # -- GRADE:
151
+ if low.startswith("-- grade:"):
152
+ val = _read_scalar_after_section(lines, i)
153
+ if val is not None:
154
+ v = val.strip().rstrip("%").strip()
155
+ try:
156
+ grade = float(v)
157
+ except:
158
+ pass
159
+ i += 1
160
+ continue
161
+
162
+ i += 1
163
+
164
+ return execution_time, grade, testcases
165
+
166
+ def parse_execution_data(full_path):
167
+ """
168
+ Returns one row per trace with:
169
+ user, class_number, type, timestamp, code,
170
+ output_type, output_content (for TEST),
171
+ execution_time, grade, testcases (for SUBMISSION/SUBMITION),
172
+ trace
173
+ """
174
+
175
+ print(f"Parsing execution data from {full_path}...")
176
+
177
+ user = full_path.split("/")[-3]
178
+ class_number = full_path.split("/")[-5]
179
+ assessment_id, exercise_id = full_path.split("/")[-1].replace(".log", "").split("_")
180
+ assessment_id = int(assessment_id)
181
+ exercise_id = int(exercise_id)
182
+
183
+ log_text = read_data_file(full_path) # you provide this
184
+
185
+ rows = []
186
+ for block in split_execution_traces(log_text):
187
+ # header '== TYPE (timestamp)'
188
+ first = next((ln.strip() for ln in block.splitlines() if ln.strip()), "")
189
+ header = first.lstrip("=").strip()
190
+
191
+ typ, ts = None, None
192
+ if "(" in header and ")" in header:
193
+ left, rest = header.split("(", 1)
194
+ typ = left.strip()
195
+ ts = rest.split(")", 1)[0].strip()
196
+ else:
197
+ typ = header
198
+
199
+ code, _ = _extract_code(block)
200
+
201
+ # Defaults
202
+ output_type, output_content = None, None
203
+ execution_time, grade, testcases = None, None, None
204
+
205
+ tnorm = (typ or "").strip().lower()
206
+ if tnorm == "test":
207
+ output_type, output_content = _extract_test_output(block)
208
+ elif tnorm in ("submission", "submition", "submit"):
209
+ execution_time, grade, testcases = _extract_submission(block)
210
+
211
+ rows.append({
212
+ "user": user,
213
+ "class_number": class_number,
214
+ "assessment_id": assessment_id,
215
+ "exercise_id": exercise_id,
216
+ "type": typ,
217
+ "timestamp": ts,
218
+ "code": code,
219
+ "output_type": output_type,
220
+ "output_content": output_content,
221
+ "execution_time": execution_time,
222
+ "grade": grade, # percent 0..100
223
+ "testcases": testcases, # list[dict] or None
224
+ "trace": block
225
+ })
226
+
227
+ return pd.DataFrame(rows)
src/grade.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from src.utils import read_data_file
3
+
4
+ def parse_grade_data(full_path: str) -> pd.DataFrame:
5
+ """
6
+ Parse a simple grade block like:
7
+ ---- grade (0-10): 0
8
+ ---- number of exercises: 4
9
+ ---- correct: 0
10
+ ---- incorrect: 1
11
+ ---- blank: 3
12
+ Returns a one-row DataFrame with:
13
+ grade, grade_min, grade_max, number_of_exercises, correct, incorrect, blank
14
+ """
15
+
16
+ assessment_number = int(full_path.split("/")[-1].replace(".log", ""))
17
+ user = full_path.split("/")[-3]
18
+ class_number = full_path.split("/")[-5]
19
+ text = read_data_file(full_path)
20
+
21
+ lines = [ln.strip() for ln in text.strip().splitlines() if ln.strip()]
22
+ flat = {}
23
+
24
+ for ln in lines:
25
+ if not ln.startswith("----"):
26
+ continue
27
+ core = ln.lstrip("-").strip()
28
+ if ":" not in core:
29
+ continue
30
+ k, v = core.split(":", 1)
31
+ k = k.strip().lower()
32
+ v = v.strip()
33
+ flat[k] = v
34
+
35
+ # Extract grade and grade range if present in key "grade (x-y)"
36
+ grade_min, grade_max = None, None
37
+ grade_val = None
38
+
39
+ # Find the grade key (it may look like 'grade (0-10)' or 'grade (0 - 10)')
40
+ grade_key = next((k for k in flat.keys() if k.startswith("grade")), None)
41
+ if grade_key is not None:
42
+ # value is after ':', convert to int/float if possible
43
+ try:
44
+ grade_val = float(flat[grade_key])
45
+ if grade_val.is_integer():
46
+ grade_val = int(grade_val)
47
+ except:
48
+ grade_val = flat[grade_key]
49
+
50
+ # parse range in parentheses in the key
51
+ if "(" in grade_key and ")" in grade_key:
52
+ inside = grade_key.split("(", 1)[1].split(")", 1)[0] # e.g., "0-10" or "0 - 10"
53
+ # normalize "0 - 10" -> "0-10"
54
+ inside = inside.replace(" ", "")
55
+ if "-" in inside:
56
+ lo, hi = inside.split("-", 1)
57
+ try:
58
+ grade_min = float(lo)
59
+ grade_max = float(hi)
60
+ if grade_min.is_integer(): grade_min = int(grade_min)
61
+ if grade_max.is_integer(): grade_max = int(grade_max)
62
+ except:
63
+ pass
64
+
65
+ # remove original grade key from flat
66
+ del flat[grade_key]
67
+
68
+ # Coerce remaining known numeric fields
69
+ def to_num(x):
70
+ try:
71
+ y = float(x)
72
+ return int(y) if y.is_integer() else y
73
+ except:
74
+ return x
75
+
76
+ rename_map = {
77
+ "number of exercises": "number_of_exercises",
78
+ "correct": "correct",
79
+ "incorrect": "incorrect",
80
+ "blank": "blank",
81
+ }
82
+ out = {}
83
+ for src, dst in rename_map.items():
84
+ if src in flat:
85
+ out[dst] = to_num(flat[src])
86
+
87
+ out["grade"] = grade_val
88
+ out["grade_min"] = grade_min
89
+ out["grade_max"] = grade_max
90
+ out["class_number"] = class_number
91
+ out["assessment_number"] = assessment_number
92
+ out["user"] = user
93
+
94
+ return pd.DataFrame([out])
95
+
96
+ def parse_final_grade_data(full_path):
97
+ user = full_path.split("/")[-3]
98
+ class_number = full_path.split("/")[-5]
99
+ text = read_data_file(full_path)
100
+
101
+ out = {}
102
+ out["class_number"] = class_number
103
+ out["assessment_number"] = -1
104
+ out["user"] = user
105
+ out["grade"] = text
106
+ return pd.DataFrame([out])
107
+
src/process.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import pandas as pd
4
+ from argparse import ArgumentParser
5
+
6
+ from src.grade import parse_grade_data, parse_final_grade_data
7
+ from src.execution import parse_execution_data
8
+ from src.assessment import parse_assessment_simple
9
+
10
+ def parse_args():
11
+ """
12
+ Parse command line arguments.
13
+ """
14
+ parser = ArgumentParser(description="Process CodeBench data.")
15
+ parser.add_argument("--input", type=str, required=True, help="Input directory containing downloaded tar.")
16
+ return parser.parse_args()
17
+
18
+
19
+ def process_data(BASE_PATH):
20
+
21
+ assessment_data = []
22
+ grade_data = []
23
+ execution_data = []
24
+ for root, dirs, files in os.walk(BASE_PATH):
25
+ for d in dirs:
26
+ full_path = os.path.join(root, d)
27
+ if not len(dirs):
28
+ # We are within a last level directory
29
+ if root.split("/")[-1] == "assessments":
30
+ for f in files:
31
+ full_path = os.path.join(root, f)
32
+ assessment_data.append(parse_assessment_simple(full_path))
33
+ elif root.split("/")[-1] == "grades":
34
+ for f in files:
35
+ if f.endswith(".data"): # Final grade
36
+ full_path = os.path.join(root, f)
37
+ grade_data.append(parse_final_grade_data(full_path))
38
+ else:
39
+ full_path = os.path.join(root, f)
40
+ grade_data.append(parse_grade_data(full_path))
41
+ elif root.split("/")[-1] == "executions":
42
+ for f in files:
43
+ full_path = os.path.join(root, f)
44
+ execution_data.append(parse_execution_data(full_path))
45
+ break
46
+
47
+ assessment_df = pd.concat(assessment_data)
48
+ grade_df = pd.concat(grade_data)
49
+ execution_df = pd.concat(execution_data)
50
+
51
+ return assessment_df, grade_df, execution_df
52
+
53
+ def main():
54
+ args = parse_args()
55
+ # Load all provided dataframes
56
+ subset = args.input.split("/")[-1]
57
+ print(f"Processing data from {subset}...")
58
+ assessment_df, grade_df, execution_df = process_data(args.input)
59
+
60
+ # Save the dataframes to CSV files
61
+ base_save_path = f"./data/{subset}/"
62
+ os.makedirs(base_save_path, exist_ok=True)
63
+ assessment_df.to_csv(os.path.join(base_save_path, f"assessment_{subset}.csv"), index=False)
64
+ grade_df.to_csv(os.path.join(base_save_path, f"grade_{subset}.csv"), index=False)
65
+ execution_df.to_csv(os.path.join(base_save_path, f"execution_{subset}.csv"), index=False)
66
+
67
+
68
+ if __name__ == "__main__":
69
+ main()
src/utils.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ def read_data_file(path):
2
+ with open(path, "r") as fp:
3
+ content = fp.read()
4
+ return content