|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Librispeech automatic speech recognition dataset."""
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import glob
|
|
import os
|
|
|
|
import datasets
|
|
|
|
|
|
_CITATION = """\
|
|
@inproceedings{panayotov2015librispeech,
|
|
title={Librispeech: an ASR corpus based on public domain audio books},
|
|
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
|
|
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
|
|
pages={5206--5210},
|
|
year={2015},
|
|
organization={IEEE}
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
|
|
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
|
|
audiobooks from the LibriVox project, and has been carefully segmented and aligned.
|
|
Note that in order to limit the required storage for preparing this dataset, the audio
|
|
is stored in the .flac format and is not converted to a float32 array. To convert, the audio
|
|
file to a float32 array, please make use of the `.map()` function as follows:
|
|
```python
|
|
import soundfile as sf
|
|
def map_to_array(batch):
|
|
speech_array, _ = sf.read(batch["file"])
|
|
batch["speech"] = speech_array
|
|
return batch
|
|
dataset = dataset.map(map_to_array, remove_columns=["file"])
|
|
```
|
|
"""
|
|
|
|
_URL = "http://www.openslr.org/12"
|
|
_DL_URL = "https://www.openslr.org/resources/12/"
|
|
|
|
_DL_URLS = {
|
|
"clean": {
|
|
"test": _DL_URL + "test-clean.tar.gz",
|
|
}
|
|
}
|
|
|
|
|
|
class LibrispeechASRConfig(datasets.BuilderConfig):
|
|
"""BuilderConfig for LibriSpeechASR."""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""
|
|
Args:
|
|
data_dir: `string`, the path to the folder containing the files in the
|
|
downloaded .tar
|
|
citation: `string`, citation for the data set
|
|
url: `string`, url for information about the data set
|
|
**kwargs: keyword arguments forwarded to super.
|
|
"""
|
|
super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
|
|
|
|
|
|
class LibrispeechASR(datasets.GeneratorBasedBuilder):
|
|
"""Librispeech dataset."""
|
|
|
|
BUILDER_CONFIGS = [
|
|
LibrispeechASRConfig(name="clean", description="'Clean' speech."),
|
|
LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
|
|
]
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features(
|
|
{
|
|
"file": datasets.Value("string"),
|
|
"audio": datasets.features.Audio(sampling_rate=16_000),
|
|
"text": datasets.Value("string"),
|
|
"speaker_id": datasets.Value("int64"),
|
|
"chapter_id": datasets.Value("int64"),
|
|
"id": datasets.Value("string"),
|
|
}
|
|
),
|
|
supervised_keys=("speech", "text"),
|
|
homepage=_URL,
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
archive_path = dl_manager.download_and_extract(_DL_URLS[self.config.name])
|
|
return [
|
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path["test"], "split_name": f"test-{self.config.name}"}),
|
|
]
|
|
|
|
def _generate_examples(self, archive_path, split_name):
|
|
"""Generate examples from a Librispeech archive_path."""
|
|
transcripts_glob = os.path.join(archive_path, "LibriSpeech", split_name, "*/*/*.txt")
|
|
for transcript_file in glob.glob(transcripts_glob):
|
|
path = os.path.dirname(transcript_file)
|
|
with open(os.path.join(path, transcript_file)) as f:
|
|
for line in f:
|
|
line = line.strip()
|
|
key, transcript = line.split(" ", 1)
|
|
audio_file = f"{key}.flac"
|
|
speaker_id, chapter_id = [int(el) for el in key.split("-")[:2]]
|
|
example = {
|
|
"id": key,
|
|
"speaker_id": speaker_id,
|
|
"chapter_id": chapter_id,
|
|
"file": os.path.join(path, audio_file),
|
|
"audio": os.path.join(path, audio_file),
|
|
"text": transcript,
|
|
}
|
|
yield key, example |